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The Law of Large Numbers
Basic notions

Sublinear Expectations

• (Ω,H, Ê) is called a sublinear expectation space if Ê : H → R satisfies
1) Ê[ξ] ≥ Ê[η] for ξ ≥ η;
2) Ê[c] = c ;
3) Ê[λξ] = λÊ[ξ], λ ≥ 0;
4) Ê[ξ + η] ≤ Ê[ξ] + Ê[η].

• For X ∈ H, NX : Cb,Lip(R)→ R defined below is called the distribution of X :

NX [φ]
def
= Ê[φ(X )].

• We say Y is independent of X if

Ê[ϕ(X ,Y )] = Ê[Ê[ϕ(x ,Y )]|x=X ].
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The Law of Large Numbers
Some preliminaries

The Law of Large Numbers under Sublinear Expectations

Theorem 1 (Peng (2007))
Let (ξk)k≥1 be a sequence of i.i.d random variables under a sublinear
expectation E with the assumption E[|ξ1|1+β ] <∞ for some β > 0. Set
ξn = ξ1+···+ξn

n
, µ = −E[−ξ1], µ = E[ξ1]. Then we have

lim
n

E[φ(ξn)] = sup
y∈[µ,µ]

φ(y), (1)

for any φ ∈ Cb,Lip(R), the collection of bounded and Lipschitz continuous
functions on R.

This is called the (weak) law of large numbers under sublinear expectations
(wLLN*).
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The Law of Large Numbers
Some preliminaries

Convergence Rate of wLLN*

S. (2021) gives a convergence rate of wLLN* by Stein’s method under sublinear
expectations.

Theorem 2
[1] Under the same conditions with Theorem 1, we have

sup
|φ|Lip≤1

∣∣∣∣E[φ(ξn)]− sup
y∈[µ,µ]

φ(y)

∣∣∣∣ ≤ Cn−
β

1+β , (2)

where C is a constant depending only on E[|ξ1|1+β ].

[1]Hu, Li, Li (2021) gives a different proof.
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The Law of Large Numbers
Some preliminaries

Some Remarks on wLLN*

Let E[·] = supP∈Θ EP [·].
• @ ξ such that E[|ξn − ξ|]→ 0.

Otherwise, ξ is independent of ξ1, · · · , ξn , n ∈ N, and ξ is maximally distributed.
Then E

[
maxy∈[µ,µ] |ξn − y |

]
≥ 1

2
(µ− µ).

• For any P ∈ Θ, µ ≤ lim infn→∞ ξn ≤ lim supn→∞ ξn ≤ µ, P-a.s.
Chen (2016), Chen et al (2019)
• The collection of the cluster points of empirical averages ξn coincides with

the interval [µ, µ]. (not always true)
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The Law of Large Numbers
Some preliminaries

A Counterexample

Example 3 (Terán (2018))
Let Ω = N, the set of positive integers. For ω ∈ Ω, define
ξ(ω) := (ξ1(ω), ξ2(ω), · · · ) ∈ {0, 1}N satisfying ω = Σ∞n=12n−1ξn(ω).
Let Θ = {δω | ω ∈ Ω} and set E[φ(ξ1, · · · , ξm)] = sup

P∈Θ
EP [φ(ξ1, · · · , ξm)].

Then (ξn) is a sequence of i.i.d random variables under E with E[ξ1] = 1,
−E[−ξ1] = 0. But for each ω,

ξ1(ω) + · · ·+ ξn(ω)

n
→ 0

since ξn(ω) = 0 except finite n.
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The Law of Large Numbers
Main results

Main Results

Let Ω be a Polish space. For Θ ⊂M1(Ω) which is weakly compact, the
associated sublinear expectation is defined by

E[ξ] = sup
P∈Θ

EP [ξ], ξ ∈ Cb(Ω).

Theorem 4
Let {ξi} ⊂ L1+β

E (Ω), β > 0, be a sequence of independent and identically
distributed random variables under E. Set µ = −E[−ξ1], µ = E[ξ1] and
ξn = ξ1+···+ξn

n
. Then, for any µ ∈ [µ, µ], there exists Pµ ∈ Θ such that,

ξn → µ, Pµ-a.s.

as n goes to +∞.
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The Law of Large Numbers
Main results

Main Results

Let Ω = RN endowed with the metric d(x , y) := Σ∞k=1
1

2n
(|x(k)− y(k)| ∧ 1), for

x , y ∈ Ω. For n ∈ N, set ξn(ω) = ω(n), ω ∈ Ω. Assume that (ξn) is i.i.d under a
regular sublinear expectation E = supP∈Θ EP with Θ weakly compact.

Theorem 5
Assume Θ is convex. For any Fd-measurable random variable Π with values in
[µ, µ] and d ∈ N, and any P ∈ Θ, there exists a probability PΠ ∈ Θ such that
PΠ = P on Fd , and

lim
n→∞

ξn = Π, PΠ-a.s. (3)

Furthermore, if P1,d ∈ ext Ξd , PΠ can also be chosen from ext Θ. Here
P1,d = P ◦ (ξ1, · · · , ξd)−1 and Ξd = {P̃1,d | P ∈ Θ}.
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The Law of Large Numbers
Main results

Main Results

Corollary 6
Let Θ0 be a weakly compact subset ofM1(Ω) such that

E[X ] = sup
P∈Θ0

EP [X ] for X ∈ Cb(Ω).

Then, for any Fd-measurable random variable Π with values in [µ, µ] and
d ∈ N, there exists a probability PΠ ∈ Θ0 such that

lim
n→∞

ξ̄n = Π, PΠ-a.s.

Proof.
Since Θ0 represents E, it follows from Hahn-Banach theorem that co(Θ0) = Θ.
By Krein-Milman Theorem, we have ext Θ ⊂ Θ0. For any µ ∈ ext Ξd , it follows
from Theorem 5 that there exists PΠ ∈ ext Θ ⊂ Θ0 such that PΠ

1,d = µ and

lim
n→∞

ξ̄n = Π, PΠ-a.s.
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The Law of Large Numbers
Main results

Triviality of Tail σ-algebra
• As is known, the tail σ-algebra of an i.i.d sequence of random variables is
trivial.
• The last result shows that it is generally not true under a probability
P ∈ ext Θ for the nonlinear case.
• But, we have the following result.
Let θn be the n-shift on Ω = RN. A probability P on Ω is called stationary if
P = P ◦ θ−1

n for some n ∈ N. We denote Θs the subset of ext Θ, the
probabilities in which is stationary.

Theorem 7
1) For any P ∈ Θs and A ∈ T , we have

either P(A) = 0, or P(A) = 1;

2) For any P ∈ Θs , limn ξn exists and equals to some constant mP ; Moreover,
{mP}P∈Θs is dense in

[
µ, µ

]
.

3) Θs is a set that represents E:

sup
P∈Θs

EP [X ] = E[X ], for X ∈ Cb(Ω).
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The Law of Large Numbers
Proofs the main results

Proof to Theorem 4

Case 1. µ = µ, µ
For any n ∈ N, there exists Pµ,n ∈ Θ such that
EPµ,n [ξ1 + · · ·+ ξn] = E[ξ1 + · · ·+ ξn] = nµ, which implies that

EPµ,n [ξk ] = µ, k ≤ n,

noting that EPµ,n [ξk ] ≤ µ.
Since Θ is weakly compact, there is Pµ ∈ Θ such that for any n ∈ N,

EPµ [ξn] = lim
k→∞

EPµ,nk
[ξn] = µ.[2]

[2] 1 Pµ ∈ Θ; 2 EPµ
[ξn] = µ.
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The Law of Large Numbers
Proofs the main results

Proof to Theorem 4

Note that

Pµ[ξn − µ > ε] ≤ 1

ε
EPµ [(ξn − µ)+] ≤ 1

ε
E[(ξn − µ)+],

Pµ[ξn − µ < −ε] ≤ 1

ε
EPµ [(ξn − µ)−] =

1

ε
EPµ [(ξn − µ)+] ≤ 1

ε
E[(ξn − µ)+].

Therefore, we have

Pµ[|ξn − µ| > ε] ≤ 2

ε
E[(ξn − µ)+],

which converges to 0 as n goes to infinity by Peng’s wLLN*.
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The Law of Large Numbers
Proofs the main results

Proof to Theorem 4

Case 2. µ ∈ (µ, µ)
Set

κ1(µ) =

{
µ if µ ≥ µ−µ

2
,

µ if µ < µ−µ
2
.

µn = (κ1(µ) + · · ·+ κn(µ))/n,

κn+1(µ) =

{
µ if µ ≥ µn,
µ if µ < µn.

Then
|µn − µ| = O(1/n).
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The Law of Large Numbers
Proofs the main results

Proof to Theorem 4

We can find Pµ ∈ Θ such that EPµ [ξn] = κn(µ). [3] Then, we have

Pµ[|ξn − µn| > ε]

= Pµ[|kn
n

(
Σi∈N+(n)ξi

kn
− µ) +

ln
n

(
Σi∈N−(n)ξi

ln
− µ)| > ε]

≤ Pµ[|
Σi∈N+(n)ξi

kn
− µ| > ε] + Pµ[|

Σi∈N−(n)ξi

ln
− µ| > ε]

≤ 2

ε
E[(

Σi∈N+(n)ξi

kn
− µ)+] +

2

ε
E[(

Σi∈N−(n)ξi

ln
− µ)−],

which converges to 0 as n goes to infinity by Peng’s wLLN*.

By the convergence rate of wLLN* given in S. (2021), we can prove the a.s.
convergence.

[3] 1 Pµ ∈ Θ; 2 EPµ [ξn] = κn(µ)
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The Law of Large Numbers
Proofs the main results

Proof to Theorem 5

Lemma 8
Under the same conditions as those in Theorem 4 , we can find a Borel mapping
Pµ : [µ, µ]→ Θ such that EPµ [ξn] = κn(µ).

Sketch of the proof to Theorem 5.
STEP 1. For any φ ∈ Cb,Lip(Rn), n ∈ N, set

EPΠ [φ(ξ1, · · · , ξn)] = EP

[
EPπ(x1,··· ,xd )

[φ(x1, · · · , xd , ξ1, · · · , ξn−d)]|xi=ξii=1,··· ,d
]
.

Clearly, PΠ ∈ Θ, PΠ = P on Fd , and
PΠ(ξn+d |Fd)(ω) = PΠ(ω)(ξn) = κn(Π(ω)) P-a.s.
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The Law of Large Numbers
Proofs the main results

Proof to Theorem 5

STEP 2. We denote by ΘΠ
P the set of probabilities satisfying P̃Π ∈ Θ, P̃Π = P

on Fd , and P̃Π(ξn+d |Fd)(ω) = κn(Π(ω)) P-a.s.

For any P̃Π ∈ ΘΠ
P ,

P̃Π( lim
n→∞

ξ̄n = Π)

= EP [P̃Π( lim
n→∞

ξ̄n = Π|Fd)]

=

∫
Ω

P̃Π( lim
n→∞

ξ̄n = Π(ω))(ω)P(dω) = 1.
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The Law of Large Numbers
Proofs the main results

Proof to Theorem 5

ΘΠ
P : the set of probabilities satisfying P̃Π ∈ Θ, P̃Π = P on Fd , and

P̃Π(ξn+d |Fd)(ω) = κn(Π(ω)) P-a.s.

STEP 3. ΘΠ
P is a nonempty convex closed subset of Θ.

By Krein-Milman Theorem, ext ΘΠ
P is nonempty.

STEP 4. ext ΘΠ
P ⊂ ext Θ .

The proof is completed: ∃PΠ ∈ ext Θ such that

PΠ( lim
n→∞

ξ̄n = Π) = 1.
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The Law of Large Numbers
Proofs the main results

THANK YOU.
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