The Law of Large Numbers under Sublinear Expectations

Yongsheng Song

Academy of Mathematics and Systems Science, CAS

BSDE 2022 July 1st, 2022

Based on a joint work with Shige Peng.

★ロト ★御 ト ★注 ト ★注 ト 一注

1/19

Outline

- Basic notions of sublinear expectations
- Some preliminaries
- Main results
- Sketch of proofs

Sublinear Expectations

- $(\Omega, \mathcal{H}, \hat{E})$ is called a sublinear expectation space if $\hat{E} : \mathcal{H} \to \mathbb{R}$ satisfies
 - 1) $\hat{\mathsf{E}}[\xi] \ge \hat{\mathsf{E}}[\eta]$ for $\xi \ge \eta$;
 - 2) $\hat{E}[c] = c;$
 - 3) $\hat{\mathsf{E}}[\lambda\xi] = \lambda \hat{\mathsf{E}}[\xi], \ \lambda \ge 0;$
 - 4) $\hat{\mathsf{E}}[\xi + \eta] \leq \hat{\mathsf{E}}[\xi] + \hat{\mathsf{E}}[\eta].$
- For $X \in \mathcal{H}$, $\mathcal{N}_X : C_{b,Lip}(\mathbb{R}) \to \mathbb{R}$ defined below is called the distribution of X:

$$\mathcal{N}_X[\phi] \stackrel{def}{=} \hat{\mathsf{E}}[\phi(X)].$$

• We say Y is independent of X if

$$\hat{\mathsf{E}}[\varphi(X,Y)] = \hat{\mathsf{E}}[\hat{\mathsf{E}}[\varphi(x,Y)]|_{x=X}].$$

The Law of Large Numbers under Sublinear Expectations

Theorem 1 (Peng (2007))

Let $(\xi_k)_{k\geq 1}$ be a sequence of i.i.d random variables under a sublinear expectation \mathbb{E} with the assumption $\mathbb{E}[|\xi_1|^{1+\beta}] < \infty$ for some $\beta > 0$. Set $\overline{\xi}_n = \frac{\xi_1 + \dots + \xi_n}{n}$, $\underline{\mu} = -\mathbb{E}[-\xi_1]$, $\overline{\mu} = \mathbb{E}[\xi_1]$. Then we have

$$\lim_{n} \mathbb{E}[\phi(\overline{\xi}_{n})] = \sup_{y \in [\underline{\mu}, \overline{\mu}]} \phi(y), \tag{1}$$

for any $\phi \in C_{b,Lip}(\mathbb{R})$, the collection of bounded and Lipschitz continuous functions on \mathbb{R} .

This is called the (weak) law of large numbers under sublinear expectations (wLLN*).

Convergence Rate of wLLN*

S. (2021) gives a convergence rate of wLLN* by Stein's method under sublinear expectations.

Theorem 2^[1] Under the same conditions with Theorem 1, we have

$$\sup_{|\phi|_{Lip} \le 1} \left| \mathbb{E}[\phi(\overline{\xi}_n)] - \sup_{y \in [\underline{\mu}, \overline{\mu}]} \phi(y) \right| \le Cn^{-\frac{\beta}{1+\beta}}, \tag{2}$$

where C is a constant depending only on $\mathbb{E}[|\xi_1|^{1+\beta}]$.

<ロ><回><回><日><日><日><日><日><日><日><日><日><日><日><10</td>

^[1]Hu, Li, Li (2021) gives a different proof.

Some Remarks on wLLN*

Let $\mathbb{E}[\cdot] = \sup_{P \in \Theta} E_P[\cdot].$

- $\nexists \xi$ such that $\mathbb{E}[|\overline{\xi}_n \xi|] \to 0$. Otherwise, ξ is independent of ξ_1, \dots, ξ_n , $n \in \mathbb{N}$, and ξ is maximally distributed. Then $\mathbb{E}[\max_{y \in [\mu, \overline{\mu}]} |\overline{\xi}_n - y|] \ge \frac{1}{2}(\overline{\mu} - \underline{\mu})$.
- For any $P \in \Theta$, $\underline{\mu} \leq \liminf_{n \to \infty} \overline{\xi}_n \leq \limsup_{n \to \infty} \overline{\xi}_n \leq \overline{\mu}$, *P*-a.s. Chen (2016), Chen et al (2019)
- The collection of the cluster points of empirical averages $\overline{\xi}_n$ coincides with the interval $[\mu, \overline{\mu}]$. (not always true)

A Counterexample

Example 3 (Terán (2018))

Let $\Omega = \mathbb{N}$, the set of positive integers. For $\omega \in \Omega$, define $\xi(\omega) := (\xi_1(\omega), \xi_2(\omega), \cdots) \in \{0, 1\}^{\mathbb{N}}$ satisfying $\omega = \sum_{n=1}^{\infty} 2^{n-1} \xi_n(\omega)$. Let $\Theta = \{\delta_{\omega} \mid \omega \in \Omega\}$ and set $\mathbb{E}[\phi(\xi_1, \cdots, \xi_m)] = \sup_{P \in \Theta} E_P[\phi(\xi_1, \cdots, \xi_m)]$.

Then (ξ_n) is a sequence of i.i.d random variables under \mathbb{E} with $\mathbb{E}[\xi_1] = 1$, $-\mathbb{E}[-\xi_1] = 0$. But for each ω ,

$$\frac{\xi_1(\omega)+\cdots+\xi_n(\omega)}{n}\to 0$$

since $\xi_n(\omega) = 0$ except finite *n*.

Main Results

Let Ω be a Polish space. For $\Theta \subset \mathcal{M}_1(\Omega)$ which is weakly compact, the associated sublinear expectation is defined by

$$\mathbb{E}[\xi] = \sup_{P \in \Theta} E_P[\xi], \ \xi \in C_b(\Omega).$$

Theorem 4 Let $\{\xi_i\} \subset L^{1+\beta}_{\mathbb{E}}(\Omega)$, $\beta > 0$, be a sequence of independent and identically distributed random variables under \mathbb{E} . Set $\underline{\mu} = -\mathbb{E}[-\xi_1]$, $\overline{\mu} = \mathbb{E}[\xi_1]$ and $\overline{\xi}_n = \frac{\xi_1 + \dots + \xi_n}{n}$. Then, for any $\mu \in [\underline{\mu}, \overline{\mu}]$, there exists $P_{\mu} \in \Theta$ such that,

$$\overline{\xi}_n \to \mu, \ P_\mu$$
-a.s.

as n goes to $+\infty$.

Main Results

Let $\Omega = \mathbb{R}^{\mathbb{N}}$ endowed with the metric $d(x, y) := \sum_{k=1}^{\infty} \frac{1}{2^n} (|x(k) - y(k)| \wedge 1)$, for $x, y \in \Omega$. For $n \in \mathbb{N}$, set $\xi_n(\omega) = \omega(n)$, $\omega \in \Omega$. Assume that (ξ_n) is i.i.d under a regular sublinear expectation $\mathbb{E} = \sup_{P \in \Theta} E_P$ with Θ weakly compact.

Theorem 5

Assume Θ is convex. For any \mathcal{F}_d -measurable random variable Π with values in $[\underline{\mu}, \overline{\mu}]$ and $d \in \mathbb{N}$, and any $P \in \Theta$, there exists a probability $P^{\Pi} \in \Theta$ such that $P^{\Pi} = P$ on \mathcal{F}_d , and

$$\lim_{n \to \infty} \overline{\xi}_n = \Pi, \ P^{\Pi} \text{-a.s.}$$
(3)

Furthermore, if $P_{1,d} \in \text{ext} \equiv_d$, P^{\sqcap} can also be chosen from ext Θ . Here $P_{1,d} = P \circ (\xi_1, \cdots, \xi_d)^{-1}$ and $\Xi_d = \{\tilde{P}_{1,d} \mid P \in \Theta\}$.

Main Results

Corollary 6

Let Θ_0 be a weakly compact subset of $\mathcal{M}_1(\Omega)$ such that

$$\mathbb{E}[X] = \sup_{P \in \Theta_0} E_P[X] \text{ for } X \in C_b(\Omega).$$

Then, for any \mathcal{F}_d -measurable random variable Π with values in $[\underline{\mu}, \overline{\mu}]$ and $d \in \mathbb{N}$, there exists a probability $P^{\Pi} \in \Theta_0$ such that

$$\lim_{n\to\infty}\bar{\xi}_n=\Pi,\ P^{\Pi}-a.s.$$

Proof.

Since Θ_0 represents \mathbb{E} , it follows from Hahn-Banach theorem that $\overline{co}(\Theta_0) = \Theta$. By Krein-Milman Theorem, we have ext $\Theta \subset \Theta_0$. For any $\mu \in \text{ext } \Xi_d$, it follows from Theorem 5 that there exists $\mathcal{P}^{\Pi} \in \text{ext } \Theta \subset \Theta_0$ such that $\mathcal{P}_{1,d}^{\Pi} = \mu$ and

(□) (@) (E) (E) E

$$\lim_{n\to\infty}\bar{\xi}_n=\Pi,\ P^{\Pi}-\text{a.s.}$$

Triviality of Tail σ -algebra

 \bullet As is known, the tail $\sigma\textsc{-algebra}$ of an i.i.d sequence of random variables is trivial.

• The last result shows that it is generally not true under a probability

- $P \in \operatorname{ext} \Theta$ for the nonlinear case.
- But, we have the following result.

Let θ_n be the *n*-shift on $\Omega = \mathbb{R}^{\mathbb{N}}$. A probability *P* on Ω is called stationary if $P = P \circ \theta_n^{-1}$ for some $n \in \mathbb{N}$. We denote Θ^s the subset of *ext* Θ , the probabilities in which is stationary.

Theorem 7

1) For any
$$P \in \Theta^s$$
 and $A \in \mathcal{T}$, we have

either
$$P(A) = 0$$
, *or* $P(A) = 1$;

- 2) For any $P \in \Theta^s$, $\lim_n \overline{\xi}_n$ exists and equals to some constant m_P ; Moreover, $\{m_P\}_{P \in \Theta^s}$ is dense in $[\mu, \overline{\mu}]$.
- 3) Θ^s is a set that represents \mathbb{E} :

$$\sup_{P\in\Theta^s} E_P[X] = \mathbb{E}[X], \text{ for } X \in C_b(\Omega).$$

イロト イボト イヨト イヨト 一日

Case 1.
$$\mu = \overline{\mu}, \underline{\mu}$$

For any $n \in \mathbb{N}$, there exists $P_{\overline{\mu},n} \in \Theta$ such that
 $E_{P_{\overline{\mu},n}}[\xi_1 + \cdots + \xi_n] = \mathbb{E}[\xi_1 + \cdots + \xi_n] = n\overline{\mu}$, which implies that

$$E_{P_{\overline{\mu},n}}[\xi_k] = \overline{\mu}, \ k \leq n,$$

noting that $E_{P_{\overline{\mu},n}}[\xi_k] \leq \overline{\mu}$. Since Θ is weakly compact, there is $P_{\overline{\mu}} \in \Theta$ such that for any $n \in \mathbb{N}$,

$$E_{P_{\overline{\mu}}}[\xi_n] = \lim_{k \to \infty} E_{P_{\overline{\mu}, n_k}}[\xi_n] = \overline{\mu}.^{[2]}$$

^[2]
$$\mathbb{O}P_{\overline{\mu}} \in \Theta; \mathbb{O}E_{P_{\overline{\mu}}}[\xi_n] = \overline{\mu}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Note that

$$P_{\overline{\mu}}[\overline{\xi}_n - \overline{\mu} > \varepsilon] \leq \frac{1}{\varepsilon} E_{P_{\overline{\mu}}}[(\overline{\xi}_n - \overline{\mu})^+] \leq \frac{1}{\varepsilon} \mathbb{E}[(\overline{\xi}_n - \overline{\mu})^+],$$

$$P_{\overline{\mu}}[\overline{\xi}_n - \overline{\mu} < -\varepsilon] \leq \frac{1}{\varepsilon} E_{P_{\overline{\mu}}}[(\overline{\xi}_n - \overline{\mu})^-] = \frac{1}{\varepsilon} E_{P_{\overline{\mu}}}[(\overline{\xi}_n - \overline{\mu})^+] \leq \frac{1}{\varepsilon} \mathbb{E}[(\overline{\xi}_n - \overline{\mu})^+].$$

Therefore, we have

$$P_{\overline{\mu}}[|\overline{\xi}_n - \overline{\mu}| > \varepsilon] \leq \frac{2}{\varepsilon} \mathbb{E}[(\overline{\xi}_n - \overline{\mu})^+],$$

イロン イロン イヨン イヨン 三日

13/19

which converges to 0 as *n* goes to infinity by Peng's wLLN*.

Case 2. $\mu \in (\underline{\mu}, \overline{\mu})$ Set

$$\kappa_{1}(\mu) = \begin{cases} \overline{\mu} & \text{if } \mu \geq \frac{\overline{\mu}-\mu}{2}, \\ \underline{\mu} & \text{if } \mu < \frac{\overline{\mu}-\mu}{2}. \end{cases}$$
$$\mu^{n} = (\kappa_{1}(\mu) + \dots + \kappa_{n}(\mu))/n,$$
$$\kappa_{n+1}(\mu) = \begin{cases} \overline{\mu} & \text{if } \mu \geq \mu^{n}, \\ \underline{\mu} & \text{if } \mu < \mu^{n}. \end{cases}$$

Then

$$|\mu^n-\mu|=O(1/n).$$

We can find $P_{\mu} \in \Theta$ such that $E_{P_{\mu}}[\xi_n] = \kappa_n(\mu)$. ^[3] Then, we have

$$\begin{aligned} & P_{\mu}[|\overline{\xi}_{n} - \mu_{n}| > \varepsilon] \\ &= P_{\mu}[|\frac{k_{n}}{n}(\frac{\sum_{i \in N_{+}(n)}\xi_{i}}{k_{n}} - \overline{\mu}) + \frac{l_{n}}{n}(\frac{\sum_{i \in N_{-}(n)}\xi_{i}}{l_{n}} - \underline{\mu})| > \varepsilon] \\ &\leq P_{\mu}[|\frac{\sum_{i \in N_{+}(n)}\xi_{i}}{k_{n}} - \overline{\mu}| > \varepsilon] + P_{\mu}[|\frac{\sum_{i \in N_{-}(n)}\xi_{i}}{l_{n}} - \underline{\mu}| > \varepsilon] \\ &\leq \frac{2}{\varepsilon}\mathbb{E}[(\frac{\sum_{i \in N_{+}(n)}\xi_{i}}{k_{n}} - \overline{\mu})^{+}] + \frac{2}{\varepsilon}\mathbb{E}[(\frac{\sum_{i \in N_{-}(n)}\xi_{i}}{l_{n}} - \underline{\mu})^{-}], \end{aligned}$$

which converges to 0 as *n* goes to infinity by Peng's wLLN*.

By the convergence rate of wLLN* given in S. (2021), we can prove the a.s. convergence.

<ロト
・< 回ト< 目ト< 目ト< 目、< 三、
・< 三、
・< 三、
・< 三、
・< 15/19

Lemma 8

Under the same conditions as those in Theorem 4, we can find a Borel mapping $P_{\mu} : [\underline{\mu}, \overline{\mu}] \to \Theta$ such that $E_{P_{\mu}}[\xi_n] = \kappa_n(\mu)$.

イロト イボト イヨト イヨト 一日

16/19

Sketch of the proof to Theorem 5. STEP 1. For any $\phi \in C_{b,Lip}(\mathbb{R}^n)$, $n \in \mathbb{N}$, set $E_{P^{\Pi}}[\phi(\xi_1, \cdots, \xi_n)] = E_P[E_{P_{\pi(x_1, \cdots, x_d)}}[\phi(x_1, \cdots, x_d, \xi_1, \cdots, \xi_{n-d})]|_{i=1, \cdots, d}^{x_i = \xi_i}]$.

Clearly, $P^{\Pi} \in \Theta$, $P^{\Pi} = P$ on \mathcal{F}_d , and $P^{\Pi}(\xi_{n+d}|\mathcal{F}_d)(\omega) = P_{\Pi(\omega)}(\xi_n) = \kappa_n(\Pi(\omega))$ *P*-a.s.

STEP 2. We denote by Θ_{P}^{Π} the set of probabilities satisfying $\tilde{P}^{\Pi} \in \Theta$, $\tilde{P}^{\Pi} = P$ on \mathcal{F}_{d} , and $\tilde{P}^{\Pi}(\xi_{n+d}|\mathcal{F}_{d})(\omega) = \kappa_{n}(\Pi(\omega))$ *P*-a.s. For any $\tilde{P}^{\Pi} \in \Theta_{P}^{\Pi}$,

$$\begin{split} \tilde{P}^{\Pi}(\lim_{n\to\infty}\bar{\xi}_n &= \Pi) \\ &= E_P[\tilde{P}^{\Pi}(\lim_{n\to\infty}\bar{\xi}_n &= \Pi|\mathcal{F}_d)] \\ &= \int_{\Omega}\tilde{P}^{\Pi}(\lim_{n\to\infty}\bar{\xi}_n &= \Pi(\omega))(\omega)P(d\omega) = 1. \end{split}$$

★ロト ★御 ト ★注 ト ★注 ト 一注

17/19

 Θ_{P}^{Π} : the set of probabilities satisfying $\tilde{P}^{\Pi} \in \Theta$, $\tilde{P}^{\Pi} = P$ on \mathcal{F}_{d} , and $\tilde{P}^{\Pi}(\xi_{n+d}|\mathcal{F}_{d})(\omega) = \kappa_{n}(\Pi(\omega))$ *P*-a.s.

STEP 3. Θ_P^{Π} is a nonempty convex **closed** subset of Θ .

By Krein-Milman Theorem, ext Θ_P^{Π} is nonempty.

STEP 4. ext $\Theta_P^{\Pi} \subset$ ext Θ .

The proof is completed: $\exists P^{\Pi} \in \text{ext } \Theta$ such that

$$P^{\Pi}(\lim_{n\to\infty}\bar{\xi}_n=\Pi)=1.$$

(日)

18/19

The Law of Large Numbers

THANK YOU.