PROGRESSIVE ENLARGEMENT OF FILTRATION AND CONTROL PROBLEMS FOR STEP PROCESSES

Elena BANDINI

Università di Bologna

joint work with Fulvia CONFORTOLA (Politecnico Milano) and Paolo DI TELLA (TU Dresden)

June 27th, 2022

9th colloquium on Backward Stochastic Differential Equations and Mean Field Systems

Annecy

2 Progressive enlargement by a random time

3 Applications to stochastic control theory

2 Progressive enlargement by a random time

Applications to stochastic control theory

Preliminaries

Let $(\Omega, \mathscr{F}, \mathbb{P})$ be a probability space, $\mathbb{F} = (\mathscr{F}_t)_{t \geq 0}$.

The jump measure of an \mathbb{R}^d -valued \mathbb{F} -semimartingale *X* is the integer-valued random measure on $\mathbb{R}_+ \times \mathbb{R}^d$

$$\mu^{X}(\boldsymbol{\omega}, \mathrm{d}t, \mathrm{d}x) = \sum_{s>0} \mathbb{1}_{\{\Delta X_{s}(\boldsymbol{\omega})\neq 0\}} \delta_{(s,\Delta X_{s}(\boldsymbol{\omega}))}(\mathrm{d}t, \mathrm{d}x).$$

X is a *step process with respect to* \mathbb{F} if

$$X = \sum_{n=1}^{\infty} \xi_n \mathbb{1}_{[\tau_n, +\infty)},$$

where

- (τ_n)_n is a sequence of F-stopping times s.t. τ_n ↑ +∞, τ_n < τ_{n+1} on {τ_n < +∞}
- $(\xi_n)_{n\geq 1}$ is a sequence of \mathbb{R}^d -valued random variables s.t. ξ_n is \mathscr{F}_{τ_n} -measurable and $\xi_n \neq 0$ if and only if $\tau_n < +\infty$.

We use the notation (X, \mathbb{F}) to mean that *X* is \mathbb{F} -adapted, while \mathbb{F}^X denotes the smallest right-continuous filtration such that *X* is adapted.

Progressive enlargement of filtrations

We consider two step processes (X, \mathbb{F}^X) and (H, \mathbb{F}^H) .

Given a σ -field \mathscr{R}^X , we denote by $\mathbb{F} = (\mathscr{F}_t)_{t\geq 0}$ the filtration \mathbb{F}^X initially enlarged by \mathscr{R}^X , i.e.

$$\mathscr{F}_t := \mathscr{R}^X \vee \mathscr{F}_t^X \quad t \ge 0.$$

Analogously, given a σ -field \mathscr{R}^H , we denote by $\mathbb{H} = (\mathscr{H}_t)_{t \ge 0}$ the filtration \mathbb{F}^H initially enlarged by \mathscr{R}^H , i.e.

$$\mathscr{H}_t := \mathscr{R}^H \vee \mathscr{F}_t^H, \quad t \ge 0.$$

We denote by $\mathbb{G} = (\mathscr{G}_t)_{t \ge 0}$ the *progressive enlargement* of \mathbb{F} by \mathbb{H} :

$$\mathscr{G}_t := \bigcap_{s>t} \mathscr{F}_s \lor \mathscr{H}_s \quad t \ge 0.$$

 \mathbb{G} is the smallest right-continuous filtration containing \mathbb{F}^X , \mathbb{F}^H , \mathscr{R}^X and \mathscr{R}^H (i.e., \mathbb{F} and \mathbb{H}).

MRT in the enlargement of a step process filtration

We introduce the $\mathbb{R}^d \times \mathbb{R}^\ell$ -valued \mathbb{G} -semimartingale Z = (X, H).

Theorem

 (Z, \mathbb{G}) is a step process and \mathbb{G} is the smallest right-continuous filtration containing $\mathscr{R}^X \vee \mathscr{R}^H$ and such that μ^Z is optional.

Theorem

If $\mathscr{F} = \mathscr{G}_{\infty}$, every $Y \in \mathscr{H}^{1}_{loc}(\mathbb{G})$ can be represented as

$$Y = Y_0 + W * \mu^Z - W * \nu^{\mathbb{G},Z}$$

where $(\omega, t, x_1, x_2) \mapsto W(\omega, t, x_1, x_2)$ is a $\mathscr{P}(\mathbb{G}) \otimes \mathscr{B}(\mathbb{R}^d) \otimes \mathscr{B}(\mathbb{R}^\ell)$ -measurable function such that

 $|W| * \mu^Z \in \mathscr{A}^+_{\mathrm{loc}}(\mathbb{G})$

and $v^{\mathbb{G},Z}$ denotes the \mathbb{G} -dual predictable projection of μ^Z .

2 Progressive enlargement by a random time

Applications to stochastic control theory

Progressive enlargement by a random time

From here on we shall concentrate on the special case

 $H=1_{[\tau,+\infty)},$

where τ denotes a random time. We denote by $H^{p,\mathbb{F}}$ the \mathbb{F} -dual predictable projection of *H*. We also set

 $A_t = \mathbb{P}[\tau > t | \mathscr{F}_t]$ a.s., for every $t \ge 0$.

A is a càdlàg \mathbb{F} -supermartingale, called the Azéma supermartingale.

The \mathbb{G} -dual predictable projection of H is

$$\Lambda^{\mathbb{G}} = \int_0^{\tau \wedge \cdot} \frac{1}{A_{s-}} \mathrm{d} H^{p,\mathbb{F}}_s.$$

Quasi-left continuity in the enlarged filtration

We are interested in the following question: if μ^X is an \mathbb{F} -quasi left continuous random measure, is it \mathbb{G} -quasi left continuous?

In general, no: intuitively, the larger filtration \mathbb{G} supports more predictable stopping times than \mathbb{F} .

Example

Let X be a homogeneous Poisson process with respect to \mathbb{F}^X and let $(\tau_n)_{n\geq 1}$ be the sequence of the jump-times of \mathbb{F}^X . The process X is **not quasi-left continuous in the filtration** \mathbb{G} **obtained enlarging** \mathbb{F}^X **progressively by** $\tau = \frac{1}{2}(\tau_1 + \tau_2)$.

Indeed, the jump time τ_2 of X is announced in \mathbb{G} by $(\mathfrak{V}_n)_{n\geq 1}$, $\mathfrak{V}_n := \frac{1}{n}\tau + (1 - \frac{1}{n})\tau_2$, and $\mathfrak{V}_n > \tau$ is a \mathbb{G} -stopping time for every $n \geq 1$. Hence, τ_2 is a \mathbb{G} -predictable jump-time of X.

Sufficient conditions on τ s.t. μ^X is \mathbb{G} -quasi-left continuous?

Definition (Assumption (\mathscr{A}))

A random time τ satisfies the **avoidance of** \mathbb{F} -stopping times if $\mathbb{P}[\tau = \sigma < +\infty] = 0$ for every \mathbb{F} -stopping time σ .

Remark. If τ satisfies (\mathscr{A}), then

- the process H is \mathbb{G} -quasi-left continuous;
- $\Delta X \Delta H = 0.$

 τ carries an information which is completely exogenous (nothing about τ can be inferred from the information contained in \mathbb{F}).

Definition (Assumption (\mathcal{H}))

A random time τ satisfies the **immersion property** if \mathbb{F} -martingales remain \mathbb{G} -martingales.

Remark. If *X* is an \mathbb{F} -step process and τ satisfies (\mathcal{H}) , then $v^{\mathbb{G},X} = v^{\mathbb{F},X}$.

The G-dual predictable projection of μ^Z under (\mathscr{A}) - (\mathscr{H})

Theorem

Let X be a step process and let τ be a random time satisfying (\mathscr{A}) - (\mathscr{H}) . Then, $\mathbf{v}^{\mathbb{G},Z}(\omega, dt, dx_1, dx_2)$ $= \mathbf{v}^{\mathbb{F},X}(\omega, dt, dx_1)\delta_0(dx_2) + \delta_1(dx_2)\delta_0(dx_1)d\Lambda_t^{\mathbb{G}}(\omega).$

Remark 1. If μ^X is \mathbb{F} -quasi-left continuous and τ satisfies (\mathscr{A}) - (\mathscr{H}) , then μ^Z is \mathbb{G} -quasi-left continuous.

Remark 2. One can quite easily construct random times τ satisfying (\mathscr{A}) - (\mathscr{H}) , see e.g. Di Tella and Engelbert (2021).

Jacod's absolute continuity property

Let $\eta(du)$ denote the law of τ and $P_t(du)$ a regular version of its conditional distribution, i.e., for every $A \in \mathscr{B}(\mathbb{R})$, $\eta(A) := \mathbb{P}(\tau^{-1}(A))$ and $P_t(A) := \mathbb{P}(\tau \in A | \mathscr{F}_t)$.

Definition (Assumption (JAC))

A random time τ satisfies **Jacod's absolute continuity condition** if

$\eta(du)$	is a diffused probability measure,	(1)
$P_t(\mathrm{d} u)$	$<< \eta(\mathrm{d}u).$	(2)

Remark 1. Condition (1) ensures property (\mathscr{A}) .

Remark 2. Random times satisfying (*JAC*) can be constructed following the approach presented by Jeanblanc and Le Cam (2009).

The G-dual predictable projection of μ^{Z} under (*JAC*)

Theorem

Let (X, \mathbb{F}) be an \mathbb{F} -quasi left continuous step process, and τ be a random time satisfying (JAC). Then

$$\begin{split} \mathbf{v}^{\mathbb{G},Z}(\boldsymbol{\omega},\mathrm{d}t,\mathrm{d}x_1,\mathrm{d}x_2) \\ &= \Big(\mathbf{1}_{[0,\tau]}(\boldsymbol{\omega},t)\Big(\mathbf{1} + \frac{W'(\boldsymbol{\omega},t,x_1)}{A_{t-}(\boldsymbol{\omega})}\Big) \\ &+ \mathbf{1}_{(\tau,+\infty)}(\boldsymbol{\omega},t)(\mathbf{1} + U(\boldsymbol{\omega},t,x_1))\Big)\mathbf{v}^{\mathbb{F},X}(\boldsymbol{\omega},\mathrm{d}t,\mathrm{d}x_1)\delta_0(\mathrm{d}x_2) \\ &+ \mathbf{1}_{[0,\tau]}(\boldsymbol{\omega},t)\frac{1}{A_{t-}(\boldsymbol{\omega})}\mathrm{d}H^{p,\mathbb{F}}_t(\boldsymbol{\omega})\delta_0(\mathrm{d}x_1)\delta_1(\mathrm{d}x_2), \end{split}$$

where W' is an \mathbb{F} -predictable function such that $A_- + W' \ge 0$ and U is a \mathbb{G} -predictable function such that $1 + U \ge 0$ identically.

Remark. If μ^X is \mathbb{F} -quasi left continuous and τ satisfies (*JAC*), then μ^Z is \mathbb{G} -quasi left continuity.

2 Progressive enlargement by a random time

3 Applications to stochastic control theory

Optimization problem for a step process (X, \mathbb{F}) , in presence of an additional exogenous risk source that cannot be inferred from \mathbb{F} (as the death of the investor or the default of part of the market), whose occurrence time is modeled by τ .

Setting 2

X is \mathbb{F} -quasi-left continuous and τ satisfies (JAC) (hence (\mathscr{A})).

Under Setting 1 or 2,

$$\mathbf{v}^{\mathbb{F},X}(\mathrm{d} t,\mathrm{d} x_1) = \phi_t^{\mathbb{F},X}(\mathrm{d} x_1)\mathrm{d} C_t^{\mathbb{F},X},$$

where $\phi^{\mathbb{F},X}$ is a transition probability from $(\Omega \times [0,T], \mathscr{P}(\mathbb{F}))$ into $(\mathbb{R}^d, \mathscr{B}(\mathbb{R}^d))$, and $C^{\mathbb{F},X} \in \mathscr{A}^+_{\text{loc}}(\mathbb{F})$ is a continuous process.

Under Setting 1

$$\phi_t^{\mathbb{G},X}(\mathbf{d}x_1) = \phi_t^{\mathbb{F},X}(\mathbf{d}x_1),$$
$$\mathbf{d}C_t^{\mathbb{G},X} = \mathbf{d}C_t^{\mathbb{F},X}.$$

Under Setting 2

$$\phi_t^{\mathbb{G},X}(\mathrm{d}x_1) = \frac{\kappa(t,x_1)}{\int_{\mathbb{R}^d} \kappa(t,x_1) \phi_t^{\mathbb{F},X}(\mathrm{d}x_1)} \phi_t^{\mathbb{F},X}(\mathrm{d}x_1),$$
$$\mathrm{d}C_t^{\mathbb{G},X} = \int_{\mathbb{R}^d} \kappa(t,x_1) \phi_t^{\mathbb{F},X}(\mathrm{d}x_1) \mathrm{d}C_t^{\mathbb{F},X},$$

where

$$\kappa(\boldsymbol{\omega},t,x_1) := \mathbf{1}_{[0,\tau]}(\boldsymbol{\omega},t) \Big(1 + \frac{W'(\boldsymbol{\omega},t,x_1)}{A_{t-}(\boldsymbol{\omega})} \Big) + \mathbf{1}_{(\tau,+\infty)}(\boldsymbol{\omega},t) (1 + U(\boldsymbol{\omega},t,x_1)) \Big).$$

Consider the problem of an agent whose available information is \mathbb{F} (that is, she pursues \mathbb{F} -predictable strategies) but, for some reasons, has only access to the market up to the occurrence of the exogenous shock event at time τ .

The Data

 (U, \mathcal{U}) is a measurable space.

 $r, l: \Omega \times [0,T] \times \mathbb{R}^d \times U \to \mathbb{R}$ are $\mathscr{P}(\mathbb{F}) \otimes \mathscr{B}(\mathbb{R}^d) \otimes \mathscr{U}$ -measurable and there exist constants $M_r > 1$, $M_l > 0$ such that, \mathbb{P} -a.s.,

 $0 \le r_t(x_1, u) \le M_r, \quad |l_t(x_1, u)| \le M_l, \qquad t \in [0, T], x_1 \in \mathbb{R}^d, u \in U.$

 $g: \Omega \times \mathbb{R}^d \to \mathbb{R}$ is $\mathscr{G}_{T \wedge \tau} \otimes \mathscr{B}(\mathbb{R}^d)$ -measurable, and there exists a constant β such that $\beta > \sup |r-1|^2$, and

$$\mathbb{E}[e^{\beta C_T}] < +\infty, \quad \mathbb{E}[|g(X_{T \wedge \tau})|^2 e^{\beta C_T}] < +\infty, \tag{3}$$

with $C_t := C_t^{\mathbb{G},X} + \Lambda_t^{\mathbb{G}}$.

The optimal control problem

For simplicity we consider only the case where Assumption 1 is satisfied, so that, $dC^{\mathbb{F},X} = dC^{\mathbb{G},X}$ and $\phi^{\mathbb{F},X}(dx_1) = \phi^{\mathbb{G},X}(dx_1)$.

Let $\mathscr{C} = \{ U \text{-valued } \mathbb{G} \text{-predictable processes } u(\cdot) \}$ and set

$$\hat{\mathscr{C}}:=\{u\in\mathscr{C}:1_{[T\wedge\tau,T]}u=0\}\subseteq\mathscr{C}.$$

Remark. \mathbb{F} - and \mathbb{G} -predictable processes coincide on $[0, \tau]$, so the set $\hat{\mathscr{C}}$ consists of strategies which are morally \mathbb{F} -predictable.

To every admissible control process $u \in \hat{\mathcal{C}}$ we will associate the cost functional

$$J(u) = \mathbb{E}_{u}\left[\int_{0}^{T\wedge\tau} l_{t}(X_{t}, u_{t}) \mathrm{d}C_{t}^{\mathbb{F}, X} + g(X_{T\wedge\tau})\right],$$

where \mathbb{P}_u is a suitable probability measure, absolutely continuous with respect to \mathbb{P} . The control problem will be

$$\inf_{u\in\hat{\mathscr{C}}}J(u) \qquad (P)$$

The probability measure \mathbb{P}_u

For any $u \in \hat{\mathscr{C}}$ we introduce the Doléans-Dade exponential

$$L_{t}^{u} = \exp\left(\int_{0}^{t} \int_{\mathbb{R}^{d+1}} (1 - R_{s}(x_{1}, x_{2}, u_{s})) \mathbf{v}^{\mathbb{G}, \mathbb{Z}}(\mathrm{d}s, \mathrm{d}x_{1}, \mathrm{d}x_{2})\right)$$
$$\prod_{n \ge 1: T_{n} \le t} R_{T_{n}}(X_{T_{n}}, H_{T_{n}}, u_{T_{n}}),$$

with $R_t(x_1, x_2, u) := r_t(x_1, u) \mathbf{1}_{\{x_2=0\}} + \mathbf{1}_{\{x_2\neq 0\}}.$

Lemma

Assume that

$$\mathbb{E}[e^{(3+M_r^4)C_T}] < +\infty.$$
(4)

Then, for every $u \in \hat{\mathcal{C}}$, L^u is a square integrable \mathbb{G} -martingale.

We can then define $\mathbb{P}_u(d\omega) := L_T^u(\omega)\mathbb{P}(d\omega)$.

 $\mathbf{v}^{\mathbb{G},Z,u}(\boldsymbol{\omega},\mathrm{d}t,\mathrm{d}x_1,\mathrm{d}x_2) = R_t(\boldsymbol{\omega},X_t(\boldsymbol{\omega}),H_t(\boldsymbol{\omega}),u_t(\boldsymbol{\omega}))\mathbf{v}^{\mathbb{G},Z}(\boldsymbol{\omega},\mathrm{d}t,\mathrm{d}x_1,\mathrm{d}x_2)$

is the \mathbb{G} -compensator of μ^Z under \mathbb{P}_u .

The associated BSDE

We consider the following BSDE: \mathbb{P} -a.s., for all $t \in [0, T]$,

$$Y_{t} + \int_{t}^{T} \int_{\mathbb{R}^{d+1}} \Theta_{s}(x_{1}, x_{2}) \left(\mu^{Z} - \nu^{\mathbb{G}, Z}\right) (ds, dx_{1}, dx_{2})$$

= $g(X_{T \wedge \tau}) + \int_{t}^{T} f(s, X_{s}, \Theta_{s}(\cdot)) \mathbf{1}_{[0, T \wedge \tau]}(s) dC_{s}^{\mathbb{F}, X}$ (5)

with

$$f(\boldsymbol{\omega},t,y_1,\boldsymbol{\theta}(\cdot))$$

:= $\inf_{u\in U} \left\{ l_t(\boldsymbol{\omega},y_1,u) + \int_{\mathbb{R}^d} \boldsymbol{\theta}(x_1,0) \left(r_t(\boldsymbol{\omega},x_1,u) - 1 \right) \phi_t^{\mathbb{F},X}(\boldsymbol{\omega},\mathrm{d}x_1) \right\}.$

Assumption 1

 $\forall \Theta \in L^1(\mu^Z), \exists \underline{\hat{\mu}}^{\Theta} \in \mathscr{C} \text{ s.t., for a.a. } (\omega, t) \text{ wrt } dC_t^{\mathbb{F}, X}(\omega) \mathbb{P}(d\omega),$

$$f(\boldsymbol{\omega}, t, X_{t-}(\boldsymbol{\omega}), \boldsymbol{\Theta}_{t}(\boldsymbol{\omega}, \cdot)) = l_{t}(\boldsymbol{\omega}, X_{t-}(\boldsymbol{\omega}), \underline{\hat{\boldsymbol{u}}}^{\boldsymbol{\Theta}}(\boldsymbol{\omega}, t)) + \int_{\mathbb{R}^{d}} \boldsymbol{\Theta}_{t}(\boldsymbol{\omega}, x_{1}, 0) \left(r_{t}(\boldsymbol{\omega}, x_{1}, \underline{\hat{\boldsymbol{u}}}^{\boldsymbol{\Theta}}(\boldsymbol{\omega}, t)) - 1 \right) \boldsymbol{\phi}_{t}^{\mathbb{F}, X}(\boldsymbol{\omega}, dx_{1})$$

 $L^{2,\beta}_{\operatorname{Prog}}(\Omega \times [0,T],\mathbb{G})$ is the space of real-valued \mathbb{G} -progr. meas. *Y* s.t.

$$\mathbb{E}\Big[\int_0^T \mathrm{e}^{\beta C_t} |Y_t|^2 \mathrm{d}C_t\Big] < \infty.$$

 $L^{2,\beta}(\mu^{Z},\mathbb{G})$ is the space of $\mathscr{P}(\mathbb{G})\otimes \mathscr{B}(\mathbb{R}^{d+1})$ -meas. Θ s.t.

$$\mathbb{E}\Big[\int_0^T\int_{\mathbb{R}^d} \mathrm{e}^{\beta C_t}|\Theta_t(x_1,0)|^2\phi_t^{\mathbb{G},X}(\mathrm{d} x_1)\mathrm{d} C_t^{\mathbb{G},X}\Big] + \mathbb{E}\Big[\int_0^T \mathrm{e}^{\beta C_t}|\Theta_t(0,1)|^2\mathrm{d} \Lambda_t^{\mathbb{G}}\Big] < \infty.$$

Theorem

Let Assumption 1 hold true. Set

$$L := \operatorname{ess\,sup}_{\omega} \big(\sup \{ |r_t(x_1, u) - 1| : t \in [0, T], x_1 \in \mathbb{R}^d, u \in U \} \big),$$

and let (3) hold true with $\beta > L^2$.

Then BSDE (5) admits a unique solution $(Y, \Theta(\cdot)) \in L^{2,\beta}_{Prog}(\Omega \times [0, T], \mathbb{G}) \times L^{2,\beta}(\mu^{\mathbb{Z}}, \mathbb{G}).$ In particular, $Y = Y_{\cdot,\wedge\tau}$, $\mathbb{P}(d\omega)$ -a.e., and $\Theta = \Theta \mathbb{1}_{[0,T\wedge\tau]}$ $\phi_t(\omega, dx_1, dx_2) dC_t(\omega) \mathbb{P}(d\omega)$ -a.e.

Theorem

Let Assumption 1 hold true, condition (3) hold true with $\beta > L^2$, and condition (4) be satisfied. Let $(Y, \Theta(\cdot))$ be the unique solution to BSDE (5), with corresponding admissible control $\underline{\hat{u}}^{\Theta} \in \hat{\mathcal{C}}$. Then $\underline{\hat{u}}^{\Theta}$ is optimal and Y_0 is the optimal cost, i.e.

$$Y_0 = J(\underline{\hat{u}}^{\Theta}) = \inf_{u \in \widehat{\mathscr{C}}} J(u).$$

Proof. Let $u \in \hat{C}$. Thank to the previous result, (adding and subtracting $\mathbb{E}_u \left[\int_0^{T \wedge \tau} l_s(X_s, \hat{u}) dC_s^{X, \mathbb{F}} \right]$) we obtain

$$\begin{aligned} Y_0 &= J(u) + \mathbb{E}_u \Big[\int_0^{T \wedge \tau} \big[f(s, X_s, \Theta_s(\cdot)) - l(s, X_s, \hat{u}) \\ &- \int_{\mathbb{R}^d} \Theta_s(x_1, 0) \left(\bar{r}_s(x_1, u) - 1 \right) \phi_s^{\mathbb{F}, X}(\mathrm{d}x_1) \big] \mathrm{d}C_s^{\mathbb{F}, X} \Big]. \end{aligned}$$

The conclusion comes from the definition of f and Assumption 3.

An auxiliary control problem

The functional cost in the optimal control problem (P) can be equivalently rewritten as

$$J(u) = \mathbb{E}_{u}\left[\int_{0}^{T} l_{t}(X_{t}, u_{t}) \mathbf{1}_{[0, T \wedge \tau(\omega)]}(t) \mathrm{d}C_{t}^{\mathbb{F}, X} + g(X_{T \wedge \tau})\right], \quad u \in \hat{\mathscr{C}}.$$

Clearly $l1_{[0,T\wedge\tau]}$ is $\mathscr{P}(\mathbb{G})\otimes \mathscr{B}(\mathbb{R}^d)\otimes \mathscr{U}$ -measurable and $g(X_{T\wedge\tau})$ is \mathscr{G}_T -measurable.

Let us now consider the *enlarged* optimal control problem obtained by taking the infimum over all the G-predictable processes:

$$\inf_{u \in \mathscr{C}} J(u) = \mathbb{E}_{u} \left[\int_{0}^{T} l_{t}(X_{t}, u_{t}) \mathbf{1}_{[0, T \wedge \tau(\omega)]}(t) \mathrm{d}C_{t}^{\mathbb{F}, X} + g(X_{T \wedge \tau}) \right]. \quad (P')$$

One can solve optimal control problem (P') by considering the following BSDE: \mathbb{P} -a.s., for all $t \in [0, T]$,

$$\widetilde{Y}_{t} + \int_{t}^{T} \int_{\mathbb{R}^{d+1}} \widetilde{\Theta}_{s}(x_{1}, x_{2}) \left(\mu^{Z} - \nu^{\mathbb{G}, Z}\right) (\mathrm{d}s, \mathrm{d}x_{1}, \mathrm{d}x_{2})$$

$$= g(X_{T \wedge \tau}) + \int_{t}^{T} \widetilde{f}(s, X_{s}, \widetilde{\Theta}_{s}(\cdot)) \,\mathrm{d}C_{t}^{\mathbb{F}, X}, \qquad (6)$$

where

$$\tilde{f}(\boldsymbol{\omega}, t, y_1, \boldsymbol{\theta}(\cdot)) := \inf_{u \in U} \left\{ l_t(\boldsymbol{\omega}, y_1, u) \mathbf{1}_{[0, T \wedge \tau(\boldsymbol{\omega})]}(t) + \int_{\mathbb{R}^d} \boldsymbol{\theta}(x_1, 0) \left(r_t(\boldsymbol{\omega}, x_1, u) - 1 \right) \phi_t^{\mathbb{F}, X}(\boldsymbol{\omega}, \mathrm{d}x_1) \right\}$$

for every $\boldsymbol{\omega} \in \Omega$, $t \in [0, T]$, $y_1 \in \mathbb{R}^d$, and $\boldsymbol{\theta} \in \mathscr{L}^1(\mathbb{R}^{d+1}, \mathscr{B}(\mathbb{R}^{d+1}), \boldsymbol{\phi}_t(\boldsymbol{\omega}, \mathrm{d}x_1, \mathrm{d}x_2))$.

Assumption 2

 $\forall \Theta \in L^1(\mu^Z), \exists \mathbb{G}\text{-predictable process } \underline{u}^{\Theta} : \Omega \times [0,T] \to U, \text{ s.t., for} a.a. (\omega,t) wrt dC_t^{\mathbb{F},X}(\omega)\mathbb{P}(d\omega),$

$$\tilde{f}(\boldsymbol{\omega}, t, X_{t-}(\boldsymbol{\omega}), \boldsymbol{\Theta}_{t}(\boldsymbol{\omega}, \cdot)) = l_{t}(\boldsymbol{\omega}, X_{t-}(\boldsymbol{\omega}), \underline{\boldsymbol{u}}^{\boldsymbol{\Theta}}(\boldsymbol{\omega}, t)) \mathbf{1}_{[0, T \wedge \tau(\boldsymbol{\omega})]}(t) + \int_{\mathbb{R}^{d}} \boldsymbol{\Theta}_{t}(\boldsymbol{\omega}, x_{1}, 0) \left(r_{t}(\boldsymbol{\omega}, x_{1}, \underline{\boldsymbol{u}}^{\boldsymbol{\Theta}}(\boldsymbol{\omega}, t)) - 1 \right) \boldsymbol{\phi}_{t}^{\mathbb{F}, X}(\boldsymbol{\omega}, dx_{1}).$$

Theorem

Let Assumption 2 hold true. Let condition (3) hold true with $\beta > L^2$, and that condition (4) is satisfied. Let $(\tilde{Y}, \tilde{\Theta}(\cdot))$ denote the unique solution to BSDE (6), with corresponding admissible control $\underline{u}^{\tilde{\Theta}} \in \mathscr{C}$. Then

$$\tilde{Y}_0 = J(\underline{u}^{\Theta}) = \inf_{u \in \mathscr{C}} J(u).$$

Let us now go back to our original optimal control problem (*P*): we aim at finding an admissible process $\underline{\hat{u}} \in \hat{\mathscr{C}}$ such that

$$J(\underline{\hat{u}}) = \inf_{u \in \mathscr{C}} J(u).$$

Such an optimal control process exists and is provided by $\underline{u}^{\Theta} \mathbb{1}_{[0,T \wedge \tau]}$. Moreover, the value functions of (*P*) and (*P'*) coincide:

Theorem

Let Assumption 2 holds true. Assume that (3) holds true with $\beta > L^2$, and that condition (4) holds true. Let $(\tilde{Y}, \tilde{\Theta}(\cdot))$ denote the unique solution to BSDE (6), with corresponding admissible control $\underline{u}^{\tilde{\Theta}} \in \mathscr{C}$. Then $\underline{\hat{u}} := \underline{u}^{\tilde{\Theta}} \mathbf{1}_{[0,T \wedge \tau]} \in \mathscr{C}$ is an optimal control process for (P) and

$$\tilde{Y}_0 = J(\underline{u}^{\tilde{\Theta}}) = J(\underline{\hat{u}}) = Y_0.$$

Thank you for your attention!