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@ Background



Preliminaries

Let (Q,.%#,P) be a probability space, F = (%) >0.

The jump measure of an R?-valued F-semimartingale X is the
integer-valued random measure on R x R?

].,l 0) dr, dx Z I{AX #O}SSAX( ))(dt,dx).
s>0

X is a step process with respect to I if

X= Z &nl[‘cn,—&-m)a
n=1

where
@ (1), is a sequence of [F-stopping times s.t. T, T 400, T, < Ty41
on {T, < +oo}
o (&,),>1 is a sequence of R?-valued random variables s.t. &, is
F:, -measurable and &, # 0 if and only if T, < +co.

We use the notation (X,F) to mean that X is F-adapted, while FX
denotes the smallest right-continuous filtration such that X is adapted.



Progressive enlargement of filtrations

We consider two step processes (X, FX) and (H,F7).

Given a 6-field Z%X, we denote by F = (.%,),> the filtration FX
initially enlarged by %%, i.e.

Ty =N FE 1>0.

Analogously, given a o-field 27, we denote by H = (7),~0 the
filtration F¥ initially enlarged by %27, i.e.

A =% FH >0

We denote by G = (¢,),>0 the progressive enlargement of IF by H:

N\Q

=(F VA 1>0.

s>t

G is the smallest right-continuous filtration containing FX, T, 22X
and Z" (i.e., F and H).



MRT in the enlargement of a step process filtration

We introduce the RY x R¢-valued G-semimartingale Z = (X, H).

Theorem

(Z,G) is a step process and G is the smallest right-continuous
filtration containing X\ %" and such that W is optional.

Theorem

If F = G, every Y € J)(G) can be represented as
Y =Yo+Wxp?— WxvG?

where (®,1,x1,x3) — W(®,1,x1,x) is a
P(G) ® BRY) @ B(R)-measurable function such that
|W|xn? € ot

loc

(G)

and v©Z denotes the G-dual predictable projection of u%.
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Progressive enlargement by a random time

From here on we shall concentrate on the special case
H=1p i),

where T denotes a random time. We denote by H”'' the F-dual
predictable projection of H. We also set

A; =Pt >1.%] as., forevery r > 0.
A is a cadlag F-supermartingale, called the Azéma supermartingale.

The G-dual predictable projection of H is

TN 1

A® = -
0o As—

JF
dHPF |



Quasi-left continuity in the enlarged filtration

We are interested in the following question:
if uX is an F-quasi left continuous random measure, is it G-quasi left
continuous?

In general, no: intuitively, the larger filtration G supports more
predictable stopping times than .

Example

Let X be a homogeneous Poisson process with respect to FX and let
(Tn)n>1 be the sequence of the jump-times of FX.

The process X is not quasi-left continuous in the filtration G
obtained enlarging FX progressively by T = %(’51 + 7).

Indeed, the jump time T, of X is announced in G by (0,),>1,
O, = %r +(1- %)12, and &, > 7 is a G-stopping time for every
n > 1. Hence, T, is a G-predictable jump-time of X.

Sufficient conditions on T s.t. u¥ is G-quasi-left continuous?



Avoidance of F-stopping times and immersion property

Definition (Assumption (7))

A random time 7 satisfies the avoidance of [F-stopping times if
P[t =0 < 40| = 0 for every F-stopping time G.

Remark. If 7 satisfies («7), then
@ the process H is G-quasi-left continuous;
o AXAH =0.

T carries an information which is completely exogenous (nothing
about T can be inferred from the information contained in ).

Definition (Assumption (.7¢))

A random time T satisfies the immersion property if F-martingales
remain G-martingales.

Remark. If X is an F-step process and T satisfies (.7), then
vGX — yFX



The G-dual predictable projection of u? under (.o7)-(7)

Theorem

Let X be a step process and let T be a random time satisfying
(&7 )-(H). Then,

vOZ(®,dr, dxy,dxy)
= V" (@, dt,dx;)8(dx2) + 81 (dx2) 8o (dx1 ) AT ().

Remark 1. If u¥ is F-quasi-left continuous and 7 satisfies (.27 )-(¢),
then p? is G-quasi-left continuous.

Remark 2. One can quite easily construct random times T satisfying
(7 )-(H), see e.g. Di Tella and Engelbert (2021).



Jacod’s absolute continuity property

Let M (du) denote the law of T and P,(du) a regular version of its
conditional distribution, i.e., for every A € Z(R), n(A) :=P(1~!(4))
and P,(A) :=P(t € A|.%).

Definition (Assumption (JAC))

A random time 7 satisfies Jacod’s absolute continuity condition if

N (du) is a diffused probability measure, (1)
Pi(du) << m(du). (2)

Remark 1. Condition (1) ensures property (.27).

Remark 2. Random times satisfying (JAC) can be constructed
following the approach presented by Jeanblanc and Le Cam (2009).



The G-dual predictable projection of u“ under (JAC)

Theorem »

Let (X,TF) be an F-quasi left continuous step process, and T be a
random time satisfying (JAC). Then

VGZ(madl:dxlade)
W’((D,t,xﬂ)

= (tog @01+ 2

1o o) (@, 1)1+ U(@,1,)) )V (@, dr, 1 o )

+ 1o (0, 1) dH?™ (@)80(dx1)81 (dxa),

1
A (o)
where W' is an F-predictable function such that A_ +W' > 0 and U is
a G-predictable function such that 1 + U > 0 identically.

Remark. If u¥ is F-quasi left continuous and 7T satisfies (JAC), then
u? is G-quasi left continuity.



e Applications to stochastic control theory



Background

Optimization problem for a step process (X, ), in presence of an
additional exogenous risk source that cannot be inferred from F (as
the death of the investor or the default of part of the market), whose
occurrence time is modeled by 7.

X is F-quasi-left continuous and <t satisfies (< )-(F ).

or

X is F-quasi-left continuous and < satisfies (JAC) (hence (<)).

Under Setting 1 or 2,
vEX(dr, dxy) = 0, (dxy )T,

where ¢ is a transition probability from (Q x [0, 7], Z(FF)) into
(R?, #(R?)), and C*X € &7} (F) is a continuous process.



Under Setting 1

G, ,
o X(dxl) = ¢tFx(dx1)a
dcy X =deX.

Under Setting 2

tG"de _ K(t,x1)

) = ) e (dn)

aci = [ (o) o (@) acy ™,
]Rd

o, " (dxy),

where

W/(matvxl)

K(w,,x1) 1= 1) 7)(®,1) (1 + A (@)

)+1(17+m)(u),t)(1+U(0),t,x1)).



Formulation of the problem

Consider the problem of an agent whose available information is F

(that is, she pursues F-predictable strategies) but, for some reasons,
has only access to the market up to the occurrence of the exogenous
shock event at time 7.

The Data
(U, %) is a measurable space.

rl:Qx[0,T] xR x U — R are #(F) @ B(R?Y) @ % -measurable
and there exist constants M, > 1, M; > 0 such that, P-a.s.,

OSI’;(X],M)SM,, |l;(X1,M)|§Ml, IE[O,T],)ClERd,MGU.

g: QxR = Ris Gy @ B(RY)-measurable, and there exists a
constant B such that p > sup |r —1|?, and

E[ePCr] < +oo, E[|g(Xrne)|?eBCr] < +oo, (3)

with C; := CoX 4 AG.




The optimal control problem

For simplicity we consider only the case where Assumption 1 is
satisfied, so that, dC™¥ = dC®X and 6% (dx;) = ¢ ©X (dxy).

Let ¢ = {U-valued G-predictable processes u(-)} and set
C={uce: lippe,qu=0} €.

Remark. [F- and G-predictable processes coincide on [0,7], so the set
& consists of strategies which are morally F-predictable.

To every admissible control process u € ¢ we will associate the cost
functional

TAT
J(u) =E, [/0 ll<X17 Mt)dCEF"X +8(XTM> )

where P, is a suitable probability measure, absolutely continuous
with respect to P. The control problem will be

infJW)  (P)
Uee



The probability measure P,

For any u € % we introduce the Doléans-Dade exponential

t
L;l = exp (/ / (1 _Rs(xl7x27us)>VG’Z(dS7dx17dx2>>
0 Rd+]

H RT,,(XTMHTrﬂuTn)’
n>1:T,<t

with R,(xl,xz, M) = Ft()(l , M) l{xz:O} + l{xﬁéo}.

Assume that

E[e®M)CT] < oo, (4)

Then, for every u € € L'isa square integrable G-martingale.

We can then define P, (dw) := LY.(0)P(dw).
vOZU (@, dt,dxy,dxy) = Ry(0,X,(0), H/(0), () W EZ (0, dr, dxy, dxy)

is the G-compensator of u? under P,.



The associated BSDE

We consider the following BSDE: P-a.s., for all € [0, 7],

T
y,+/ / 0, (x1,%2) (0% — vE2)(ds, dx; , dxy)
t Rd+1

T
= 8(Xre) + / F(5,X5,04()) 1 g 7p () dCEX )
with
f(o,4,y1,8(:))
= Jgg{lt(w’yl’u) +./Rde(x1’0) (re(0,x1,u) — l)q)tF’X(m’dxl)}_

Assumption 1

VO € L1 (u%), 3i® € ¢ s.t., for a.a. (®,1) wrt dC; ™ (0)P(dw),

f((D,l,X,_((D),@,(O), )) = lt(O)vXt—((D)?Q@(O)v[))

+/ ®t(0)7x170) (rt(maxlvﬁe)(("):t))71)¢;F7X(wvdxl)'
R4




I%rﬁg(Q x [0, T],G) is the space of real-valued G-progr. meas. Y s.t.

T
EU PC|Y,2dC, | < o
0
L*P (%, G) is the space of Z(G) ® B(R!)-meas. O s.t.

T T
E / /deBC’|®,(x1,0)\2¢,G’X(dx1)dC§G’X}+E[/ Prje,(0,1)PdAf] <
R 0

0
Theorem

Let Assumption [ hold true. Set

L:=esssup (sup{|r,(xi,u) — 1| : 1€ [0,T],x; e R, u € U}),
(0)

and let (3) hold true with B > L.

Then BSDE (5) admits a unique solution
(Y,0(-)) € Lph (@ x [0, T],G) x L*# (n?,G).

In particular, Y =Y p7, P(dw)-a.e., and © = Ol 7]
0/(®,dx;,dx)dCy(0)P(dw)-a.e




Solution to the optimal control problem (P)

Theorem

Let Assumption 1 hold true, condition (3) hold true with B > L?, and
condition (4) be satisfied. Let (Y,0(-)) be the umque solution to
BSDE (5) with corresponding admissible control i® € %.

Then it is optimal and Yy is the optimal cost , i.e.

Yo = J(2°) = inf J(u).
UE®

Proof. Let u € €. Thank to the previous result, (adding and
subtracting E,, [ fOTM (X, 1) dCfJF]) we obtain

TAT
Yo:J(u)HEu[/O [ (s, X, 04(-)) — I(s, Xy, &)
— [, ©1.0) (1) = 1) 0 (d) |5 ].

The conclusion comes from the definition of f and Assumption 3. [



An auxiliary control problem

The functional cost in the optimal control problem (P) can be
equivalently rewritten as

A

T
J(u) =E, [/0 L(Xe,u0) Lo Trc ()] (t)dc?7x +8(XTA1)] , UET.

Clearly Iy 7] is 2 (G) @ B(R?) @ % -measurable and g(X7<) is
“r-measurable.

Let us now consider the enlarged optimal control problem obtained
by taking the infimum over all the G-predictable processes:

T
inf J(u) =E, [/0 L(Xe,u0) Lo Trc ()] (t)dCF’X—i—g(XTM) - (P)

Ue®



One can solve optimal control problem (P') by considering the
following BSDE: P-a.s., for all € [0, 7],

Yt—i—// (1) (W7 —vEZ)(ds, dxy, dxa)

— ¢(Xrne) + / Fl5. X5, 04(-))dC™, (©)
where
F(@.1.31,8()) = inf {1(0.71,0) Lo e (1)

+ [ 860.0) (n(w.x1,) = Do ¥ (,x) |

for every ® € Q,t € [0,T], y; € R?, and
8 € Z' (R, BRM), 0(0,dxy,dxz)).



VO € L' (u?), 3 G-predictable process u® : Q x [0,T] — U, s.., for
a.a. (w,1) wrt dC* (0)P(do),

Fl,1,X(0),0:(e,)) = l(®,X,- (0),1° (0, 1) Lo e () (1)
+ [ ©@.51,0) (r(@.1.6%(®.0) = 1) o5 (@, d).

Theorem

| A\

Let Assumption 2 hold true. Let condition (3) hold true with 3 > L2
and that condition (4) is satisfied. Let (Y,0(-)) denote the unique
solution to BSDE (6), with corresponding admissible control u® € €.
Then

Yo =J(u®) = inf J(u).




Let us now go back to our original optimal control problem (P): we
aim at finding an admissible process &t € % such that

J(#) = inf J(u).

ueé

Such an optimal control process exists and is provided by gé)l[oj/\t].
Moreover, the value functions of (P) and (P") coincide:

Theorem

Let Assumption 2 holds true. Assume that (3) holds true with p > L%
and that condition (4) holds true. Let (Y,0(-)) denote the unique
solution to BSDE (6), with corresponding admissible control u® € %.
Then it := 261[()1“] €% isan optimal control process for (P) and

Yo = J(u®) = J(2) = Yo.




Thank you for your attention!



