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Preliminaries

Let (Ω,F ,P) be a probability space, F= (Ft)t≥0.

The jump measure of an Rd-valued F-semimartingale X is the
integer-valued random measure on R+×Rd

µX(ω,dt,dx) = ∑
s>0

1{∆Xs(ω)∕=0}δ(s,∆Xs(ω))(dt,dx).

X is a step process with respect to F if

X =
∞

∑
n=1

ξn1[τn,+∞),

where
(τn)n is a sequence of F-stopping times s.t. τn ↑+∞, τn < τn+1
on {τn <+∞}
(ξn)n≥1 is a sequence of Rd-valued random variables s.t. ξn is
Fτn-measurable and ξn ∕= 0 if and only if τn <+∞.

We use the notation (X,F) to mean that X is F-adapted, while FX

denotes the smallest right-continuous filtration such that X is adapted.



Progressive enlargement of filtrations

We consider two step processes (X,FX) and (H,FH).

Given a σ -field RX , we denote by F= (Ft)t≥0 the filtration FX

initially enlarged by RX , i.e.

Ft := RX ∨F X
t t ≥ 0.

Analogously, given a σ -field RH , we denote by H= (Ht)t≥0 the
filtration FH initially enlarged by RH , i.e.

Ht := RH ∨F H
t , t ≥ 0.

We denote by G= (Gt)t≥0 the progressive enlargement of F by H:

Gt :=
!

s>t
Fs ∨Hs t ≥ 0.

G is the smallest right-continuous filtration containing FX , FH , RX

and RH (i.e., F and H).



MRT in the enlargement of a step process filtration

We introduce the Rd ×Rℓ-valued G-semimartingale Z = (X,H).

Theorem
(Z,G) is a step process and G is the smallest right-continuous
filtration containing RX ∨RH and such that µZ is optional.

Theorem
If F = G∞, every Y ∈ H 1

loc(G) can be represented as

Y = Y0 +W ∗µZ −W ∗νG,Z

where (ω, t,x1,x2) )→ W(ω, t,x1,x2) is a
P(G)⊗B(Rd)⊗B(Rℓ)-measurable function such that

|W|∗µZ ∈ A +
loc(G)

and νG,Z denotes the G-dual predictable projection of µZ .
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Progressive enlargement by a random time

From here on we shall concentrate on the special case

H = 1[τ,+∞),

where τ denotes a random time. We denote by Hp,F the F-dual
predictable projection of H. We also set

At = P[τ > t|Ft] a.s., for every t ≥ 0.

A is a càdlàg F-supermartingale, called the Azéma supermartingale.

The G-dual predictable projection of H is

ΛG =
" τ∧·

0

1
A s−

dHp,F
s .



Quasi-left continuity in the enlarged filtration

We are interested in the following question:
if µX is an F-quasi left continuous random measure, is it G-quasi left
continuous?

In general, no: intuitively, the larger filtration G supports more
predictable stopping times than F.

Example

Let X be a homogeneous Poisson process with respect to FX and let
(τn)n≥1 be the sequence of the jump-times of FX .
The process X is not quasi-left continuous in the filtration G
obtained enlarging FX progressively by τ = 1

2(τ1 + τ2).

Indeed, the jump time τ2 of X is announced in G by (ϑn)n≥1,
ϑn := 1

n τ +(1− 1
n)τ2, and ϑn > τ is a G-stopping time for every

n ≥ 1. Hence, τ2 is a G-predictable jump-time of X.

Sufficient conditions on τ s.t. µX is G-quasi-left continuous?



Avoidance of F-stopping times and immersion property

Definition (Assumption (A ))
A random time τ satisfies the avoidance of F-stopping times if
P[τ = σ <+∞] = 0 for every F-stopping time σ .

Remark. If τ satisfies (A ), then

the process H is G-quasi-left continuous;

∆X∆H = 0.

τ carries an information which is completely exogenous (nothing
about τ can be inferred from the information contained in F).

Definition (Assumption (H ))
A random time τ satisfies the immersion property if F-martingales
remain G-martingales.

Remark. If X is an F-step process and τ satisfies (H ), then
νG,X = νF,X .



The G-dual predictable projection of µZ under (A )-(H )

Theorem
Let X be a step process and let τ be a random time satisfying
(A )-(H ). Then,

νG,Z(ω,dt,dx1,dx2)

= νF,X(ω,dt,dx1)δ0(dx2)+δ1(dx2)δ0(dx1)dΛG
t (ω).

Remark 1. If µX is F-quasi-left continuous and τ satisfies (A )-(H ),
then µZ is G-quasi-left continuous.

Remark 2. One can quite easily construct random times τ satisfying
(A )-(H ), see e.g. Di Tella and Engelbert (2021).



Jacod’s absolute continuity property

Let η(du) denote the law of τ and Pt(du) a regular version of its
conditional distribution, i.e., for every A ∈ B(R), η(A) := P(τ−1(A))
and Pt(A) := P(τ ∈ A|Ft).

Definition (Assumption (JAC))
A random time τ satisfies Jacod’s absolute continuity condition if

η(du) is a diffused probability measure, (1)

Pt(du) << η(du). (2)

Remark 1. Condition (1) ensures property (A ).

Remark 2. Random times satisfying (JAC) can be constructed
following the approach presented by Jeanblanc and Le Cam (2009).



The G-dual predictable projection of µZ under (JAC)

Theorem
Let (X,F) be an F-quasi left continuous step process, and τ be a
random time satisfying (JAC). Then

νG,Z(ω,dt,dx1,dx2)

=
!

1[0,τ](ω, t)
!

1+
W ′(ω, t,x1)

At−(ω)

"

+1(τ,+∞)(ω, t)(1+U(ω, t,x1))
"

νF,X(ω,dt,dx1)δ0(dx2)

+1[0,τ](ω, t)
1

At−(ω)
dHp,F

t (ω)δ0(dx1)δ1(dx2),

where W ′ is an F-predictable function such that A−+W ′ ≥ 0 and U is
a G-predictable function such that 1+U ≥ 0 identically.

Remark. If µX is F-quasi left continuous and τ satisfies (JAC), then
µZ is G-quasi left continuity.



Outline

Background

Progressive enlargement by a random time

Applications to stochastic control theory



Background

Optimization problem for a step process (X,F), in presence of an
additional exogenous risk source that cannot be inferred from F (as
the death of the investor or the default of part of the market), whose
occurrence time is modeled by τ .

Setting 1

X is F-quasi-left continuous and τ satisfies (A )-(H ).

or

Setting 2

X is F-quasi-left continuous and τ satisfies (JAC) (hence (A )).

Under Setting 1 or 2,

νF,X(dt, dx1) = φF,X
t (dx1)dCF,X

t ,

where φF,X is a transition probability from (Ω× [0,T],P(F)) into
(Rd,B(Rd)), and CF,X ∈ A +

loc(F) is a continuous process.



Under Setting 1

φG,X
t (dx1) = φF,X

t (dx1),

dCG,X
t = dCF,X

t .

Under Setting 2

φG,X
t (dx1) =

κ(t,x1)
#
Rd κ(t,x1)φF,X

t (dx1)
φF,X

t (dx1),

dCG,X
t =

"

Rd
κ(t,x1)φF,X

t (dx1)dCF,X
t ,

where

κ(ω, t,x1) := 1[0,τ](ω, t)
!

1+
W ′(ω, t,x1)

At−(ω)

"
+1(τ,+∞)(ω, t)(1+U(ω, t,x1)

#
.



Formulation of the problem

Consider the problem of an agent whose available information is F
(that is, she pursues F-predictable strategies) but, for some reasons,
has only access to the market up to the occurrence of the exogenous
shock event at time τ .

The Data
(U,U ) is a measurable space.

r, l : Ω× [0,T]×Rd ×U → R are P(F)⊗B(Rd)⊗U -measurable
and there exist constants Mr > 1, Ml > 0 such that, P-a.s.,

0 ≤ rt(x1,u)≤ Mr, |lt(x1,u)|≤ Ml, t ∈ [0,T], x1 ∈ Rd, u ∈ U.

g : Ω×Rd → R is GT∧τ ⊗B(Rd)-measurable, and there exists a
constant β such that β > sup |r−1|2, and

E[eβCT ]<+∞, E[|g(XT∧τ)|2eβCT ]<+∞, (3)

with Ct := CG,X
t +ΛG

t .



The optimal control problem

For simplicity we consider only the case where Assumption 1 is
satisfied, so that, dCF,X = dCG,X and φF,X(dx1) = φG,X(dx1).

Let C = {U-valued G-predictable processes u(·)} and set

Ĉ := {u ∈ C : 1[T∧τ,T]u = 0}⊆ C .

Remark. F- and G-predictable processes coincide on [0,τ], so the set
Ĉ consists of strategies which are morally F-predictable.

To every admissible control process u ∈ Ĉ we will associate the cost
functional

J(u) = Eu

$" T∧τ

0
lt(Xt,ut)dCF,X

t +g(XT∧τ)

%
,

where Pu is a suitable probability measure, absolutely continuous
with respect to P. The control problem will be

inf
u∈Ĉ

J(u) (P)



The probability measure Pu

For any u ∈ Ĉ we introduce the Doléans-Dade exponential

Lu
t = exp

!" t

0

"

Rd+1
(1−Rs(x1,x2,us))νG,Z(ds,dx1,dx2)

"

∏
n≥1:Tn≤t

RTn(XTn ,HTn ,uTn),

with Rt(x1,x2,u) := rt(x1,u)1{x2=0}+ 1{x2 ∕=0}.

Lemma
Assume that

E[e(3+M4
r )CT ]<+∞. (4)

Then, for every u ∈ Ĉ , Lu is a square integrable G-martingale.

We can then define Pu(dω) := Lu
T(ω)P(dω).

νG,Z,u(ω,dt,dx1,dx2) = Rt(ω,Xt(ω),Ht(ω),ut(ω))νG,Z(ω,dt,dx1,dx2)

is the G-compensator of µZ under Pu.



The associated BSDE

We consider the following BSDE: P-a.s., for all t ∈ [0,T],

Yt +
" T

t

"

Rd+1
Θs(x1,x2)(µZ −νG,Z)(ds,dx1,dx2)

= g(XT∧τ)+
" T

t
f (s,Xs,Θs(·))1[0,T∧τ](s)dCF,X

s (5)

with

f (ω, t,y1,θ(·))

:= inf
u∈U

!
lt(ω,y1,u)+

!

Rd
θ(x1,0)(rt(ω,x1,u)−1)φF,X

t (ω,dx1)
"
.

Assumption 1

∀Θ ∈ L1(µZ), ∃ûΘ ∈ Ĉ s.t., for a.a. (ω, t) wrt dCF,X
t (ω)P(dω),

f (ω, t,Xt−(ω),Θt(ω, ·)) = lt(ω,Xt−(ω), ûΘ(ω, t))

+
"

Rd
Θt(ω,x1,0)(rt(ω,x1, ûΘ(ω, t))−1)φF,X

t (ω,dx1).



L2,β
Prog(Ω× [0, T],G) is the space of real-valued G-progr. meas. Y s.t.

E
#! T

0
eβCt |Yt|2dCt

$
< ∞.

L2,β (µZ,G) is the space of P(G)⊗B(Rd+1)-meas. Θ s.t.

E
#! T

0

!

Rd
eβCt |Θt(x1,0)|2φG,X

t (dx1)dCG,X
t

$
+E

#! T

0
eβCt |Θt(0,1)|2dΛG

t

$
< ∞.

Theorem
Let Assumption 1 hold true. Set

L := esssup
ω

%
sup{|rt(x1,u)−1| : t ∈ [0,T], x1 ∈ Rd, u ∈ U}

&
,

and let (3) hold true with β > L2.

Then BSDE (5) admits a unique solution
(Y,Θ(·)) ∈ L2,β

Prog(Ω× [0, T],G)×L2,β (µZ,G).
In particular, Y = Y·∧τ , P(dω)-a.e., and Θ = Θ1[0,T∧τ]
φt(ω,dx1,dx2)dCt(ω)P(dω)-a.e.



Solution to the optimal control problem (P)

Theorem
Let Assumption 1 hold true, condition (3) hold true with β > L2, and
condition (4) be satisfied. Let (Y,Θ(·)) be the unique solution to
BSDE (5), with corresponding admissible control ûΘ ∈ Ĉ .
Then ûΘ is optimal and Y0 is the optimal cost , i.e.

Y0 = J(ûΘ) = inf
u∈Ĉ

J(u).

Proof. Let u ∈ Ĉ . Thank to the previous result, (adding and
subtracting Eu

&# T∧τ
0 ls(Xs, û)dCX,F

s
'
) we obtain

Y0 = J(u)+Eu

#! T∧τ

0

'
f (s,Xs,Θs(·))− l(s,Xs, û)

−
!

Rd
Θs(x1,0)(r̄s(x1,u)−1)φF,X

s (dx1)
(
dCF,X

s

$
.

The conclusion comes from the definition of f and Assumption 3.



An auxiliary control problem

The functional cost in the optimal control problem (P) can be
equivalently rewritten as

J(u) = Eu

$" T

0
lt(Xt,ut)1[0,T∧τ(ω)](t)dCF,X

t +g(XT∧τ)

%
, u ∈ Ĉ .

Clearly l1[0,T∧τ] is P(G)⊗B(Rd)⊗U -measurable and g(XT∧τ) is
GT -measurable.

Let us now consider the enlarged optimal control problem obtained
by taking the infimum over all the G-predictable processes:

inf
u∈C

J(u) = Eu

$" T

0
lt(Xt,ut)1[0,T∧τ(ω)](t)dCF,X

t +g(XT∧τ)

%
. (P′)



One can solve optimal control problem (P′) by considering the
following BSDE: P-a.s., for all t ∈ [0,T],

Ỹt +
" T

t

"

Rd+1
Θ̃s(x1,x2)(µZ −νG,Z)(ds,dx1,dx2)

= g(XT∧τ)+
" T

t
f̃ (s,Xs,Θ̃s(·))dCF,X

t , (6)

where

f̃ (ω, t,y1,θ(·)) := inf
u∈U

(
lt(ω,y1,u)1[0,T∧τ(ω)](t)

+
"

Rd
θ(x1,0)(rt(ω,x1,u)−1)φF,X

t (ω,dx1)
)

for every ω ∈ Ω, t ∈ [0,T], y1 ∈ Rd, and
θ ∈ L 1(Rd+1,B(Rd+1),φt(ω,dx1,dx2)).



Assumption 2

∀Θ ∈ L1(µZ), ∃ G-predictable process uΘ : Ω× [0,T]→ U, s.t., for
a.a. (ω, t) wrt dCF,X

t (ω)P(dω),

f̃ (ω, t,Xt−(ω),Θt(ω, ·)) = lt(ω,Xt−(ω),uΘ(ω, t))1[0,T∧τ(ω)](t)

+
"

Rd
Θt(ω,x1,0)(rt(ω,x1,uΘ(ω, t))−1)φF,X

t (ω,dx1).

Theorem
Let Assumption 2 hold true. Let condition (3) hold true with β > L2,
and that condition (4) is satisfied. Let (Ỹ,Θ̃(·)) denote the unique
solution to BSDE (6), with corresponding admissible control uΘ̃ ∈ C .
Then

Ỹ0 = J(uΘ̃) = inf
u∈C

J(u).



Let us now go back to our original optimal control problem (P): we
aim at finding an admissible process û ∈ Ĉ such that

J(û) = inf
u∈Ĉ

J(u).

Such an optimal control process exists and is provided by uΘ̃1[0,T∧τ].
Moreover, the value functions of (P) and (P′) coincide:

Theorem
Let Assumption 2 holds true. Assume that (3) holds true with β > L2,
and that condition (4) holds true. Let (Ỹ,Θ̃(·)) denote the unique
solution to BSDE (6), with corresponding admissible control uΘ̃ ∈ C .
Then û := uΘ̃1[0,T∧τ] ∈ Ĉ is an optimal control process for (P) and

Ỹ0 = J(uΘ̃) = J(û) = Y0.



Thank you for your attention!


