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Problem formulation: Frontrunning with price impact

Bachelier stock price dynamics, zero interest rate:

St = s0 + µt + σWt , t ≥ 0

Information flow: peek ∆ time units ahead ; “frontrunning”

G∆
t = F S

t+∆, t ≥ 0.

Egregious arbitrage opportunities

curtailed by price impact because
execution price is

Sϕ
t = St +

Λ

2
ϕt

where ϕt =
d
dtΦt is the frontrunner’s turnover rate ; temporary

price impact à la Almgren-Chriss
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Problem formulation: Frontrunning with price impact

Profits and losses from trading according to Φt = Φ0 +
∫ t
0 ϕsds:

VΦ0,ϕ
T =−

∫ T

0
Sϕ
t dΦt +ΦTST − Φ0S0

=Φ0(ST − S0) +

∫ T

0
ϕt(ST − St)dt −

Λ

2

∫ T

0
ϕ2
tdt,

; mark to market stock positions at time 0 and T
Natural class of admissible strategies:

A ∆ =

{
ϕ = (ϕt)t∈[0,T ] G∆-optional with

∫ T

0
ϕ2
tdt < ∞ a.s.

}
Exponential utility maximization:

Maximize E
[
u(VΦ0,ϕ

T )
]
= E

[
− exp

(
−αVΦ0,ϕ

T

)]
over ϕ ∈ A ∆



Related work

▶ enlargement of filtrations and small investor:
Karatzas/Pikovsky ’96, Amendinger/Imkeller/Schweizer ’98,
Amendinger/Becherer/Schweizer ’03, Imkeller ’03, . . . ,
Jeanblanc ’05–’21

▶ insider trading with equilibrium prices:
Kyle ’85, Back ’92, . . . Cetin ’18,
Back/Cocquemas/Ekren/Lioui ’21

▶ insider trading with temporary price impact:
Ankircher/BlanchetScalliet/Eyraud-Loisel ’16, Barger/Donelly
’20

▶ control with infinite-dimensional state space: Ji/Wang/Yang
’13, Fabbri/Gozzi/Swiech ’17, Saporito/Zhang ’19

▶ short-term inside information: B./Körber ’21+ ; 2nd part of
this talk; B./Besslich ’20



Main result: Optimal Policy

Maximize E
[
u(VΦ0,ϕ

T )
]
= E

[
− exp

(
−αVΦ0,ϕ

T

)]
over ϕ ∈ A ∆

Theorem
The optimal turnover rate at time t ∈ [0,T ] is

ϕ̂t =
d

dt
Φ̂t =

1

Λ

(
S̄∆
t − St

)
+

Υ∆(T − t)

∆

( µ

ασ2
− Φ̂t

)
,

where S̄∆ denotes the stock price average

S̄∆
t :=

(
1−Υ∆(T − t)

)
S(t+∆)∧T +Υ∆(T − t)

1

∆

∫ ∆

0
St+sds

with

Υ∆(τ) =
∆
√
ρ tanh(

√
ρ(τ −∆)+)

1 + ∆
√
ρ tanh(

√
ρ(τ −∆)+)

, τ ≥ 0,

where ρ is the risk/liquidity ratio ρ = ασ2

Λ .



Discussion: Optimal policy illustration
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▶ S0 = 0, µ = .1, σ = .3,
α = .03, T = 10∆, Λ = .01

▶ stock price S

▶ stock price average S̄∆

▶ weight Υ∆

▶ inside trades (S̄∆ − S)/Λ

▶ trades tracking Merton ratio

▶ optimal total positions Φ̂

▶ Merton ratio µ/(ασ2)

▶ execution prices:
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Main result (ctd): Value of frontrunning

Theorem
The certainty equivalent of extra information is

C (∆) = − 1

α
log

maxϕ∈A ∆ E
[
− exp

(
−αVΦ0,ϕ

T

)]
maxϕ∈A 0 E

[
− exp

(
−αVΦ0,ϕ

T

)]
=

1

2α

∫ T

0

(s ∧∆)ρ

1 + (s ∧∆)
√
ρ tanh

(√
ρ(T − s)

)ds.
▶ independent of risk premium µ

▶ governed by risk/liquidity ratio ρ = ασ2/Λ and ability to peek
ahead ∆



Proof proceeds via duality

Theorem (cf. Guasoni, Rasonyi ’15)

Denoting by Q the set of all probability measures Q ∼ P with

finite entropy EQ

[
log

(
dQ
dP

)]
< ∞ relative to P, we have

max
ϕ∈A

{
− 1

α
logE

[
exp

(
−αVΦ0,ϕ

T

)]}
= inf

Q∈Q
EQ

[
1

α
log

(
dQ
dP

)
+Φ0(ST − S0) +

1

2Λ

∫ T

0

∣∣∣EQ[ST |G∆
t ]− St

∣∣∣2dt] .
There is a minimizer Q̂ and it yields via

ϕ̂t =
EQ̂

[
ST |G∆

t

]
− St

Λ
, t ∈ [0,T ],

the unique optimal turnover rates for the primal problem.

Note: This holds for any G and any càdlàg S with finite
exponential moments: supt∈[0,T ] E exp(εS2

t ) < ∞ for some ε > 0.



Step 1: Rewrite the dual target value

Without loss of generality: S = W (rescale parameters).

Lemma
The dual infimum coincides with the one taken over Q with

dQ
dP

= exp

(
−
∫ T

0
θtdWt −

1

2

∫ T

0
θ2t dt

)
for some bounded and adapted θ changing values only at finitely
many deterministic times. For such θ, the induced Q-Brownian
motion WQ

s = Ws +
∫ s
0 θrdr , s ≥ r generates the same filtration as

W and so we get, for any t ∈ [0,T ], the Itô-representations

θt = at +

∫ t

0
lt,sdW

Q
s

for a suitable constant at and square-integrable predictable lt,..
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Step 1: Rewrite the dual target value (ctd)

Lemma
With the previous notation the dual target value reads

EQ

[
1

α
log

(
dQ
dP

)
+Φ0(ST − S0) +

1

2Λ

∫ T

0

∣∣∣EQ(ST |G∆
t )− St

∣∣∣2 dt]
=

1

2α

∫ T

0
a2t dt − Φ0

∫ T

0
atdt +

1

2Λ

∫ T

0

(∫ T

t
audu

)2

dt

+

∫ T

0
EQ

[
1

2α

∫ T

s
l2t,sdt +

1

2Λ

∫ T

s

(∫ T

t
lu,sdu

)2

dt

+
s ∧∆

2Λ

(
1−

∫ T

s
lu,sdu

)2
]
ds.

; family of deterministic (!) variational problems:
Minimize separately over a. and over l.,s for each s ∈ [0,T ]!



Step 2: Solve deterministic variational problems

Lemma
The minimum of the functional

1

2α

∫ T

0
a2t dt − Φ0

∫ T

0
atdt +

1

2Λ

∫ T

0

(∫ T

t
audu

)2

dt

over a ∈ L2([0,T ], dt) is attained for âΦ0 where

ât =
α cosh(

√
ρ(T − t))

cosh(
√
ρT )

, t ∈ [0,T ].

The resulting minimum value is −ÂTΦ
2
0 where

ÂT = Λ
√
ρ tanh(

√
ρT )/2.



Step 2: Solve deterministic variational problems

Lemma
For any s ∈ [0,T ], the minimum of the functional

1

2α

∫ T

s
l2t dt +

1

2Λ

∫ T

s

(∫ T

t
ludu

)2

dt +
s ∧∆

2Λ

(
1−

∫ T

s
ludu

)2

over l ∈ L2([s,T ], dt) is attained at

l̂t,s =
ρ(s ∧∆) cosh(

√
ρ(T − t))

cosh(
√
ρ(T − s)) +

√
ρ(s ∧∆) sinh(

√
ρ(T − s))

, t ∈ [s,T ].

The corresponding minimum value is

L̂s =
1

2Λ

s ∧∆

1 + (s ∧∆)
√
ρ tanh(

√
ρ(T − s))

.



Step 3: Deal with Gaussian stochastic Volterra equation

Candidate for dual solution: Q̂ ∼ P with density represented by

θ̂s = âsΦ0 +

∫ s

0
l̂s,rdŴ

Q̂
r , s ∈ [0,T ].

For the associated Brownian motion Ŵ = W Q̂ = W +
∫ .
0 θ̂rdr this

implies the Gaussian Volterra-type integral equation

Ŵt = Wt +

∫ t

0
âsΦ0ds +

∫ t

0

∫ s

0
l̂s,r dŴr ds, t ∈ [0,T ].



Step 3: Deal with Gaussian stochastic Volterra equation

Theorem (Hitsuda ’68, Hida, Hitsuda ’93)

The Gaussian Volterra-type integral equation has the unique
solution

Ŵt = Wt +Φ0

∫ t

0
âsds −

∫ t

0

∫ s

0
k̂s,r (dWr +Φ0ardr) ds

= Wt −
∫ t

0

∫ s

0
k̂s,rdWrds +Φ0

(∫ t

0
âsds −

∫ t

0

∫ s

0
k̂s,r ârdrds

)
where k̂ is the associated resolvent kernel characterized by

k̂t,s + l̂t,s =

∫ t

s
l̂t,u k̂u,sdu, 0 ≤ s ≤ t ≤ T ,

and this Ŵ is the Q̂-Brownian motion induced by W .

Remark: Result used previously in math finance by Cheridito ’01.



Solution to the dual problem

Lemma
For our l̂ , the resolvent kernel is

k̂t,s = − exp

(∫ t

s
l̂u,udu

)
l̂t,s , 0 ≤ s ≤ t ≤ T ,

and the dual infimum is attained by Q̂ ∼ P with density

dQ̂
dP

= exp

(
−
∫ T

0
θ̂tdWt −

1

2

∫ T

0
θ̂2t dt

)
for θ̂, Ŵ as constructed above; this Ŵ coincides with the
Q̂-Brownian motion induced by the P-Brownian motion W via
Girsanov’s theorem. The value of the dual problem is

−
ΛΦ2

0
√
ρ

2 coth
(√

ρT
) +

∫ T

0

1

2Λ

(s ∧∆)

1 + (s ∧∆)
√
ρ tanh

(√
ρ(T − s)

)ds.



From dual to primal solution: Optimal open loop control

Recall from general duality: Optimal primal turnover policy is

ϕ̂t =
EQ̂

[
ST |G∆

t

]
− St

Λ
, t ∈ [0,T ],

when Q̂ is the dual solution. Using the relation between S = W
and Ŵ , we find

EQ̂

[
ST

∣∣∣G∆
t

]
=

∫ (t+∆)∧T

0

(
1−

∫ T

s
l̂u,sdu

)
dŴs −

∫ T

0
âuduΦ0

which readily yields an “open loop” description of the optimal
policy.

This is clearly explicit

, but not really expressive . . .
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From open loop to closed loop: Getting feedback

Proving that dynamic programming holds in the primal
optimization problem, allows us to back out the feedback form of
the optimal policy from its open loop description.

A rather tedious computation finally leads to the initially described
optimal feedback policy:

ϕ̂t =
1

Λ

(
S̄∆
t − St

)
+

Υ∆(T − t)

∆

( µ

ασ2
− Φ̂t

)



What if we sort of knew what the future brings?

Bachelier stock price dynamics, zero interest rate:

St = s0 + µt + σ(γWt +
√

1− γ2Bt), t ≥ 0

for two independent Brownian motions W , B, γ ∈ [0, 1].
Information flow: at time t noisy signal on stock price evolution up
to time τ(t) ≥ t with τ : [0,T ] → [0,T ] continuous, increasing:
; “frontrunning”

G τ
t = σ(Ss , s ≤ t) ∨ σ(Ws , s ≤ τ(t)), t ≥ 0.

S is not a G τ -martingale ; arbitrage opportunities curtailed by
price impact because execution price is

Sϕ
t = St +

Λ

2
ϕt

where ϕt =
d
dtΦt is the frontrunner’s turnover rate ; temporary

price impact à la Almgren-Chriss
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Noisy information in the course of time
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As of time t ∈ [0,T ], the standard deviation of S from S̄τ for
s ≥ 0 into the future is

σ
√

s(1− γ2) if s ≤ τ(t)− t and after that σ
√
s − γ2(τ(t)− t)
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Main result: Optimal Policy

The optimal policy takes a similar form as in the special case with
perfect information corresponding to γ = 1; the technique of proof
still works, but computations and formulae are more involved:

▶ at any time t ∈ [0,T ], one considers the best guess of the
future price evolution

Ŝτ
t+s = St + µs + σγ(W(t+s)∧τ(t) −Wt), s ≥ 0.

▶ the guess Ŝτ is averaged over s ∈ [0, τ [t]− t] with some
explicitly given kernel Υ(t, s) to yield an indicator S̄τ

t to
assess the earnings potential and hence optimal inside trades:
(S̄τ

t − St)/Λ

▶ Υ(t, τ(t)) also yields urgency for trading towards Merton ratio
µ/(ασ2)

▶ value of extra information as measured by certainty equivalent
can be computed explicitly as well



Conclusion and Outlook

▶ insider model with dynamic information advantages:
frontrunning

▶ price impact keeps utility maximization viable: super-linear
transaction costs

▶ explicit solution with financial-economic meaning: inside
trades combined with standard optimal investment

▶ no dynamic programming, but dual approach

▶ convex duality result holds beyond Bachelier setting and
frontrunning

▶ noisy inside information process

▶ Open: How to allow for more flexible signal quality
deterioration (instead of abruptly no info beyond τ(t))?
Stochastically changing signal quality?. . .

Thank you very much!
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