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Aim of the talk

The aim of the talk is to convince you that simulation based
least-squares regression can work for solving backward SDEs
in moderate dimensions, if the number of simulated paths is
proportional to the number of basis functions (up to a
log-factor).
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Time discretization

Typical situation: Dependence on ω in the coefficients of a
BSDE driven by a Bm W is via a stochastic differential
equation, which can be discretized by an Euler scheme Xi .

Then typical time discretization schemes with step size h > 0
boil down to alternating between

1 Solving numerically a regression problem with Malliavin weight
of the form

m(x) = E [βi+1yi+1(Xi+1)|Xi = x ].

where

βi+1 ∈
{

1,
W(i+1)h −Wih

h

}
2 Applying a nonlinear deterministic function.

In this talk, we focus on the analysis of one regression step.
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Setting

Two time steps:
X1 := X ‘now’

where X is an RD-valued random variable whose density has a
Gaussian tail estimate.

X2 = X1 + b(X1)h + σ(X1)
√
hW ‘later’

where b, σ are bounded deterministic functions, W is a vector
of D independent standard normal random variables
independent of X1, h > 0.

Regression problem:

m(x) = E

[
W√
h
y(X2)

∣∣∣∣X1 = x

]
,

where y is of class CQ+1
b for Q ≥ 3.
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Setting

Recall:

m(x) = E

[
W√
h
y(x + b(x)h + σ(x)

√
hW )

]
Integration by parts yields

m(x) = σ(x)>E [∇y(x + b(x)h + σ(x)
√
hW )]

Thus, by a Taylor expansion,

m(x) = σ(x)>∇y(x) + O(h)
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Empirical regression

Regression now:

D Empirical (simulation-based) regressions of W (d)
√
h
y(X2) on

basis functions that depend on X1 (i.e. ‘now’).
Standard approach in statistical learning, but with simulated
data instead of empirical data.
See e.g. Lemor, Gobet, Warin (2006) in the context of
BSDE numerics.

Regression later:

Empirical regression of y(X2) on basis functions depending on
X2 (i.e. ‘later’) plus closed-form expressions for the
conditional expectations of the weighted basis functions.
Exploits that one knows (in principle) the distribution of the
simulated data.
See e.g. Glasserman, Yu (2004), B., Steiner (2012),
Beutner, Schweizer, Pelsser (2013).
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Regression anytime

Choose basis functions that depend on (X1,X2) (‘anytime’),
cp. the stochastic grid bundling method of Oosterlee and
co-authors.

Step 1: Simulate L independent copies (X1,l ,X2,l) of (X1,X2)

Step 2: Choose K basis functions η1(x1, x2), . . . ηK (x1, x2).
We always choose basis functions in product form

ηk(x1, x2) = ηnowk (x1)ηlaterk (x2)

and assume that

x 7→ E [W ηlaterk (x + ΣW )] =: η̃laterk (x ; Σ)

is available in closed form for every D ×D-matrix Σ (take e.g.
polynomials).
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Regression anytime

Step 3: Perform an empirical regression of y(X2) on the basis
functions, i.e. define

ŷL(x1, x2) =
K∑

k=1

α̂kη
now
k (x1)ηlaterk (x2)

where α̂ is a minimizer in RK of

1

L

L∑
l=1

(
y(X2,l)−

K∑
k=1

αkη
now
k (X1,l)η

later
k (X2,l)

)2
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Regression anytime

Step 4: Define

m̂L(x) := E

[
W√
h
ŷL(X1,X2)

∣∣∣∣X1 = x , (X1,l ,X2,l)l=1,...L

]
=

K∑
k=1

α̂kη
now
k (x)E

[
W√
h
ηlaterk (X2)

∣∣∣∣X1 = x

]

=
K∑

k=1

α̂kη
now
k (x)

1√
h
η̃laterk (x + b(x)h, σ(x)

√
h)

as estimator for the regression function m.
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Regression anytime – Removing the weight

Removing the weight from the error analysis: By Hölder’s
inequality:

E [|m(X1)− m̂L(X1)|2]

= E

[∣∣∣∣E [ W√
h

(y(X2)− ŷL(X1,X2))

∣∣∣∣X1, (X1,l ,X2,l)l=1,...L

]∣∣∣∣2
]

≤ D

h
E [|y(X2)− ŷL(X1,X2)|2]
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Regression anytime – SVD truncation

Consider the empirical regression matrix

A = (ηnowk (X1,l)η
later
k (X2,l))l=1,...,L; k=1,...,K

and recall that

α̂ = A†

 y(X2,1)
...

y(X2,L)


where A† denotes the pseudoinverse of A

Without stabilization the convergence properties of the
empirical regression may deteriorate due to rare samples that
lead to a very ill-conditioned empirical regression matrix.
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Regression anytime – SVD truncation

Stabilization is usually achieved by truncating the estimator

min

{
max

{
−C ,

K∑
k=1

α̂kη
now
k (x1)ηlaterk (x2)

}
,C

}

for some sufficiently large constant, say C ≥ supx |y(x)|.
Convergence analysis for truncated least-squares estimators
can be found in the textbook by Györfi et al. (2002) in
the presence of noise and in Cohen, Davenport,
Leviatan (2013) in a noiseless setting with orthonormal
basis functions.

However, closed-form computations of the conditional
expectation in our setting require linearity of the estimator in
the basis functions, which is destroyed by truncation.
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Regression anytime – SVD truncation

Way-out: Set the estimator to zero, if the smallest singular
value smin(A) of the empirical regression matrix ist too close
to zero, cp. the conditioned least-squares estimator of
Cohen and Migliorati (2017).

By slight abuse of notation:

ŷL(x1, x2) :=
K∑

k=1

α̂kηk(x1, x2)

where

α̂k := (A>A)−1A>

 y(X2,1)
...

y(X2,L)

 1{s2
min(A)≥Lτ}

for some threshold τ > 0.
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Regression anytime – SVD truncation

Statistical error decays exponentially in the sample size L and
depends on a sup-bound of the basis functions

sup
(x1,x2)

K∑
k=1

|ηk(x1, x2)|2

and on the smallest and largest eigenvalues λmin(R) and
λmax(R) of

R = (E [ηk(X1,X2)ηκ(X1,X2)])k,κ=1,...,K

Note
1

L
s2

min(A)→ λmin(R)

almost surely as L→∞.

So the threshold τ must be a strict lower bound of λmin(R).
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Basis choice

Recall: We wish to approximate

m(x) = E

[
W√
h
y(X2)

∣∣∣∣X1 = x

]
up to order, say, O(h), where X2 is one step of an Euler
scheme with step size h starting at X1.

Then, ŷL must approximate y to the order O(h3/2).

We need to identify an ’anytime’-function basis such that
1 it is generically applicable to the Euler scheme setting (not

tailored to the coefficients b, σ);
2 closed-form expression of the conditional expectations of the

‘later’ basis functions is available;
3 the projection error is of order O(h3/2);
4 the eigenvalues of R = Rh and the sup-norm of the basis

functions can be controlled to match the statistical error.
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The RawBfst algorithm – Overview

Algorithm:

Truncate the domain of X1 in accordance with the Gaussian
tail bound.

Decompose the truncated domain into cubes (Γi )i∈I of
diameter ∼ h3/(2Q+2), Q ≥ 3.

Basis functions of the form

η(X1,X2) = 1Γi
(X1)P(X2)

where P are Legendre polynomials of degree up to Q, scaled
to be orthonormal w.r.t the uniform distribution on Γi .

Change the sampling distribution of X1 to a (stratified)
uniform distribution on the cubic grid (via importance
sampling) and truncate the Gaussian innovations in the
sampling scheme for X2.

Run ‘Regression anytime’ with SVD truncation based on a
sample of size L to compute ŷL and m̂L.
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The RawBfst algorithm – Convergence

Theorem

Suppose y ∈ CQ+1
b (RD) for some Q ≥ 3. Compute m̂L via

RawBfst with

L = Lh = d2 c1,paths log(h−1)e · |I |

τ ∈

0, 1−

(
c∗paths(Q,D)

c1,paths

)1/2


c1,paths > c∗paths(Q,D) :=
2

3
+

8

3

∑
j∈ND

0 ;|j|1≤Q

D∏
d=1

(2jd + 1).

Then there is a constant C > 0 such that for small h

E

[∣∣∣∣E [ W√
h
y(X2)

∣∣∣∣X1

]
− m̂L(X1)

∣∣∣∣2
]
≤ C log(h−1)D/2 h2.
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The RawBfst algorithm – Convergence

Remarks:

The cost to achieve a root-mean-squared error of the order h
is up to a log-factor of the order

|I | ∼ h−3D/(2Q+2)

Ignoring log-factors the convergence behaviour in the number
of samples is

L−
2(Q+1)

3D

It beats the Monte-Carlo rate of 1/2 for computing a single
expectation, if the smoothness-to-dimension ratio (Q + 1)/D
exceeds 3/4.

In practice, the algorithm can only be applied in moderate
dimensions and for moderate polynomial degrees.
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Numerical illustration

Test example from Gobet et al. (2016):

Xt = Wt D-dim. Brownian motion

Yt = Y1 +

∫ 1

t

(
D∑

d=1

Z
(d)
s

)(
Ys −

1

D
− 1

2

)
ds −

∫ 1

t
ZsdWs

Y1 =
exp{1 +

∑D
d=1 W

(d)
1 }

1 + exp{1 +
∑D

d=1 W
(d)
1 }

Closed form solution available: Y0 = 1/2.

We apply the time-discretization scheme by Fahim et al.
(2011).
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Numerical illustration

We calibrate the RawBfst algorithm to achieve a convergence
rate of 1/2 in the time step h in accordance with the Euler
discretization of Y – applying heuristics for the error
propagation over the time steps.

Dimension: 5

Total number of cubes: ∼ h−(5/4+1),

number of basis functions per cube: 56 (degree up to 3)

Number of samples per cube: 2 · 4320 log(0.5 h−1)

Comparison: Calibration of the ‘regression now’-algorithm of
Gobet et al. (2016) with the same number of cubes
requires ∼ h−3 samples per cube (but with a lower polynomial
degree).

Sample: one D-dimensional uniform or Gaussian random
variable.
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Numerical illustration

h−1 mean standard deviation

10 0.486427 5.01 · 10−4

20 0.493735 2.52 · 10−4

30 0.497602 1.34 · 10−4

40 0.499836 8.33 · 10−5

50 0.501483 8.01 · 10−5

60 0.501333 8.01 · 10−5

70 0.501016 5.77 · 10−5

Table: Mean and standard deviation of the approximation for Y0 across
20 runs of the algorithm.
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Numerical illustration

Figure: Approximation errors against time step size (∆ := h) in a
log10-log10-plot.
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Numerical illustration

Figure: Approximation errors against run time in a log10-log10-plot. Run
times are for a Julia 1.4.2 implementation on a Windows desktop PC
with an Intel Core i7-6700 CPU with 3.4GHz.
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Thank you...

... for your attention!

This talk was based on

Bender, C. and Schweizer, N. (2021) ‘Regression
Anytime’ with Brute-Force SVD Truncation. Ann. Appl.
Probab., 31, 1140–1179.
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Regression anytime – SVD truncation

Theorem

Suppose that the basis functions ηk are bounded. Let

λ∗ ≤ λmin(R) ≤ λmax(R) ≤ λ∗

and τ = (1− ε)λ∗ for some ε ∈ (0, 1). Then,

E
[
|y(X2)− ŷL(X1,X2)|2

]
≤

(
1 +

λ∗

λ∗(1− ε)

)
inf
α∈RK

E
[
|y(X2)− α>η(X1,X2)|2

]
+2K exp

{
−3ε2L

6mλ∗/λ2
∗ + 2ε(m/λ∗ + λ∗/λ∗)

}
E [|y(X2)|2],

Extends related results by Cohen and co-authors beyond the case
of orthonormal basis functions.
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Regression anytime – SVD truncation

Remarks:

For a fixed function basis, the statistical error converges
exponentially in the number of samples L.

The key step is to estimate the SVD truncation probability by
a matrix Bernstein inequality, see e.g. Tropp (2012).

The result is not distribution free, but depends on the
distribution of (X1,X2) via the eigenvalues λmin(R), λmax(R).

Optimal rates (up to log-factors) for some interpolation
problems with random design can be derived from this result.

The choice of the truncation threshold τ is a trade-off
between projection error and statistical error.
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