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Motivation

We consider an investor who wishes to optimise their expected
exponential utility from terminal wealth.

Let Ht be the price process of a stock whose stochastic log-spot
price Nt follows the following Heston model:

dNt = −1

2
νtdt+

√
νtdBt

dνt = λ(θ − νt)dt+ σ
√
νtdWt

The investor’s initial wealth is x and their trading strategies are
deterministic functions of time π where π(t) denoted the amount
of money invested in stock H at time t.

The wealth process of the investor is therefore described by

Xx,π
t = x+

∫ t

0

π(s)

Hs
dHs = x+

∫ t

0
π(s)dNs
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Motivation

We can then solve the utility maximisation problem

V (x) = sup
π

E[−exp(−γXx,π
T )], x ∈ R, γ > 0

by finding the generator f of the BSDE

Yt = 0−
∫ T

t
ZsdWs +

∫ T

t
f(νs, Zs)ds

such that the process Lt = exp(−γXx,π
t + Yt) is a supermartingale

for all strategies π and is a martingale for a certain strategy πopt.

The generator is found to be
f(r, z) = γ

2 (ρ
2 − 1)z2 + 1

8γ3 r +
1
2γρz

√
r.

The martingale property of Lπopt

t then allows us to find our value
function as follows: V (x) = −exp[−γ(x+ Y0)]
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Motivation

Quadratic BSDEs arise in finance from utility optimization
problems with exponential utility functions.

Consider the following Markovian quadratic BSDE on the filtered
probability space (Ω,FW ,FW

t ,P):

Yt = g(XT ) +

∫ T

t
f(s,Xs, Ys, Zs)ds−

∫ T

t
ZsdWs

Xt = x0 +

∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dWs

Richou and Chassagneux introduced a theoretical scheme for the
resolution of the quadratic BSDE.

Due to their well known success in higher dimensional problems
we decide to use neural networks in order to approximate the
expectations in the theroretical scheme and provide a full
numerical implementation
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Theoretical Scheme

Y π
i = Eti [Y

π
i+1 +∆tifN (Xπ

i , Y
π
i , Zπ

i )−∆tiZ
π
i H

R
i ] (1)

Zπ
i = Eti [Y

π
i+1H

R
i ] (2)

where N is such that the projection ϕ of Z onto the ball κN such that
fN (x, y, z) = f(x, y, ϕ(z)) is N -Lipschitz.

We note that (HR
i )0<n satisfies the following properties:

Ei[H
R
i ] = 0 (3)

∆tiEi[(H
R
i )

THR
i ] = ∆tiEi[H

R
i (H

R
i )

T ] = ciId×d and
λ

d
≤ ci ≤

Λ

d
,

(4)
where λ,Λ are positive constants that do not depend on R, for
sufficiently large R.
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qNeural Scheme 1

We use two neural networks Ui,Zi ∈ NN ρ
d,1,L,m with two square error

loss functions L1,L2. We use stochastic gradient descent in order to
obtain the optimized solutions Û , Ẑ.

Initialise from estimation (Û , Ẑ) of (Ytn , Ztn) with
(Ûn, Ẑn) = (g(Xtn), 0)

For i = N − 1, . . . , 0, given Ûi+1 and Ẑi+1 use a pair of neural
networks (Ui,Zi) ∈ NN ρ

d,1,L,m(RNm)×NN ρ
d,1,L,m(RNm) and

compute by stochastic gradient descent the minimizers Ûi and Ẑi

of the expected quadratic loss functions L1
i and L2

i respectively:

L1
i (Ui) := E|Ûi+1(Xti+1)− F (ti, Xti ,Ui(Xti),Zi(Xti),∆ti)|2

L2
i (Zi) = E|Ûi+1H

R
i −Zi|2

where
F (x, y, z,∆ti) = y − fN (x, y, z)∆ti + z∆tiHi
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Over Parameterisation Theorem

Theorem

Suppose ρ = ReLu m ≥ O
(
(ML/δ)30d log2(ε−1)

b

)
, b ∈ [M ] and for every

pair i, j ∈ [M ] we have ||xi − xj ||2 > δ where δ is the minimum
distance between sample points. Starting from random initialization,
with probability at least 1− e−O(log2(m)), stochastic gradient descent
with learning rate ω = O( bδd

M5L2mlog2(m)
) and mini batch size b ensures

that the squared error loss function is less than ε in

T = O( n7L2log2m
bδ2

log(1ε )
)
iterations.

Allen-Zhu,18
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Theorem and Methods

Theorem

For α ∈ (0, 1/2) with˙N = nα, R = log(n),we have for all˙η > 0

E
[
sup

0≤i≤n
|Y π

i − Ûi|2
]
≤ Cα,ηh

1−η

where m ≥ O
(
(ML/δ)30d log2(ε−1)

b

)
, b ∈ [M ]

Monte Carlo Sampling error- using classical variance bounding
methods

Neural network estimation errors- using an Over Parameterisation
Theorem

Accumulating error terms contributed by Z terms- reduced by
making a change of measure

Martingale Representation Theorem used to bound terms resulting
from our capping H
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Results qNeural 1

Xt = X0 +

∫ t

0
νXsdWs

Yt = g(X1) +

∫ 1

t

a

2
|Zs|2ds−

∫ 1

t
ZsdWs

a = 1, ν = 1, g(x) =
∑d

i=1 xi

(
∑d

i=1 x
2
i )+0.01

M = 2000, n = 10,m = 1000, d = 10
Y π
0 = 0.511

Relative error= 2.7%
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qNeural Scheme 2

We directly approximate the Markovian representative, u(t, x), using a
single deep neural network in the following way:

Use forward Euler-Maruyama schemes:

Xπ
i+1 = Xπ

i + b(Xπ
i )∆ti + σ(Xπ

i )∆Wi

Y π
i+1 = Y π

i + fN (Xπ
i , Y

π
i , Zπ

i )∆ti + (Zπ
i )

T∆tiHi

We minimise the loss function given by:

M∑
m=1

n−1∑
i=1

|Y π
m,i+1−Y π

m,i−fm
i ∆ti−(Zπ

m,i)
T∆tiHi|2+

M∑
m=1

|Y π
m,n−g(Xπ

m,n)|2

Z is obtained via automatic differentiation
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Results qNeural 2

a = 1, ν = 1, g(x) =
∑d

i=1 xi

(
∑d

i=1 x
2
i )+0.01

M = 1000, n = 20, d = 10

Y true
0 = 0.525

Y π
0 = 0.498

Relative error= 5.0%
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Comparison

qNeural 1

Advantages:

by decomposing the global problem into smaller ones, we may
expect to help the gradient descent method to provide estimations
closer to the real solution.

at each time step, we initialize the weights and bias of the neural
network to the weights and bias of the previous time step treated.
This allows us to start with a value close to the solution, hence
avoiding local minima which are too far away from the true
solution.

Disadvantgaes:

Parameters must be calculated for a total of 2(N − 1) neural
networks. This can possibly result in overfitting and greatly
increase computation time.
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Comparison

qNeural 2

Advantages:

Using a single global neural network greatly reduces the amount of
parameters that need to be learned and can reduce the potential of
overfitting.

Number of parameters is independent of the number of time steps
in the discretization.

Disadvantages

Accuracy suffers due to learing the equation using a forward
scheme. We may not be able to match the terminal condition with
great accuracy as we do not initialise our algorithm at g(XT ).
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Future work

Investigate convergence rate numerically. How do we train our
neural network in order to realise the convergence rate we have
proved?

Provide a theoretical result (proof) for the convergence of qNeural
2.

Can we generalise this to systems of qBSDEs?

Is there a procedure to determine our choice of α?
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