Some neural network schemes for quadratic BSDEs

D. Bussell-Arnold, C.Garcia-Trillos

UCL
June 27, 2022

Motivation

- We consider an investor who wishes to optimise their expected exponential utility from terminal wealth.
- Let H_{t} be the price process of a stock whose stochastic log-spot price N_{t} follows the following Heston model:

$$
\begin{gathered}
d N_{t}=-\frac{1}{2} \nu_{t} d t+\sqrt{\nu_{t}} d B_{t} \\
d \nu_{t}=\lambda\left(\theta-\nu_{t}\right) d t+\sigma \sqrt{\nu_{t}} d W_{t}
\end{gathered}
$$

- The investor's initial wealth is x and their trading strategies are deterministic functions of time π where $\pi(t)$ denoted the amount of money invested in stock H at time t.
- The wealth process of the investor is therefore described by

$$
X_{t}^{x, \pi}=x+\int_{0}^{t} \frac{\pi(s)}{H_{s}} d H_{s}=x+\int_{0}^{t} \pi(s) d N_{s}
$$

Motivation

- We can then solve the utility maximisation problem

$$
V(x)=\sup _{\pi} \mathbb{E}\left[-\exp \left(-\gamma X_{T}^{x, \pi}\right)\right], \quad x \in \mathbb{R}, \quad \gamma>0
$$

by finding the generator f of the $B S D E$

$$
Y_{t}=0-\int_{t}^{T} Z_{s} d W_{s}+\int_{t}^{T} f\left(\nu_{s}, Z_{s}\right) d s
$$

such that the process $L_{t}=\exp \left(-\gamma X_{t}^{x, \pi}+Y_{t}\right)$ is a supermartingale for all strategies π and is a martingale for a certain strategy π^{opt}.

- The generator is found to be $f(r, z)=\frac{\gamma}{2}\left(\rho^{2}-1\right) z^{2}+\frac{1}{8 \gamma^{3}} r+\frac{1}{2 \gamma} \rho z \sqrt{r}$.
- The martingale property of $L_{t}^{\pi^{\text {opt }}}$ then allows us to find our value function as follows: $V(x)=-\exp \left[-\gamma\left(x+Y_{0}\right)\right]$

Motivation

- Quadratic BSDEs arise in finance from utility optimization problems with exponential utility functions.
- Consider the following Markovian quadratic BSDE on the filtered probability space $\left(\Omega, \mathcal{F}^{W}, \mathcal{F}_{t}^{W}, \mathbb{P}\right)$:

$$
\begin{gathered}
Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} \\
X_{t}=x_{0}+\int_{0}^{t} \mu\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}
\end{gathered}
$$

- Richou and Chassagneux introduced a theoretical scheme for the resolution of the quadratic BSDE.
- Due to their well known success in higher dimensional problems we decide to use neural networks in order to approximate the expectations in the theroretical scheme and provide a full numerical implementation

Theoretical Scheme

$$
\begin{gather*}
Y_{i}^{\pi}=\mathbb{E}_{t_{i}}\left[Y_{i+1}^{\pi}+\Delta t_{i} f_{N}\left(X_{i}^{\pi}, Y_{i}^{\pi}, Z_{i}^{\pi}\right)-\Delta t_{i} Z_{i}^{\pi} H_{i}^{R}\right] \tag{1}\\
Z_{i}^{\pi}=\mathbb{E}_{t_{i}}\left[Y_{i+1}^{\pi} H_{i}^{R}\right] \tag{2}
\end{gather*}
$$

where N is such that the projection ϕ of Z onto the ball κN such that $f_{N}(x, y, z)=f(x, y, \phi(z))$ is N-Lipschitz.

- We note that $\left(H_{i}^{R}\right)_{0<n}$ satisfies the following properties:

$$
\begin{gather*}
\mathbb{E}_{i}\left[H_{i}^{R}\right]=0 \tag{3}\\
\Delta t_{i} \mathbb{E}_{i}\left[\left(H_{i}^{R}\right)^{T} H_{i}^{R}\right]=\Delta t_{i} \mathbb{E}_{i}\left[H_{i}^{R}\left(H_{i}^{R}\right)^{T}\right]=c_{i} I_{d \times d} \text { and } \frac{\lambda}{d} \leq c_{i} \leq \frac{\Lambda}{d} \tag{4}
\end{gather*}
$$

where λ, Λ are positive constants that do not depend on R, for sufficiently large R.

qNeural Scheme 1

We use two neural networks $\mathcal{U}_{i}, \mathcal{Z}_{i} \in \mathcal{N N}_{d, 1, L, m}^{\rho}$ with two square error loss functions $\mathcal{L}_{1}, \mathcal{L}_{2}$. We use stochastic gradient descent in order to obtain the optimized solutions $\hat{\mathcal{U}}, \hat{\mathcal{Z}}$.

- Initialise from estimation $(\hat{\mathcal{U}}, \hat{\mathcal{Z}})$ of $\left(Y_{t_{n}}, Z_{t_{n}}\right)$ with $\left(\hat{\mathcal{U}}_{n}, \hat{\mathcal{Z}}_{n}\right)=\left(g\left(X_{t_{n}}\right), 0\right)$
- For $i=N-1, \ldots, 0$, given $\hat{\mathcal{U}}_{i+1}$ and $\hat{\mathcal{Z}}_{i+1}$ use a pair of neural networks $\left(\mathcal{U}_{i}, \mathcal{Z}_{i}\right) \in \mathcal{N} \mathcal{N}_{d, 1, L, m}^{\rho}\left(\mathbb{R}^{N_{m}}\right) \times \mathcal{N} \mathcal{N}_{d, 1, L, m}^{\rho}\left(\mathbb{R}^{N_{m}}\right)$ and compute by stochastic gradient descent the minimizers $\hat{\mathcal{U}}_{i}$ and $\hat{\mathcal{Z}}_{i}$ of the expected quadratic loss functions \mathcal{L}_{i}^{1} and \mathcal{L}_{i}^{2} respectively:

$$
\begin{gathered}
\mathcal{L}_{i}^{1}\left(\mathcal{U}_{i}\right):=\mathbb{E}\left|\hat{\mathcal{U}}_{i+1}\left(X_{t_{i+1}}\right)-F\left(t_{i}, X_{t_{i}}, \mathcal{U}_{i}\left(X_{t_{i}}\right), \mathcal{Z}_{i}\left(X_{t_{i}}\right), \Delta t_{i}\right)\right|^{2} \\
\mathcal{L}_{i}^{2}\left(\mathcal{Z}_{i}\right)=\mathbb{E}\left|\hat{\mathcal{U}}_{i+1} H_{i}^{R}-\mathcal{Z}_{i}\right|^{2}
\end{gathered}
$$

where

$$
F\left(x, y, z, \Delta_{t_{i}}\right)=y-f_{N}(x, y, z) \Delta t_{i}+z \Delta t_{i} H_{i}
$$

Over Parameterisation Theorem

Theorem

Suppose $\rho=R e L u m \geq O\left(\frac{(M L / \delta)^{30} d \log ^{2}\left(\varepsilon^{-1}\right)}{b}\right), b \in[M]$ and for every pair $i, j \in[M]$ we have $\left\|x_{i}-x_{j}\right\|_{2}>\delta$ where δ is the minimum distance between sample points. Starting from random initialization, with probability at least $1-e^{-O\left(\log ^{2}(m)\right)}$, stochastic gradient descent with learning rate $\omega=O\left(\frac{b \delta d}{M^{5} L^{2} m l o g^{2}(m)}\right)$ and mini batch size b ensures that the squared error loss function is less than ε in $T=O\left(\frac{n^{7} L^{2} \log { }^{2} m}{b \delta^{2}} \log \left(\frac{1}{\varepsilon}\right)\right)$ iterations.

Allen-Zhu, 18

Theorem and Methods

Theorem

For $\alpha \in(0,1 / 2)$ with $N=n^{\alpha}, R=\log (n)$, we have for all' $\eta>0$

$$
\mathbb{E}\left[\sup _{0 \leq i \leq n}\left|Y_{i}^{\pi}-\hat{\mathcal{U}}_{i}\right|^{2}\right] \leq C_{\alpha, \eta} h^{1-\eta}
$$

where $m \geq O\left(\frac{(M L / \delta)^{30} d \log ^{2}\left(\varepsilon^{-1}\right)}{b}\right), b \in[M]$

- Monte Carlo Sampling error- using classical variance bounding methods
- Neural network estimation errors- using an Over Parameterisation Theorem
- Accumulating error terms contributed by Z terms- reduced by making a change of measure
- Martingale Representation Theorem used to bound terms resulting from our capping H

Results qNeural 1

$$
\begin{gathered}
X_{t}=X_{0}+\int_{0}^{t} \nu X_{s} d W_{s} \\
Y_{t}=g\left(X_{1}\right)+\int_{t}^{1} \frac{a}{2}\left|Z_{s}\right|^{2} d s-\int_{t}^{1} Z_{s} d W_{s}
\end{gathered}
$$

- $a=1, \nu=1, g(x)=\frac{\sum_{i=1}^{d} x_{i}}{\left(\sum_{i=1}^{d} x_{i}^{2}\right)+0.01}$
- $M=2000, n=10, m=1000, d=10$
- $Y_{0}^{\pi}=0.511$
- Relative error= 2.7%

qNeural Scheme 2

We directly approximate the Markovian representative, $u(t, x)$, using a single deep neural network in the following way:

- Use forward Euler-Maruyama schemes:

$$
\begin{gathered}
X_{i+1}^{\pi}=X_{i}^{\pi}+b\left(X_{i}^{\pi}\right) \Delta t_{i}+\sigma\left(X_{i}^{\pi}\right) \Delta W_{i} \\
Y_{i+1}^{\pi}=Y_{i}^{\pi}+f_{N}\left(X_{i}^{\pi}, Y_{i}^{\pi}, Z_{i}^{\pi}\right) \Delta t_{i}+\left(Z_{i}^{\pi}\right)^{T} \Delta t_{i} H_{i}
\end{gathered}
$$

- We minimise the loss function given by:

$$
\sum_{m=1}^{M} \sum_{i=1}^{n-1}\left|Y_{m, i+1}^{\pi}-Y_{m, i}^{\pi}-f_{i}^{m} \Delta t_{i}-\left(Z_{m, i}^{\pi}\right)^{T} \Delta t_{i} H_{i}\right|^{2}+\sum_{m=1}^{M}\left|Y_{m, n}^{\pi}-g\left(X_{m, n}^{\pi}\right)\right|^{2}
$$

- Z is obtained via automatic differentiation

Results qNeural 2

- $a=1, \nu=1, g(x)=\frac{\sum_{i=1}^{d} x_{i}}{\left(\sum_{i=1}^{d} x_{i}^{2}\right)+0.01}$
- $M=1000, n=20, d=10$
- $Y_{0}^{\text {true }}=0.525$
- $Y_{0}^{\pi}=0.498$
- Relative error $=5.0 \%$

Comparison

qNeural 1

- Advantages:
- by decomposing the global problem into smaller ones, we may expect to help the gradient descent method to provide estimations closer to the real solution.
- at each time step, we initialize the weights and bias of the neural network to the weights and bias of the previous time step treated. This allows us to start with a value close to the solution, hence avoiding local minima which are too far away from the true solution.
- Disadvantgaes:
- Parameters must be calculated for a total of $2(N-1)$ neural networks. This can possibly result in overfitting and greatly increase computation time.

Comparison

qNeural 2

- Advantages:
- Using a single global neural network greatly reduces the amount of parameters that need to be learned and can reduce the potential of overfitting.
- Number of parameters is independent of the number of time steps in the discretization.
- Disadvantages
- Accuracy suffers due to learing the equation using a forward scheme. We may not be able to match the terminal condition with great accuracy as we do not initialise our algorithm at $g\left(X_{T}\right)$.

Future work

- Investigate convergence rate numerically. How do we train our neural network in order to realise the convergence rate we have proved?
- Provide a theoretical result (proof) for the convergence of qNeural 2.
- Can we generalise this to systems of qBSDEs?
- Is there a procedure to determine our choice of α ?

