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0. INTRODUCTION

Main ingredients

Our stochastic control problem setting:

Reinsurance: insurance companies cannot hedge against every source
of risk in the real world2.

Pure jump setting: the (compound) Poisson process is the essential
building block for claims arrival (Cramér-Lundberg model, 1903).

Jump clustering: in catastrophic situations the jumps in the claims
arrival process can exhibit clustering feature. We combine Cox with
shot-noise intensity and Hawkes processes (with exponential kernel)
and we get a shot-noise self-exciting counting process

Partial information: insurer has partial information about claims
arrival intensity.

2Think of what happened during the last two years!
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2. THE MATHEMATICAL MODEL

The Mathematical Model

On (Ω,F ,P;F) with T > 0 the maturity of a reinsurance contract, introduce
the cumulative claim process C = {Ct , t ∈ [0,T ]}:

Ct =
N (1)

t∑
j=1

Z (1)
j︸︷︷︸

claims size

, t ∈ [0,T ]

where the claims arrival process N (1) is a point process with intensity:

λt =β+ (λ0 −β)e−αt +
N (1)

t∑
j=1

e−α(t−T (1)
j )
`( Z (1)

j︸︷︷︸
Int−exc.jump

)

︸ ︷︷ ︸
CLUSTERING

+
N (2)

t∑
j=1

e−α(t−T (2)
j ) Z (2)

j︸︷︷︸
Ext−exc.jump︸ ︷︷ ︸

CLUSTERING

Assumption

N (2), {Z (1)
n }n≥1 and {Z (2)

n }n≥1 independent.
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2. THE MATHEMATICAL MODEL

β> 0: constant reversion level, λ0 > 0: initial value of λ at t = 0;

α> 0: rate of exponential decay;

N (2): Poisson process with intensity ρ > 0;

{T (1)
n }n≥1: jump times of N (1) (claims are reported!)

{T (2)
n }n≥1: jump times of N (2), when exogenous/external factors make

intensity jump;

{Z (1)
n }n≥1: claims size, i.i.d.R+-valued rv with distribution function

F (1) : (0,+∞) → [0,1] s.t. E[Z (1)] <∞;

` : [0,+∞) → [0,+∞) is a measurable function (e.g. g(z) = az: self-exciting
jumps proportional to claims sizes) s.t. E[`(Z (1)]) <∞;

{Z (2)
n }n≥1: externally-excited jumps, i.i.d. R+-valued rv with distribution

function F (2) : (0,+∞) → [0,1], such that E[Z (2)] <∞.
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3. MODEL CONSTRUCTION

Model Construction

The key idea is based on equivalent change probability measure on
(Ω,F ;F). Under Q:

N (1) and N (2) are Poisson processes with intensity 1 and ρ > 0,
respectively;

{Z (1)
n }n≥1 and {Z (2)

n }n≥1 are i.i.d. positive r.v. with distribution functions
F (1) and F (2), s.t. EQ[`(Z (1))] <∞ and EQ[Z (2)] <∞.

N (1), N (2), {Z (1)
n }n≥1 and {Z (2)

n }n≥1 are independent of each other.

Let us introduce the integer valued random measures m(i)(dt,dz), i = 1,2

m(i)(dt,dz) = ∑
n≥1

δ(T (i)
n ,Z(i)

n )(dt,dz)11{T (i)
n <∞}.

Under Q: m(i)(dt,dz), i = 1,2, are independent Poisson measures with
compensator measures given respectively by

ν(1),Q(dt,dz) = F (1)(dz)dt, ν(2),Q(dt,dz) = ρF (2)(dz)dt.
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3. MODEL CONSTRUCTION

Proposition

We assume that there exists ε> 0 s.t. EQ
[

eε`(Z(1))
]
<∞, EQ

[
eεZ(2)

]
<∞. Let λt be

given in Eq. (1) and

Lt = E

(∫ t

0
(λs− −1)(dN (1)

s −ds)

)
.

(here E (.) denotes the Doléans-Dade exponential). Then {Lt }t∈[0,T ] is a
(Q,F)-martingale.

Define P via
dP

dQ

∣∣∣
FT

= LT .

By Girsanov Theorem we have the (P,F)-predictable projections measures of the
random measure m(i)(dt,dz), i = 1,2 are given by:

ν(1)(dt,dz) =λt−F (1)(dz)dt, ν(2)(dt,dz) = ρF (2)(dz)dt. (1)

In particular, N (1) is a point process with (P,F)-predictable intensity {λs− }s∈[0,T ].
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4. THE FILTERING PROBLEM

Partial information: filtering

The externally-exciting component in the intensity λ is not observable,
the insurance company observes the cumulative claim process C, that
is, {(T (1)

n ,Z (1)
n )}n≥1:

H := FC⊂ F.

The insurance company has to estimate λ given H.

The filter process π= {πt , t ≥ 0} provides the conditional distribution of
λt given Ht , for any time t: it is the H-càdlàg process process taking
values in the space of probability measures on [0,+∞) such that

πt(f ) = E[f (λt)|Ht].

for any function f s.t. E[
∫ t

0 |f (λs)|ds] <∞.

{πt−(λ)}t≥0, where πt(λ) = E[λt |Ht], t ≥ 0, is the (P,H)-predictable
intensity of N (1).
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4. THE FILTERING PROBLEM

Markov property

Here we work on (Ω,F ;F= {Ft }t∈[0,T ],P), with

dλt =α(β−λt )dt +
∫ +∞

0
`(z)m(1)(dt,dz)+

∫ +∞

0
zm(2)(dt,dz).

Proposition

The process λ is a (P,F)-Markov process with generator:

L f (λ) = α(β−λ)
∂f

∂λ
+

∫ +∞

0
[f (λ+`(z))− f (λ)]λF (1)(dz)

+
∫ +∞

0
[f (λ+z)− f (λ)]ρF (2)(dz).

∀f ∈D(L ), f (λt ) = f (λ0)+∫ t
0 L f (λs)ds+mf

t with mf a (P,F)-mg.

Under E[(`(Z (1))k] <∞, E[(Z (2))k] <∞, ∀k = 1,2, . . . ., then
E
[∫ t

0 λ
k
s ds

]<∞, ∀k = 1,2, . . . ,∀t ≥ 0

The functions fk(λ) :=λk ∈D(L ), k = 1,2, . . . .
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4. THE FILTERING PROBLEM

The filter equation

We apply the innovation method (see e.g. Brémaud, Chap. IV (1981),
Ceci-Colaneri (2012)).

Theorem (Kushner-Stratonovich equation)

For any f ∈D(L ), the filter is the unique strong solution to

πt(f ) = f (λ0)+
∫ t

0
πs(L f )ds

+
∫ t

0

∫ +∞

0

(
πs−(f (λ+`(z))λ)

πs−(λ)
−πs−(f )

)
m̃(1)(ds,dz),

(2)

with m̃(1)(ds,dz) := m(1)(ds,dz)−πs−(λ)F (1)(dz)ds is the (P,H)−compensated
jump measure.
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4. THE FILTERING PROBLEM

Remark (Recursive structure)

Between two consecutive jumps, for t ∈ [T (1)
n ,T (1)

n+1) Eq. (2) reads as

dπt (f ) =πt (L̃ f )dt − [πt− (λf )−πt− (λ)πt− (f )]dt,

where L̃ f (λ) =α(β−λ) ∂f
∂λ +∫ +∞

0 [f (λ+z)− f (λ)]ρF (2)(dz). At a jump time T (1)
n :

πT (1)
n

(f ) =
πT (1)

n
− (λf (λ+`(Z (1)

n )))

πT (1)
n

− (λ)
.

Remark

The dynamics of πt(λ) is described by a system of countable equations:

dπt(λ) = α
(
β+ρE[Z (2)]

α
−πt(λ)

)
dt − (πt(λ2)−πt(λ)2)dt

+
∫ +∞

0
`(z)m(1)(ds,dz)+ πt−(λ2)−πt−(λ)2

πt−(λ)
dN (1)

t .
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4. THE FILTERING PROBLEM

The Unnormalized Filter

By the Kallianpur-Striebel formula we get that

πt(f ) = EQ[Lt f (λt)|Ht]

EQ[Lt |Ht]
= σt(f )

σt(1)

The process σt(f ) = EQ[Lt f (λt)|Ht] denotes the unnormalized filter and is a
finite measure-valued F-càdlàg process.

Proposition (Zakai equation)

For any f ∈D(L ), the unnormalized filter is the unique strong solution to the Zakai
equation

σt (f )=f (λ0)+
∫ t

0
σs(L f )ds+

∫ t

0

∫ +∞

0

(
σs− (λf (λ+`(z)))−σs− (f )

)
(m(1)(ds,dz)−F (1)(dz)ds).
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4. THE FILTERING PROBLEM

As the KS-equation the Zakai equation has a recursive structure. Between two
consecutive jump times, for t ∈ [Tn,Tn+1)

dσt (f ) = [σt (L̃ f )−σt ((λ−1)f )]dt

and at a jump time T (1)
n

σT (1)
n

(f ) =σT (1)
n−

(λf (λ+`(Zn)).

By the linear structure of the Zakai between consecutive jumps we get a
computable expression of the filter.

Proposition

The following representation holds, for any f ∈D(L ) and ∀n = 1,2, . . .

πt (f ) =
E[f (λ̃n

t )e−
∫ t

s (λ̃n
u−1)du]|s=T (1)

n−1

E[e−
∫ t

s (λ̃n
u−1)du]|s=Tn−1

, t ∈ (T (1)
n−1,T (1)

n )

where λ̃n follows the dynamics of a Cox with shot noise’s intensity

dλ̃n
t =α(β− λ̃n

t )dt +
∫ +∞

0
zm(1)(dt,dz), L (λ̃n

T (1)
n−1

) =πT (1)
n−1

.
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3. THE REINSURANCE PROBLEM

Reinsurance Contract

The insurer selects a reinsurance strategy {ut }t∈[0,T ], u ∈ [0, I], so that the aggregate
losses covered by the insurer are

Cu
t =

N (1)
t∑

j=1
Φ(Z (1)

j ,uT (1)
j

) =
∫ t

0

∫ +∞

0
Φ(z,us)m(1)(ds,dz), t ∈ [0,T ],

(the remaining Ct −Cu
t will be undertaken by the reinsurer).

The retention functionΦ(z,u) satisfies:

continuous in u ∈ [0, I] and increasing in both z,u

Φ(z,u) ≤ z ∀u ∈ [0, I],

Φ(z,0) = 0 (u = 0: full reinsurance),Φ(z, I) = z (u = I : null reinsurance).

Example

a) Proportional reinsurance: the insurer transfers a percentage (1−u) of any future
loss to the reinsurer, so I = 1 andΦ(z,u) = uz, u ∈ [0,1].
b) Excess-of-loss: the reinsurer covers all the losses exceeding a threshold u, hence
I =+∞ andΦ(z,u) = u∧z, u ∈ [0,+∞).
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3. THE REINSURANCE PROBLEM

The surplus and the reinsurance premium

Under {ut}t∈[0,T ], the surplus process Ru of the primary insurer follows:

dRu
t = (

ct −qu
t

)
dt −dCu

t , Ru
0 = R0 ∈R+

with H−predictable processes

ct : insurance premium rate;

qu
t : the reinsurance premium rate, qu

t (ω) = q(t,ω,u) satisfying

q(t,ω,u) continuous and decreasing in u, with ∂q(t,ω,u)
∂u continuous in u,

q(t,ω, I) = 0 ∀(t,ω) ∈ [0,T ]×Ω (null protection is not expensive)
q(t,ω,0) > ct ∀(t,ω) ∈ [0,T ]×Ω (no risk-free profit).

Assumption

E
[∫ T

0 q0
t dt

]
<∞,

This implies E
[∫ T

0 qu
t dt

]
<∞, ∀u ∈U and E

[∫ T
0 ctdt

]
<∞.

Claudia Ceci (Unich) Optimal reinsurance with jump clusters 16 / 25



3. THE REINSURANCE PROBLEM

The wealth and the problem to solve

The insurance company invests its surplus in a risk-free asset with interest rate
r > 0, so that the wealth is X u

0 = R0 ∈R+

dX u
t = dRu

t + rX u
t dt = (

ct −qu
t

)
dt −

∫ +∞

0
Φ(z,ut )m(1)(dt,dz)+ rX u

t dt

(m(1)(dt,dz) has (P,H)-compensator measure πt− (λ)F (1)(dz)dt)) and it aims at
solving (with η> 0 the insurer’s risk aversion)

sup
u∈U

E
[
1−e−ηX u

T
]= 1− inf

u∈U
E
[
e−ηX u

T
]

Definition (Admissible strategies)

U : all the [0, I]-valued, H-predictable processes s.t. E
[
e−ηX u

T
]<+∞.

Proposition

Assume ∀a > 0: E
[

ea`(Z(1))
]
<∞, E

[
eaZ(2)

]
<∞, E

[
ea

∫ T
0 q0

t dt
]
<∞. Then any

process [0, I]-valued, H-predictable process is an admissible control.

Claudia Ceci (Unich) Optimal reinsurance with jump clusters 17 / 25



4. THE SOLUTION

The Value Process

We define, for U (t,u) =
{

ū ∈U : ūs = us a.s., s ≤ t ≤ T
}

, the Snell envelope

W u
t = essinf

ū∈U (t,u)
E
[

e−ηX ū
T |Ht

]
,

so that if X̂ u
t := e−rtX u

t is the discounted wealth, then

W u
t = e−ηX̂ u

t erT
Vt ,

where V is the value process: Vt = essinfū∈Ut E
[

e−ηerT (X̂ ū
T −X̂ ū

t ) |Ht

]
= v(t,πt)

Moreover,

Vt = eηX̂t
I
erT

Wt
I .

Idea: develop a BSDEs characterization for {W I
t }t≥0 (u = I : null reinsurance)

to get a complete description of V .
Why BSDEs? Well suited to solve stochastic control problems under partial
information (infinite-dimensional filter).
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4. THE SOLUTION

The BSDE approach: road-map

Proposition (Bellman Optimality Principle)

{W u
t }t∈[0,T ] is a (P,H)-sub-martingale for any u ∈U ;

{W u∗
t }t∈[0,T ] is a (P,H)-martingale if and only if u∗ ∈U is an optimal control.

We prove that (W I ,ΘW I
) is a solution to BSDE (3) under the assumption that

there exists an optimal control.

Verification Theorem states that any solution to BSDE (3) coincides with

(W I ,ΘW I
).

Existence and uniqueness for the BSDE (3).
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4. THE SOLUTION

The BSDE

S 2: càdlàg H-adapted pr. Y s.t. E[(supt∈[0,T ] |Yt |)2] <+∞.

L̂ 2: [0,+∞)-indexed H-predictable random fieldsΘ s.t.

E
[∫ T

0

∫ +∞
0 Θ2

t (z)πt−(λ)F (1)(dz)dt
]
<+∞.

Theorem

Let u∗ ∈U be an optimal control. Then, (W I ,ΘW I
) ∈S 2 ×L̂ 2 solves:

W I
t = ξ−

∫ T

t

∫ +∞

0
ΘW I

s (z) m̃(1)(ds,dz)−
∫ T

t
esssup

u∈U
f̃ (s,W I

s ,ΘW I

s (z),us)ds, (3)

with terminal condition ξ= e−ηX I
T , where

f̃ (t,W I
t ,ΘW I

t (·),ut )=−W I
t−ηeR(T−t)qu

t −
∫ +∞

0 [W I
t−+ΘW I

t (z)]
(
e−ηeR(T−t)(z−Φ(z,ut ))−1

)
πt− (λ)F (1)(dz).

Moreover, u∗ is such that f̃ (t,W I
t ,ΘW I

t (·),u∗
t )=esssupu∈U f̃ (t,W I

t ,ΘW I
t (·),ut ), ∀t ∈ [0,T ].
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4. THE SOLUTION

Theorem (Verification Theorem)

Let (Y ,ΘY ) ∈L 2 ×L̂ 2 be a solution to the BSDE (3) and let u∗ ∈U be the
maximizer of f̃ (t,Yt ,ΘY

t (·),ut). Then Y = W I and

Vt = eηX̄ I
t erT

Yt ∀t ∈ [0,T ],

and u∗ is an optimal control.

Theorem (Existence and uniqueness result)

There exists a unique solution to the BSDE (3).

Lemma

∀a > 0

E
[

eaN (1)
T

]
<+∞ E

[
ea

∫ T
0 λsds

]
<+∞, E

[
ea

∫ T
0 πs(λ)ds

]
<+∞, E[eaCT ] <+∞.
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4. THE SOLUTION

Existence and uniqueness result.

ξ= e−ηX I
T ≤ eηerT CT , hence ξ has finite moments of any order;

The generator f satisfies a stochastic Lipschitz condition:∣∣∣f (t,y,θ(·))− f (t,y′,θ′(·))
∣∣∣2
≤ γt |y−y′|2 + γ̄t

∫ +∞

0
|θ(z)−θ′(z)|2πt− (λ)F (1)(dz),

with
γt = 3η2e2r(T−t)(q0

t )2 +3π2
t− (λ), γ̄t = 3πt− (λ).

We prove that, ∀β> 0

E
[

eβ
∫ T

0 max{
p
γt ,γ̄t }dt e−2ηX I

T

]
<∞,

E

[∫ T

0
eβ

∫ t
0 max{

p
γs,γ̄s}ds |f (t,0,0,0)|2

α2
t

dt

]
<∞.

We can apply Theorem 3.5 in Papapantoleon, Possamaï, Saplaouras EJP
(2018).
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5. AN EXAMPLE

Proportional reinsurance and expected value principle
(EVP)

Proportional reinsurance: Φ(z,u) = zu, u ∈ [0,1].

EVP: the expected revenue covers the expected losses plus a profit

qu
t︸︷︷︸

Reinsurance premium

= (1+ θR︸︷︷︸
Safety loading

)E[Z (1)]πt−(λ)(1−ut).

The optimal control u∗ is obtained “explicitly” and

u∗
t (ω) =


0 if θR < θF

t (ω)

1 if θR > θN
t (ω)

ū(t,ω,W I
t−(ω),ΘW I

t (·)(ω)) otherwise,

(4)

where the stochastic thresholds are:

θF
t = 1

E[Z(1)]

∫ ∞
0

W I
t−+ΘW I

t (z)

W I
t−

ze−ηer(T−t)z
F (1)(dz)−1, θN

t = 1
E[Z(1)]

∫ ∞
0

W I
t−+ΘW I

t (z)

W I
t−

zF (1)(dz)−1.
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5. AN EXAMPLE

THANKS FOR YOUR KIND
ATTENTION!
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5. AN EXAMPLE
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