Tamed Milstein-type scheme for the McKean-Vlasov SDEs

Chaman Kumar
Indian Institute of Technology Roorkee
Jointly with Neelima, C. Reisinger and W. Stockinger
(Accepted in AAP)

July 1, 2022

Probabilistic set-up

- $\left(\Omega^{0}, \mathcal{F}^{0}, P^{0}\right)$ and $\left(\Omega^{1}, \mathcal{F}^{1}, P^{1}\right)$ are complete probability spaces equipped with the filtrations $\mathbb{F}^{0}:=\left(\mathcal{F}_{t}^{0}\right)_{t \geq 0}$ and $\mathbb{F}^{1}:=\left(\mathcal{F}_{t}^{1}\right)_{t \geq 0}$, satisfying usual conditions.
- Wiener processes W^{0} and W are defined on $\left(\Omega^{0}, \mathcal{F}^{0}, P^{0}\right)$ and $\left(\Omega^{1}, \mathcal{F}^{1}, P^{1}\right)$.
- Define a product space (Ω, \mathcal{F}, P), where $\Omega=\Omega^{0} \times \Omega^{1},(\mathcal{F}, P)$ is the completion of $\left(\mathcal{F}^{0} \otimes \mathcal{F}^{1}, P^{0} \otimes P^{1}\right)$ and $\mathbb{F}:=\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is the complete and right-continuous augmentation of $\left(\mathcal{F}_{t}^{0} \otimes \mathcal{F}_{t}^{1}\right)_{t \geq 0}$.
- For $X: \Omega \rightarrow \mathbb{R}^{d}, \mathcal{L}^{1}(X): \Omega^{0} \ni \omega^{0} \mapsto \mathcal{L}\left(X\left(\omega^{0}, \cdot\right)\right)$ is a well-defined random variable from $\left(\Omega^{0}, \mathcal{F}^{0}, P^{0}\right)$ into $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\left(P^{0}\right.$-a.s. $)$ and is seen as a conditional law of X given \mathcal{F}^{0} (Lemma 2.4 in Carmona and Delarue (2018b)).
- If the \mathbb{F}-adapted unique solution $\left(X_{t}\right)_{0 \leq t \leq T}$ of (1) has continuous paths and has uniformly bounded second moment, then one can find a version of $\mathcal{L}^{1}\left(X_{t}\right)$, for every $t \geq 0$, such that $\left(\mathcal{L}^{1}\left(X_{t}\right)\right)_{t \geq 0}$ has continuous paths and is \mathbb{F}^{0}-adapted (Lemma 2.5 in Carmona and Delarue (2018b)).
- X_{0} of (1) is assumed to be defined on $\left(\Omega^{1}, \mathcal{F}_{0}^{1}, P^{1}\right)$, which means that only W^{0} plays the role of the common noise. In light of Proposition 2.9 in Carmona and Delarue (2018b), $\mathcal{L}^{1}\left(X_{t}\right)$ is a version of the conditional law of X_{t} given W^{0}. For alternative choices of the initial data, we refer to Remark 2.10 in Carmona and Delarue (2018b).

Probabilistic set-up

- $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$: space of probability measures μ on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ with $\int_{\mathbb{R}^{d}}|x|^{2} \mu(d x)<$ ∞ and a \mathcal{L}^{2}-Wasserstein metric given by

$$
\mathcal{W}_{2}\left(\mu_{1}, \mu_{2}\right):=\inf _{\pi \in \Pi\left(\mu_{1}, \mu_{1}\right)}\left(\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|x-y|^{2} \pi(d x, d y)\right)^{1 / 2}
$$

- b: $[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d}, \sigma:[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d \times m}$ and $\sigma^{0}:[0, T] \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d \times m}$ are measurable functions

Consider McKean-VIasov SDE,

$$
\begin{align*}
X_{t}=X_{0}+ & \int_{0}^{t} b_{s}\left(X_{s}, \mathcal{L}^{1}\left(X_{s}\right)\right) d s+\int_{0}^{t} \sigma_{s}\left(X_{s}, \mathcal{L}^{1}\left(X_{s}\right)\right) d W_{s} \\
& +\int_{0}^{t} \sigma_{s}^{0}\left(X_{s}, \mathcal{L}^{1}\left(X_{s}\right)\right) d W_{s}^{0} \tag{1}
\end{align*}
$$

almost surely for any $t \in[0, T]$.

Well-posedness and Moment Bound

Assumption 1 (Moment of Initial Value)
$E\left|X_{0}\right|^{p_{0}}<\infty$ for a fixed constant $p_{0}>2$.

Assumption 2 (Coercivity)

There exists a constant $L>0$ s. t. $\forall t \in[0, T], x \in \mathbb{R}^{d}$ and $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
2 x b_{t}(x, \mu) & +\left(p_{0}-1\right)\left|\sigma_{t}(x, \mu)\right|^{2}+\left(p_{0}-1\right)\left|\sigma_{t}^{0}(x, \mu)\right|^{2} \\
& \leq L\left\{(1+|x|)^{2}+\mathcal{W}_{2}^{2}\left(\mu, \delta_{0}\right)\right\} .
\end{aligned}
$$

Assumption 3 (Monotonicity)

There exists a constant $L>0$ s. $t . \forall t \in[0, T], x, \bar{x} \in \mathbb{R}^{d}$ and $\mu, \bar{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
2(x-\bar{x})\left(b_{t}(x, \mu)-b_{t}(\bar{x}, \bar{\mu})\right) & +\left|\sigma_{t}(x, \mu)-\sigma_{t}(\bar{x}, \bar{\mu})\right|^{2}+\left|\sigma_{t}^{0}(x, \mu)-\sigma_{t}^{0}(\bar{x}, \bar{\mu})\right|^{2} \\
& \leq L\left\{|x-\bar{x}|^{2}+\mathcal{W}_{2}^{2}(\mu, \bar{\mu})\right\} .
\end{aligned}
$$

Well-posedness and Moment Bound

Assumption 4 (Continuity)

For every $t \in[0, T]$ and $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), b_{t}(x, \mu)$ is a continuous function of $x \in \mathbb{R}^{d}$.

Theorem 1 (Existence, Uniqueness and Moment Bound)

Let Assumptions 1, 2, 3 and 4 be satisfied. Then, there exists a unique strong solution of (1) and the following holds,

$$
\sup _{0 \leq t \leq T} E\left|X_{t}\right|^{p_{0}} \leq K,
$$

where $K:=K\left(L, E\left|X_{0}\right|^{p_{0}}, d, m, m_{0}\right)>0$ is a constant. Moreover,

$$
E \sup _{0 \leq t \leq T}\left|X_{t}\right|^{q} \leq K,
$$

for any $q<p_{0}$.

Propagation of Chaos

- System of conditional non-interacting particles:

$$
\begin{gathered}
X_{t}^{i}=X_{0}^{i}+\int_{0}^{t} b_{s}\left(X_{s}^{i}, \mathcal{L}^{1}\left(X_{s}^{i}\right)\right) d s+\int_{0}^{t} \sigma_{s}\left(X_{s}^{i}, \mathcal{L}^{1}\left(X_{s}^{i}\right)\right) d W_{s}^{i} \\
+\int_{0}^{t} \sigma_{s}^{0}\left(X_{s}^{i}, \mathcal{L}^{1}\left(X_{s}^{i}\right)\right) d W_{s}^{0} .(\text { a. s. }) \\
P^{0}\left[\mathcal{L}^{1}\left(X_{t}^{i}\right)=\mathcal{L}^{1}\left(X_{t}^{1}\right) \text { for all } t \in[0, T]\right]=1 . \\
\text { (Proposition } 2.11 \text { in Carmona and Delarue (2018b)) }
\end{gathered}
$$

- System of interacting particles:

$$
\begin{align*}
& X_{t}^{i, N}=X_{0}^{i}+\int_{0}^{t} b_{s}\left(X_{s}^{i, N}, \mu_{s}^{X, N}\right) d s+\int_{0}^{t} \sigma_{s}\left(X_{s}^{i, N}, \mu_{s}^{X, N}\right) d W_{s}^{i} \\
&\left.+\int_{0}^{t} \sigma_{s}^{0}\left(X_{s}^{i, N}, \mu_{s}^{X, N}\right) d W_{s}^{0} \cdot \text { (a. s. }\right) \tag{3}\\
& \mu_{t}^{X, N}(\cdot):=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i, N}}(\cdot)
\end{align*}
$$

Propagation of chaos

Proposition 1 (Propagation of chaos)

Let Assumptions 1, 2, 3 and 4 be satisfied with $p_{0}>4$. Then,

$$
\sup _{i \in\{1, \ldots, N\}} \sup _{t \in[0, T]} E\left|X_{t}^{i}-X_{t}^{i, N}\right|^{2} \leq K \begin{cases}N^{-1 / 2}, & \text { if } d<4, \\ N^{-1 / 2} \ln (N), & \text { if } d=4, \\ N^{-2 / d}, & \text { if } d>4,\end{cases}
$$

where the constant $K>0$ does not depend on N.

Tamed Milstein-type scheme

Assumption 5

For some $p_{1}>2$, there exists a constant $L>0$ such that

$$
\begin{aligned}
2(x-\bar{x})\left(b_{t}(x, \mu)-\right. & \left.b_{t}(\bar{x}, \bar{\mu})\right)+\left(p_{1}-1\right)\left|\sigma_{t}(x, \mu)-\sigma_{t}(\bar{x}, \bar{\mu})\right|^{2} \\
& +\left(p_{1}-1\right)\left|\sigma_{t}^{0}(x, \mu)-\sigma_{t}^{0}(\bar{x}, \bar{\mu})\right|^{2} \leq L\left\{|x-\bar{x}|^{2}+\mathcal{W}_{2}^{2}(\mu, \bar{\mu})\right\}
\end{aligned}
$$

for all $t \in[0, T], x, \bar{x} \in \mathbb{R}^{d}$ and $\mu, \bar{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.

Assumption 6

There exist constants $L>0$ and $\rho>0$ such that

$$
\left|b_{t}(x, \mu)-b_{t}(\bar{x}, \bar{\mu})\right| \leq L\left\{(1+|x|+|\bar{x}|)^{\rho / 2}|x-\bar{x}|+\mathcal{W}_{2}(\mu, \bar{\mu})\right\}
$$

for all $t \in[0, T], x, \bar{x} \in \mathbb{R}^{d}$ and $\mu, \bar{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.

Tamed Milstein-type scheme

Remark 1

Due to Assumptions 5 and 6 , there exists a constant $K:=K(L)>0$ such that

$$
\begin{aligned}
\left|\sigma_{t}(x, \mu)-\sigma_{t}(\bar{x}, \bar{\mu})\right|+\left|\sigma_{t}^{0}(x, \mu)-\sigma_{t}^{0}(\bar{x}, \bar{\mu})\right| \leq K & \left\{(1+|x|+|\bar{x}|)^{\rho / 4}|x-\bar{x}|\right. \\
& \left.+\mathcal{W}_{2}(\mu, \bar{\mu})\right\},
\end{aligned}
$$

for all $t \in[0, T], x, \bar{x} \in \mathbb{R}^{d}$ and $\mu, \bar{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.

Tamed Milstein-type scheme

Assumption 7

There exists a constant $L>0$ such that

$$
\left|b_{t}(x, \mu)-b_{s}(x, \mu)\right|+\left|\sigma_{t}(x, \mu)-\sigma_{s}(x, \mu)\right|+\left|\sigma_{t}^{0}(x, \mu)-\sigma_{s}^{0}(x, \mu)\right| \leq L|t-s|
$$

for all $t, s \in[0, T], x \in \mathbb{R}^{d}$ and $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.

Assumption 8

There exists a constant $L>0$ such that, for every $j \in\{1, \ldots m\}$ and $j^{\prime} \in$ $\left\{1, \ldots m^{0}\right\}$

$$
\begin{aligned}
\left|\partial_{x} b_{t}(x, \mu)-\partial_{x} b_{t}(\bar{x}, \bar{\mu})\right| & \leq L\left\{(1+|x|+|\bar{x}|)^{\rho / 2-1}|x-\bar{x}|+\mathcal{W}_{2}(\mu, \bar{\mu})\right\}, \\
\left|\partial_{x} \sigma_{t}^{(j)}(x, \mu)-\partial_{x} \sigma_{t}^{(j)}(\bar{x}, \bar{\mu})\right| & \leq L\left\{(1+|x|+|\bar{x}|)^{\rho / 4-1}|x-\bar{x}|+\mathcal{W}_{2}(\mu, \bar{\mu})\right\}, \\
\left|\partial_{x} \sigma_{t}^{0,\left(j^{\prime}\right)}(x, \mu)-\partial_{x} \sigma_{t}^{0,\left(j^{\prime}\right)}(\bar{x}, \bar{\mu})\right| & \leq L\left\{(1+|x|+|\bar{x}|)^{\rho / 4-1}|x-\bar{x}|+\mathcal{W}_{2}(\mu, \bar{\mu})\right\},
\end{aligned}
$$

for all $t \in[0, T], x, \bar{x} \in \mathbb{R}^{d}$ and $\mu, \bar{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.

Tamed Milstein scheme

Assumption 9

There exists a constant $L>0$ such that, for every $k \in\{1, \ldots, d\}, j \in\{1, \ldots m\}$ and $j^{\prime} \in\left\{1, \ldots m^{0}\right\}$,

$$
\begin{aligned}
\mid \partial_{\mu} b_{t}^{(k)}(x, \mu, y) & -\partial_{\mu} b_{t}^{(k)}(\bar{x}, \bar{\mu}, \bar{y}) \mid \leq L\left\{(1+|x|+|\bar{x}|)^{\rho / 2}|x-\bar{x}|\right. \\
& \left.+\mathcal{W}_{2}(\mu, \bar{\mu})+|y-\bar{y}|\right\}, \\
\mid \partial_{\mu} \sigma_{t}^{(k, j)}(x, \mu, y) & -\partial_{\mu} \sigma_{t}^{(k, j)}(\bar{x}, \bar{\mu}, \bar{y}) \mid \leq L\left\{(1+|x|+|\bar{x}|)^{\rho / 4}|x-\bar{x}|\right. \\
& \left.+\mathcal{W}_{2}(\mu, \bar{\mu})+|y-\bar{y}|\right\}, \\
\mid \partial_{\mu} \sigma_{t}^{0,\left(k, j^{\prime}\right)}(x, \mu, y) & -\partial_{\mu} \sigma_{t}^{0,\left(k, j^{\prime}\right)}(\bar{x}, \bar{\mu}, \bar{y}) \mid \leq L\left\{(1+|x|+|\bar{x}|)^{\rho / 4}|x-\bar{x}|^{2}\right. \\
& \left.+\mathcal{W}_{2}(\mu, \bar{\mu})+|y-\bar{y}|\right\},
\end{aligned}
$$

for all $t \in[0, T], x, \bar{x}, y, \bar{y} \in \mathbb{R}^{d}$ and $\mu, \bar{\mu} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.

Tamed Milstein-type scheme

Partition $[0, T]$ into n sub-intervals of size $h:=T / n$ and define $\kappa_{n}(t):=\lfloor n t\rfloor / n$ for any $t \in[0, T]$ and $n \in \mathbb{N}$. Further, for every $t \in[0, T], x \in \mathbb{R}^{d}$ and $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$,
$b_{t}^{n}(x, \mu):=\frac{b_{t}(x, \mu)}{1+n^{-1}|x|^{\rho}}, \quad \sigma_{t}^{n}(x, \mu):=\frac{\sigma_{t}(x, \mu)}{1+n^{-1}|x|^{\rho}}, \quad \sigma_{t}^{0, n}(x, \mu):=\frac{\sigma_{t}^{0}(x, \mu)}{1+n^{-1}|x|^{\rho}}$,

Remark 2

Using above equation, one obtains,

$$
\begin{aligned}
&\left|b_{t}^{n}(x, \mu)\right| \leq K \min \left\{n^{1 / 2}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|b_{t}(x, \mu)\right|\right\}, \\
&\left|\sigma_{t}^{n}(x, \mu)\right| \leq K \min \left\{n^{1 / 4}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\sigma_{t}(x, \mu)\right|\right\}, \\
&\left|\sigma_{t}^{0, n}(x, \mu)\right| \leq K \min \left\{n^{1 / 4}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\sigma_{t}^{0}(x, \mu)\right|\right\}, \\
&\left|\partial_{x} \sigma_{t}^{(u, v)}(x, \mu)\right|\left|\sigma_{t}^{n}(x, \mu)\right| \\
& \leq K \min \left\{n^{1 / 2}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\partial_{x} \sigma_{t}^{(u, v)}(x, \mu)\right|\left|\sigma_{t}(x, \mu)\right|\right\},
\end{aligned}
$$

Tamed Milstein-type scheme

Remark 2 continued

$$
\begin{aligned}
& \left|\partial_{x} \sigma_{t}^{(u, v)}(x, \mu)\right|\left|\sigma_{t}^{0, n}(x, \mu)\right| \\
& \quad \leq K \min \left\{n^{1 / 2}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\partial_{x} \sigma_{t}^{(u, v)}(x, \mu) \| \sigma_{t}^{0}(x, \mu)\right|\right\}, \\
& \left|\partial_{\mu} \sigma_{t}^{(u, v)}(x, \mu, y)\right|\left|\sigma_{t}^{n}(x, \mu)\right| \\
& \quad \leq K \min \left\{n^{1 / 4}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\partial_{\mu} \sigma_{t}^{(u, v)}(x, \mu, y)\right|\left|\sigma_{t}(x, \mu)\right|\right\}, \\
& \left|\partial_{\mu} \sigma_{t}^{(u, v)}(x, \mu, y)\right|\left|\sigma_{t}^{0, n}(x, \mu)\right| \\
& \quad \leq K \min \left\{n^{1 / 4}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\partial_{\mu} \sigma_{t}^{(u, v)}(x, \mu, y)\right|\left|\sigma_{t}^{0}(x, \mu)\right|\right\}, \\
& \left|\partial_{x} \sigma_{t}^{0,(u, v)}(x, \mu)\right|\left|\sigma_{t}^{n}(x, \mu)\right| \\
& \quad \leq K \min \left\{n^{1 / 2}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\partial_{x} \sigma_{t}^{0,(u, v)}(x, \mu)\right|\left|\sigma_{t}(x, \mu)\right|\right\},
\end{aligned}
$$

Tamed Milstein-type scheme

Remark 2 continued

$$
\begin{aligned}
& \left|\partial_{x} \sigma_{t}^{0,(u, v)}(x, \mu) \| \sigma_{t}^{0, n}(x, \mu)\right| \\
& \quad \leq K \min \left\{n^{1 / 2}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\partial_{x} \sigma_{t}^{0,(u, v)}(x, \mu) \| \sigma_{t}^{0}(x, \mu)\right|\right\} \\
& \left|\partial_{\mu} \sigma_{t}^{0,(u, v)}(x, \mu, y) \| \sigma_{t}^{n}(x, \mu)\right| \\
& \quad \leq K \min \left\{n^{1 / 4}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\partial_{\mu} \sigma_{t}^{0,(u, v)}(x, \mu, y) \| \sigma_{t}(x, \mu)\right|\right\}, \\
& \left|\partial_{\mu} \sigma_{t}^{0,(u, v)}(x, \mu, y) \| \sigma_{t}^{0, n}(x, \mu)\right| \\
& \quad \leq K \min \left\{n^{1 / 4}\left(1+|x|+\mathcal{W}_{2}\left(\mu, \delta_{0}\right)\right),\left|\partial_{\mu} \sigma_{t}^{0,(u, v)}(x, \mu, y) \| \sigma_{t}^{0}(x, \mu)\right|\right\},
\end{aligned}
$$

for all $t \in[0, T], x \in \mathbb{R}^{d}$ and $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and for some constant $K>0$ independent of n.

Tamed Milstein-type scheme

We propose the following tamed Milstein-type scheme,

$$
\begin{align*}
X_{t}^{i, N, n}=X_{0}^{i} & +\int_{0}^{t} b_{\kappa_{n}(s)}^{n}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) d s+\int_{0}^{t} \tilde{\sigma}_{\kappa_{n}(s)}^{n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) d W_{s}^{i} \\
& +\int_{0}^{t} \tilde{\sigma}_{\kappa_{n}(s)}^{0, n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) d W_{s}^{0} \tag{4}
\end{align*}
$$

almost surely for any $t \in[0, T], i \in\{1, \ldots, N\}$ and $n, N \in \mathbb{N}$. The coefficients $\tilde{\sigma}^{n}$ and $\tilde{\sigma}^{0, n}$ are defined below. For any $s \in[0, T], i \in\{1, \ldots, N\}$ and $n, N \in \mathbb{N}$,

$$
\begin{equation*}
\tilde{\sigma}_{\kappa_{n}(s)}^{n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right):=\sigma_{\kappa_{n}(s)}^{n}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)+\Gamma_{\kappa_{n}(s)}^{n, \sigma}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \tag{5}
\end{equation*}
$$

where $\Gamma^{n, \sigma}$ is further expressed as a sum of four matrices, i.e.,

$$
\begin{aligned}
\Gamma_{\kappa_{n}(s)}^{n, \sigma}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right):= & \Lambda_{\kappa_{n}(s)}^{n, \sigma \sigma}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)+\Lambda_{\kappa_{n}(s)}^{n, \sigma \sigma^{0}}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \\
& +\bar{\Lambda}_{\kappa_{n}(s)}^{n, \sigma \sigma}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)+\bar{\Lambda}_{\kappa_{n}(s)}^{n, \sigma \sigma^{0}}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)
\end{aligned}
$$

Tamed Milstein-type scheme

$\Lambda^{n, \sigma \sigma}, \Lambda^{n, \sigma \sigma^{0}}, \bar{\Lambda}^{n, \sigma \sigma}$ and $\bar{\Lambda}^{n, \sigma \sigma^{0}}$ are $d \times m$-matrices given below,

$$
\begin{aligned}
& \Lambda_{\kappa_{n}(s)}^{n, \sigma \sigma,(u, v)}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \\
& \quad:=\partial_{X} \sigma_{\kappa_{n}(s)}^{(u, v)}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \int_{\kappa_{n}(s)}^{s} \sigma_{\kappa_{n}(r)}^{n}\left(X_{\kappa_{n}(r)}^{i, N, n}, \mu_{\kappa_{n}(r)}^{X, N, n}\right) d W_{r}^{i},
\end{aligned}
$$

$\Lambda_{\kappa_{n}(s)}^{n, \sigma \sigma^{0},(u, v)}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)$

$$
:=\partial_{\chi} \sigma_{\kappa_{n}(s)}^{(u, v)}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \int_{\kappa_{n}(s)}^{s} \sigma_{\kappa_{n}(r)}^{0, n}\left(X_{\kappa_{n}(r)}^{i, N, n}, \mu_{\kappa_{n}(r)}^{X, N, n}\right) d W_{r}^{0},
$$

$\bar{\Lambda}_{\kappa_{n}(s)}^{n, \sigma \sigma,(u, v)}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)$
$:=\frac{1}{N} \sum_{j=1}^{N} \partial_{\mu} \sigma_{\kappa_{n}(s)}^{(u, v)}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}, X_{\kappa_{n}(s)}^{j, N, n}\right) \int_{\kappa_{n}(s)}^{s} \sigma_{\kappa_{n}(s)}^{n}\left(X_{\kappa_{n}(r)}^{j, N, n}, \mu_{\kappa_{n}(r)}^{X, N, n}\right) d W_{r}^{j}$,
$\bar{\Lambda}_{\kappa_{n}(s)}^{n, \sigma \sigma^{0}(u, v)}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)$

$$
:=\frac{1}{N} \sum_{j=1}^{N} \partial_{\mu} \sigma_{\kappa_{n}(s)}^{(u, v)}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}, X_{\kappa_{n}(s)}^{j, N, n}\right) \int_{\kappa_{n}(s)}^{s} \sigma_{\kappa_{n}(s)}^{0, n}\left(X_{\kappa_{n}(r)}^{j, N, n}, \mu_{\kappa_{n}(r)}^{X, N, n}\right) d W_{r}^{0} .
$$

Tamed Milstein-type scheme

For any $s \in[0, T], i \in\{1, \ldots, N\}$ and $n, N \in \mathbb{N}$,

$$
\begin{equation*}
\tilde{\sigma}_{\kappa_{n}(s)}^{0, n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right):=\sigma_{\kappa_{n}(s)}^{0, n}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)+\Gamma_{\kappa_{n}(s)}^{n, \sigma^{0}}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \tag{6}
\end{equation*}
$$

where $\Gamma^{n, \sigma^{0}}$ is further expressed as a sum of four matrices, i.e.,

$$
\begin{gathered}
\Gamma_{\kappa_{n}(s)}^{n, \sigma^{0}}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right):=\Lambda_{\kappa_{n}(s)}^{n, \sigma^{0} \sigma}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)+\Lambda_{\kappa_{n}(s)}^{n, \sigma^{0} \sigma^{0}}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \\
+\bar{\Lambda}_{\kappa_{n}(s)}^{n, \sigma^{0} \sigma}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)+\bar{\Lambda}_{\kappa_{n}(s)}^{n, \sigma^{0} \sigma^{0}}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)
\end{gathered}
$$

$\Lambda^{n, \sigma^{0} \sigma}, \Lambda^{n, \sigma^{0} \sigma^{0}}, \bar{\Lambda}^{n, \sigma^{0} \sigma}$ and $\bar{\Lambda}^{n, \sigma^{0} \sigma^{0}}$ are $d \times m^{0}$-matrices whose (u, v)-th elements are given in this order by

$$
\begin{aligned}
& \Lambda_{\kappa_{n}(s)}^{n, \sigma^{0} \sigma,(u, v)}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \\
& \quad:=\partial_{X} \sigma_{\kappa_{n}(s)}^{0,(u, v)}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \int_{\kappa_{n}(s)}^{s} \sigma_{\kappa_{n}(r)}^{n}\left(X_{\kappa_{n}(r)}^{i, N, n}, \mu_{\kappa_{n}(r)}^{X, N, n}\right) d W_{r}^{i}, \\
& \quad \Lambda_{\kappa_{n}(s)}^{n, \sigma^{0} \sigma^{0},(u, v)}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \\
& \quad:=\partial_{X} \sigma_{\kappa_{n}(s)}^{0,(u, v)}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \int_{\kappa_{n}(s)}^{s} \sigma_{\kappa_{n}(r)}^{0, n}\left(X_{\kappa_{n}(r)}^{i, N, n}, \mu_{\kappa_{n}(r)}^{X, N, n}\right) d W_{r}^{0}
\end{aligned}
$$

Tamed Milstein-type scheme

$$
\begin{aligned}
& \bar{\Lambda}_{k_{n}(s)}^{n, \sigma^{0} \sigma,(u, v)}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) \\
& :=\frac{1}{N} \sum_{j=1}^{N} \partial_{\mu} \sigma_{\kappa_{n}(s)}^{0,(u, v)}\left(X_{\kappa_{n}}^{i, N(s), n}, \mu_{\kappa_{n}}^{X, N(s)}, X_{\kappa_{n}(s)}^{j, N, n}\right) \int_{\kappa_{n}(s)}^{s} \sigma_{\kappa_{n}(s)}^{n}\left(X_{\kappa_{n}(r)}^{j, N, n}, \mu_{\kappa_{n}(r)}^{X, N, n}\right) d W_{r}^{j}, \\
& \bar{\Lambda}_{K_{n}(s)}^{n, \sigma^{0} \sigma^{0},(u, v)}\left(s, X_{K_{n}}^{i, N, n}\left(s, \mu_{K_{n}(s)}^{X, N, n}\right)\right. \\
& :=\frac{1}{N} \sum_{j=1}^{N} \partial_{\mu} \sigma_{\kappa_{n}}^{0,(u, v)}\left(X_{K_{n}}^{i, N, n}, \mu_{K_{n}}^{X, N(s)}, X_{K_{n}(s)}^{j, N, n}\right) \int_{\kappa_{n}(s)}^{s} \sigma_{K_{n}(s)}^{0, n}\left(X_{K_{n}(r)}^{j, N, n}, \mu_{K_{n}(r)}^{X, N, n}\right) d W_{r}^{0},
\end{aligned}
$$

Tamed Milstein-type scheme
 Lemma 2

Let Assumptions 1, 2, 6, 8 and 9 be satisfied. Then, for each $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
& E\left|\Gamma_{\kappa_{n}(s)}^{n, \sigma}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p_{0}} \leq K E\left(1+\left|X_{\kappa_{n}(s)}^{i, N, n}\right|^{2}\right)^{p_{0} / 2}+\operatorname{KEW}_{2}^{p_{0}}\left(\mu_{\kappa_{n}(s)}^{X, N, n}, \delta_{0}\right), \\
& E\left|\Gamma_{\kappa_{n}(s)}^{n, \sigma^{0}}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p_{0}} \leq K E\left(1+\left|X_{\kappa_{n}(s)}^{i, N, n}\right|^{2}\right)^{p_{0} / 2}+\operatorname{KE}_{2}^{p_{0}}\left(\mu_{\kappa_{n}(s)}^{X, N, n}, \delta_{0}\right),
\end{aligned}
$$

for all $s \in[0, T]$ and $n, N \in \mathbb{N}$ where $K>0$ does not depend on n and N.

Corollary 1

Let Assumptions 1, 2, 6, 8 and 9 be satisfied. Then, for each $i \in\{1, \ldots, N\}$,
$E\left|\tilde{\sigma}_{\kappa_{n}(s)}^{n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p_{0}} \leq K n^{\frac{p_{0}}{4}}\left\{E\left(1+\left|X_{\kappa_{n}(s)}^{i, N, n}\right|^{2}\right)^{p_{0} / 2}+E \mathcal{W}_{2}^{p_{0}}\left(\mu_{\kappa_{n}(s)}^{X, N, n}, \delta_{0}\right)\right\}$, $E\left|\tilde{\sigma}_{\kappa_{n}(s)}^{0, n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p_{0}} \leq K n^{\frac{p_{0}}{4}}\left\{E\left(1+\left|X_{\kappa_{n}(s)}^{i, N, n}\right|^{2}\right)^{p_{0} / 2}+E \mathcal{W}_{2}^{p_{0}}\left(\mu_{\kappa_{n}(s)}^{X, N, n}, \delta_{0}\right)\right\}$, for all $s \in[0, T]$ and $n, N \in \mathbb{N}$ where $K>0$ does not depend on n and N.

Tamed Milstein-type scheme Lemma 3

Let Assumptions 1, 2, 6, 8 and 9 be satisfied. Then, for every $i \in\{1, \ldots, N\}$,

$$
E\left|X_{s}^{i, N, n}-X_{\kappa_{n}(s)}^{i, N, n}\right|^{p_{0}} \leq K n^{-p_{0} / 4}\left\{E\left(1+\left|X_{\kappa_{n}(s)}^{i, N, n}\right|^{2}\right)^{p_{0} / 2}+K E \mathcal{W}_{2}^{p_{0}}\left(\mu_{\kappa_{n}(s)}^{X, N, n}, \delta_{0}\right)\right\}
$$

for any $t \in[0, T]$ and $n, N \in \mathbb{N}$ where $K>0$ is independent of N and n.

Lemma 4 (Moment Bounds)

Let Assumptions 1, 2, 6, 8 and 9 be satisfied. Then,

$$
\sup _{i \in\{1, \ldots, N\}} \sup _{t \in[0, T]} E\left(1+\left|X_{t}^{i, N, n}\right|^{2}\right)^{p_{0} / 2} \leq K,
$$

for any $n, N \in \mathbb{N}$ where $K>0$ is independent of $n \& N$. Moreover, for any $q<p_{0}$,

$$
\sup _{i \in\{1, \ldots, N\}} E \sup _{t \in[0, T]}\left(1+\left|X_{t}^{i, N, n}\right|^{2}\right)^{q / 2} \leq K .
$$

Tamed Milstein-type scheme

Proof:

By Itô's formula and Cauchy-Schwarz inequality,

$$
\begin{aligned}
E(1 & \left.+\left|X_{t}^{i, N, n}\right|^{2}\right)^{p_{0} / 2} \leq E\left(1+\left|X_{0}^{i, N, n}\right|^{2}\right)^{p_{0} / 2} \\
& +\frac{p_{0}}{2} E \int_{0}^{t}\left(1+\left|X_{s}^{i, N, n}\right|^{2}\right)^{p_{0} / 2-1}\left\{2 X_{\kappa_{n}(s)}^{i, N, n} b_{\kappa_{n}(s)}^{n}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right. \\
& \left.+\left(p_{0}-1\right)\left|\tilde{\sigma}_{\kappa_{n}(s)}^{n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{2}+\left(p_{0}-1\right)\left|\tilde{\sigma}_{\kappa_{n}(s)}^{0, n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{2}\right\} d s \\
& +p_{0} E \int_{0}^{t}\left(1+\left|X_{s}^{i, N, n}\right|^{2}\right)^{p_{0} / 2-1}\left(X_{s}^{i, N, n}-X_{\kappa_{n}(s)}^{i, N, n}\right) b_{\kappa_{n}(s)}^{n}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right) d s
\end{aligned}
$$

for any $t \in[0, T], i \in\{1, \ldots, N\}$ and $n, N \in \mathbb{N}$. Observe that $\tilde{\sigma}^{n}$ and $\tilde{\sigma}^{0, n}$ are sum of two matrices, see equations (5) and (6). Thus, by $|A+B|^{2}=|A|^{2}+|B|^{2}+$ $2 \sum_{u=1}^{d} \sum_{v=1}^{m} A^{(u, v)} B^{(u, v)}$ for matrices A and B along with Corollary 1, Lemmas $[3,2]$ and Gronwall's inequality, the proof is completed (4 pages).

Tamed Milstein-type scheme

Lemma 5

Let Assumptions 1, 2, 6, 8 and 9 be satisfied. Then, for every $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
& E\left|\Gamma_{\kappa_{n}(s)}^{n, \sigma}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p} \leq K n^{-p / 2}, \\
& E\left|\left.\right|_{\kappa_{n}(s)} ^{n, \sigma^{0}}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p} \leq K n^{-p / 2},
\end{aligned}
$$

for all $p \leq p_{0} /(\rho / 2+1)$, $s \in[0, T]$, and $n, N \in \mathbb{N}$ where $K>0$ does not depend on n and N.

Corollary 2
Let Assumptions 1, 2, 6, 8 and 9 be satisfied. Then, for every $i \in\{1, \ldots, N\}$,

$$
\begin{aligned}
& E\left|\tilde{\sigma}_{\kappa_{n}(s)}^{n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p} \leq K, \\
& E\left|\tilde{\sigma}_{\kappa_{n}(s)}^{0, n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p} \leq K,
\end{aligned}
$$

for any $p \leq p_{0} /(\rho / 2+1)$, $s \in[0, T], n, N \in \mathbb{N}$ where $K>0$ does not depend on n and N.

Tamed Milstein-type scheme

Lemma 6

Let Assumptions 1, 2, 6, 8 and 9 be satisfied. Then,

$$
E\left|X_{s}^{i, N, n}-X_{\kappa_{n}(s)}^{i, N, n}\right|^{p} \leq K n^{-p / 2}
$$

for any $p \leq p_{0} /(\rho / 2+1), s \in[0, T]$ and $n, N \in \mathbb{N}$ where the constant $K>0$ does not depend on n and N.

Lemma 7

Let Assumptions 1, 2, 5, 6, 7, 8 and 9 be satisfied. Then,

$$
\begin{aligned}
& E\left|\sigma_{s}\left(X_{s}^{i, N, n}, \mu_{s}^{X, N, n}\right)-\tilde{\sigma}_{\kappa_{n}(s)}^{n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p} \leq K n^{-p}, \\
& E\left|\sigma_{s}^{0}\left(X_{s}^{i, N, n}, \mu_{s}^{X, N, n}\right)-\tilde{\sigma}_{\kappa_{n}(s)}^{0, n}\left(s, X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p} \leq K n^{-p},
\end{aligned}
$$

for any $p \leq p_{0} /(2 \rho+4)$, $s \in[0, T], i \in\{1, \ldots, N\}$ and $n, N \in \mathbb{N}$ where the constant $K>0$ does not depend on n and N.

Tamed Milstein-type scheme

Lemma 8

Let Assumptions 1, 2, 5, 6, 7, 8 and 9 be satisfied. Then,

$$
E\left|b_{s}\left(X_{s}^{i, N, n}, \mu_{s}^{X, N, n}\right)-b_{\kappa_{n}(s)}^{n}\left(X_{\kappa_{n}(s)}^{i, N, n}, \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right|^{p} \leq K n^{-p / 2},
$$

for any $p \leq p_{0} /(2 \rho+4)$, $s \in[0, T], i \in\{1, \ldots, N\}$ and $n, N \in \mathbb{N}$ where constant $K>0$ does not depend on n and N.

Lemma 9

Let Assumptions 1, 2, 5, 6, 7, 8 and 9 be satisfied. Then,

$$
\begin{gathered}
E\left|X_{s}^{i, N}-X_{s}^{i, N, n}\right|^{p-2}\left(X_{s}^{i, N}-X_{s}^{i, N, n}\right)\left(b_{s}\left(X_{s}^{i, N, n}, \mu_{s}^{X, N, n}\right)-b_{\kappa_{n}(s)}^{n}\left(X_{\kappa_{n}(s), N, n}^{i, N} \mu_{\kappa_{n}(s)}^{X, N, n}\right)\right) \\
\leq K n^{-p}+K \sup _{i \in\{1, \cdots, N\}} \sup _{r \in[0, s]} E\left|X_{r}^{i, N}-X_{r}^{i, N, n}\right|^{p},
\end{gathered}
$$

for any $p \leq p_{0} /(2 \rho+4)$, $s \in[0, T], i \in\{1, \ldots, N\}$ and $n, N \in \mathbb{N}$ where constant $K>0$ does not depend on n and N.

Tamed Milstein-type scheme

Theorem 10 (Rate of convergence)

Let Assumptions 1, 2, 5, 6, 7, 8 and 9 be satisfied. Then, the explicit Milsteintype scheme (4) converges to the true solution of the interacting particle system (3) associated with McKean-Vlasov SDE (1) in strong sense with the L^{p} rate of convergence equal to 1 i.e.,

$$
\sup _{i \in\{1, \ldots, N\}} E \sup _{t \in[0, T]}\left|X_{t}^{i, N}-X_{t}^{i, N, n}\right|^{p} \leq K n^{-p},
$$

for any $p<\min \left\{p_{1}, p_{0} /(2 \rho+4)\right\}$, where the constant $K>0$ does not depend on $n, N \in \mathbb{N}$.

Numerical Example

Mean-field stochastic double well dynamics:

$$
\begin{aligned}
& X_{t}=X_{0}+\int_{0}^{t}\left(X_{s}-X_{s}^{3}+E X_{s}\right) d s+\int_{0}^{t}\left(1-X_{s}^{2}\right) d W_{s} \\
& X_{t}=X_{0}+\int_{0}^{t}\left(X_{s}-X_{s}^{3}+E^{1} X_{s}\right) d s+\int_{0}^{t}\left(1-X_{s}^{2}\right) d W_{s}+\int_{0}^{t}\left(1-X_{s}^{2}\right) d W_{s}^{0}
\end{aligned}
$$

Tamed Milstein scheme:

$$
\begin{aligned}
X_{(l+1) h}^{i, N, n}= & X_{l h}^{i, N, n}+\left(\frac{X_{l h}^{i, N, n}-\left(X_{l h}^{i, N, n}\right)^{3}}{1+n^{-1}\left|X_{l h}^{i, N, n}\right|^{4}}+\frac{1}{N} \sum_{i=1}^{N} X_{l h}^{i, N, n}\right) h \\
& +\frac{1-\left(X_{l h}^{i, N, n}\right)^{2}}{1+n^{-1}\left|X_{l h}^{i, N, n}\right|^{4}} \Delta W_{l h}^{i}+\frac{\left(X_{l h}^{i, N, n}\right)^{3}-X_{l h}^{i, N, n}}{1+h\left|X_{l h}^{i, N, n}\right|^{4}}\left(\left(\Delta W_{l h}^{i}\right)^{2}-h\right) \\
X_{(l+1) h}^{i, N, n}= & X_{l h}^{i, N, n}+\left(\frac{X_{l h}^{i, N, n}-\left(X_{l h}^{i, N, n}\right)^{3}}{1+n^{-1}\left|X_{l h}^{i, N, n}\right|^{4}}+\frac{1}{N} \sum_{i=1}^{N} X_{l h}^{i, N, n}\right) h \\
& +\frac{1-\left(X_{l h}^{i, N, n}\right)^{2}}{1+n^{-1}\left|X_{l h}^{i, N, n}\right|^{4}} \Delta W_{l h}^{i}+\frac{\left(X_{l h}^{i, N, n}\right)^{3}-X_{l h}^{i, N, n}}{1+h\left|X_{l h}^{i, N, n}\right|^{4}}\left(\left(\Delta W_{l h}^{i}\right)^{2}+\left(\Delta W_{l h}^{0}\right)^{2}-2 h\right)
\end{aligned}
$$

Mean-field stochastic double well dynamics

Figure: Double-well

Figure: Double-well with common noise
[1] Cardaliaguet, P. (2013). Notes on Mean-field games, notes from P. L. Lions lectures at Collège de France. https: //www. ceremade.dauphine.fr/cardalia/MFG100629.pdf.
[2] Carmona, R. and Delarue, F. (2018a). Probabilistic theory of mean field games with applications I: Mean-field FBSDEs, control, and games. Springer International Publishing, Switzerland.
[3] Carmona, R. and Delarue, F. (2018b). Probabilistic theory of mean field games with applications II: Mean field games with common noise and master equations. Springer International Publishing, Switzerland.
[4] Kumar, C. and Neelima (2021). On explicit Milstein-type schemes for McKean-Vlasov Stochastic Differential Equations with super-linear drift coefficient. Electron. J. Probab., 26, article no. 111, 1-32.
[5] Kumar, C., Neelima, Reisinger, C. and Stockinger, W. (2022). Well-posedness and tamed schemes for McKeanVlasov equations with common noise, the Annals of Applied Probability (to appear).
[6] Mehri, S., Scheutzow, M. , Stannat, W. and Zangeneh, B. Z. (2020). Propagation of chaos for stochastic spatially structured neuronal networks with delay driven by jump diffusions, Ann. Appl. Probab.,, 30(1), 175-207.
[7] Reis, G. dos, Engelhardt, S. and Smith, G. (2019). Simulation of McKean-Vlasov SDEs with super linear Growth. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/draa099.

