Numerical approximation of singular FBSDEs: application to carbon markets

> J-F Chassagneux (Université Paris Cité) based on joint works with M. Yang (Université Paris Cité)

9th Colloquium on BSDEs and MF system Annecy, 2022, June 27 - July 1

Introduction

Emission Trading Scheme FBSDEs approach One-period model

Approximation schemes

Classical FBSDE schemes Splitting scheme

Numerical results

Numerical schemes Examples

Introduction

Approximation schemes Numerical results Emission Trading Scheme FBSDEs approach One-period model

< (1) > < (1) > <

- - ∃ - >

Outline

Introduction Emission Trading Scheme FBSDEs approach One-period model

Approximation schemes

Classical FBSDE schemes Splitting scheme

Numerical results

- Numerical schemes
- Examples

Emission Trading Scheme FBSDEs approach One-period model

< ∃ ≥

Carbon markets

- ▶ Carbon dioxide (CO₂) emission have a negative impact on the environment.
- Carbon markets are implemented to 'price' this and hopefully carbon emission reduction could be achieved

Emission Trading Scheme FBSDEs approach One-period model

Carbon markets

- ▶ Carbon dioxide (CO₂) emission have a negative impact on the environment.
- Carbon markets are implemented to 'price' this and hopefully carbon emission reduction could be achieved
- Since 2005, the EU has had its own emissions trading system (ETS): an example of cap-and-trade scheme
 - A central authority set a limit on pollutant emission during a given period. Allowances are allocated to participating installations (via auctioning).
 - The total amount of allowances is the aggregated cap.
 - At the end of the period, each participating installation has to surrender an allowance for each unit of emission or pay a penalty.
 - During the period, participants can trade the allowances.

Emission Trading Scheme FBSDEs approach One-period model

Carbon markets

- ▶ Carbon dioxide (CO₂) emission have a negative impact on the environment.
- Carbon markets are implemented to 'price' this and hopefully carbon emission reduction could be achieved
- Since 2005, the EU has had its own emissions trading system (ETS): an example of cap-and-trade scheme
 - A central authority set a limit on pollutant emission during a given period. Allowances are allocated to participating installations (via auctioning).
 - The total amount of allowances is the aggregated cap.
 - At the end of the period, each participating installation has to surrender an allowance for each unit of emission or pay a penalty.

- During the period, participants can trade the allowances.
- China, whose carbon emissions make up approximately one quarter of the global total, has launched a national emissions trading scheme in July 2021 (with various pilot schemes already running)

Emission Trading Scheme FBSDEs approach One-period model

EUA price (tradingeconomics.com)

Euros per tCO_2 (compare with China ETS price: 8.4 euros/ tCO_2 on 1 April 2022)

J-F Chassagneux

Emission Trading Scheme FBSDEs approach One-period model

< 67 ▶

Main features

• Model based on FBSDEs see e.g. Carmona, Delarue, Espinosa & Touzi (2013), Carmona & Delarue (2013), Howison & Schwarz (2015), C.-Chotai-Crisan (2020)

Emission Trading Scheme FBSDEs approach One-period model

Main features

- Model based on FBSDEs see e.g. Carmona, Delarue, Espinosa & Touzi (2013), Carmona & Delarue (2013), Howison & Schwarz (2015), C.-Chotai-Crisan (2020)
- Three main processes on one period [0, T].

Emission Trading Scheme FBSDEs approach One-period model

Main features

- Model based on FBSDEs see e.g. Carmona, Delarue, Espinosa & Touzi (2013), Carmona & Delarue (2013), Howison & Schwarz (2015), C.-Chotai-Crisan (2020)
- Three main processes on one period [0, T].
 - 1. The spot allowance price Y: we assume that the market is frictionless and arbitrage-free and that there is a probability such that $(e^{-rt}Y_t)_{0 \le t \le T}$ is a martingale, namely

$$\mathrm{d}Y_t = rY_t\mathrm{d}t + Z_t\mathrm{d}W_t$$

r is the interest rate, Z is a square integrable process.

Emission Trading Scheme FBSDEs approach One-period model

Main features

- Model based on FBSDEs see e.g. Carmona, Delarue, Espinosa & Touzi (2013), Carmona & Delarue (2013), Howison & Schwarz (2015), C.-Chotai-Crisan (2020)
- Three main processes on one period [0, T].
 - 1. The spot allowance price Y: we assume that the market is frictionless and arbitrage-free and that there is a probability such that $(e^{-rt}Y_t)_{0 \le t \le T}$ is a martingale, namely

$$\mathrm{d}Y_t = rY_t\mathrm{d}t + Z_t\mathrm{d}W_t$$

r is the interest rate, Z is a square integrable process.

2. Auxiliary process *P*:

$$\mathrm{d}P_t = b(P_t)\mathrm{d}t + \sigma(P_t)\mathrm{d}W_t$$

Represent state variables that trigger the emission process (Electricity price or demand & fuel prices etc.) Fundamentals that are linked to goods emitting $\rm CO_2$.

Emission Trading Scheme FBSDEs approach One-period model

Main features

- Model based on FBSDEs see e.g. Carmona, Delarue, Espinosa & Touzi (2013), Carmona & Delarue (2013), Howison & Schwarz (2015), C.-Chotai-Crisan (2020)
- Three main processes on one period [0, T].
 - 1. The spot allowance price Y: we assume that the market is frictionless and arbitrage-free and that there is a probability such that $(e^{-rt}Y_t)_{0 \le t \le T}$ is a martingale, namely

$$\mathrm{d}Y_t = rY_t\mathrm{d}t + Z_t\mathrm{d}W_t$$

r is the interest rate, Z is a square integrable process.

2. Auxiliary process *P*:

$$\mathrm{d}P_t = b(P_t)\mathrm{d}t + \sigma(P_t)\mathrm{d}W_t$$

Represent state variables that trigger the emission process (Electricity price or demand & fuel prices etc.) Fundamentals that are linked to goods emitting CO_2 .

3. Emission process E: cumulative process with impact from the allowance price

$$\mathrm{d} E_t = \mu(P_t, Y_t) \mathrm{d} t$$

 $\hookrightarrow \mu$ is decreasing in Y to take into account feedback of the allowance price

Emission Trading Scheme FBSDEs approach One-period model

イロト イポト イヨト イヨト

Associated singular FBSDE

• System of Equations: $0 \le t \le T$

 $\begin{aligned} \mathrm{d} P_t &= b(P_t) \,\mathrm{d} t + \sigma(P_t) \,\mathrm{d} W_t, \qquad \text{(forward)} \\ \mathrm{d} E_t &= \mu(P_t, \, Y_t) \,\mathrm{d} t, \qquad \text{(forward coupled)} \\ \mathrm{d} Y_t &= r Y_t \,\mathrm{d} t + Z_t \,\mathrm{d} W_t, \qquad \text{(backward)} \end{aligned}$

 E_0 , P_0 is known but Y_0 is unknown!

Emission Trading Scheme FBSDEs approach One-period model

Associated singular FBSDE

• System of Equations: $0 \le t \le T$

 $\begin{aligned} \mathrm{d} P_t &= b(P_t) \,\mathrm{d} t + \sigma(P_t) \,\mathrm{d} W_t, \qquad \text{(forward)} \\ \mathrm{d} E_t &= \mu(P_t, \, Y_t) \,\mathrm{d} t, \qquad \text{(forward coupled)} \\ \mathrm{d} Y_t &= r Y_t \,\mathrm{d} t + Z_t \,\mathrm{d} W_t, \qquad \text{(backward)} \end{aligned}$

 E_0 , P_0 is known but Y_0 is unknown!

- The terminal condition for the Allowance price Y. There is a cap Λ on the total emission set by the regulator
 - 1. If non-compliance i.e. $E_T > \Lambda$ then the penalty ρ is paid so $Y_T = \rho$
 - 2. If compliance i.e. $E_T < \Lambda$ then the Allowance is worth nothing (Emission regulation stops at the end of the period) so $Y_T = 0$

・ロト ・ 回 ト ・ ヨト ・ ヨト … ヨ

 $\hookrightarrow Y_{\mathcal{T}} = \phi(E_{\mathcal{T}}) := \rho \mathbf{1}_{\{E_{\mathcal{T}} > \Lambda\}} \text{ and } Y_t = e^{-r(\mathcal{T}-t)} \mathbb{E}[Y_{\mathcal{T}} | \mathcal{F}_t]$

Emission Trading Scheme FBSDEs approach One-period model

Results for one-period model

Carmona and Delarue (2013), there exists a unique solution to:

$$dP_t = b(P_t) dt + \sigma(P_t) dW_t,$$

$$dE_t = \mu(P_t, Y_t) dt,$$

$$dY_t = rY_t dt + Z_t dW_t,$$

with terminal condition: $\phi(E_T) = \rho \mathbf{1}_{\{E_T > \Lambda\}} \le Y_T \le \rho \mathbf{1}_{\{E_T \ge \Lambda\}} =: \phi_+(E_T)$. There exists a decoupling field s.t. $Y_t = v(t, P_t, E_t)$ for t < T.

Emission Trading Scheme FBSDEs approach One-period model

Results for one-period model

Carmona and Delarue (2013), there exists a unique solution to:

$$dP_t = b(P_t) dt + \sigma(P_t) dW_t,$$

$$dE_t = \mu(P_t, Y_t) dt,$$

$$dY_t = rY_t dt + Z_t dW_t,$$

with terminal condition: $\phi(E_T) = \rho \mathbf{1}_{\{E_T > \Lambda\}} \leq Y_T \leq \rho \mathbf{1}_{\{E_T \geq \Lambda\}} =: \phi_+(E_T)$. There exists a decoupling field s.t. $Y_t = v(t, P_t, E_t)$ for t < T.

The decoupling field v is the "entropy" solution to

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = rv$$
, and $v(T, e, p) = \phi(e)$

Emission Trading Scheme FBSDEs approach One-period model

Results for one-period model

Carmona and Delarue (2013), there exists a unique solution to:

$$dP_t = b(P_t) dt + \sigma(P_t) dW_t,$$

$$dE_t = \mu(P_t, Y_t) dt,$$

$$dY_t = rY_t dt + Z_t dW_t,$$

with terminal condition: $\phi(E_T) = \rho \mathbf{1}_{\{E_T > \Lambda\}} \le Y_T \le \rho \mathbf{1}_{\{E_T \ge \Lambda\}} =: \phi_+(E_T)$. There exists a decoupling field s.t. $Y_t = v(t, P_t, E_t)$ for t < T.

The decoupling field v is the "entropy" solution to

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = rv$$
, and $v(T, e, p) = \phi(e)$

 $\hookrightarrow v$ is Lipschitz in *p* and non decreasing in *e*.

Emission Trading Scheme FBSDEs approach One-period model

- 4 回 ト 4 三 ト 4 三 ト

Results for one-period model

Carmona and Delarue (2013), there exists a unique solution to:

$$dP_t = b(P_t) dt + \sigma(P_t) dW_t,$$

$$dE_t = \mu(P_t, Y_t) dt,$$

$$dY_t = rY_t dt + Z_t dW_t,$$

with terminal condition: $\phi(E_T) = \rho \mathbf{1}_{\{E_T > \Lambda\}} \le Y_T \le \rho \mathbf{1}_{\{E_T \ge \Lambda\}} =: \phi_+(E_T)$. There exists a decoupling field s.t. $Y_t = v(t, P_t, E_t)$ for t < T.

The decoupling field v is the "entropy" solution to

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = rv$$
, and $v(T, e, p) = \phi(e)$

 $\hookrightarrow v$ is Lipschitz in p and non decreasing in e. $\hookrightarrow \partial_e v$ explodes at T near Λ , we only know $|\partial_e v(t, p, e)| \leq \frac{C}{T-t}$

Emission Trading Scheme FBSDEs approach One-period model

イロト イヨト イヨト イヨト

Results for one-period model

Carmona and Delarue (2013), there exists a unique solution to:

$$dP_t = b(P_t) dt + \sigma(P_t) dW_t,$$

$$dE_t = \mu(P_t, Y_t) dt,$$

$$dY_t = rY_t dt + Z_t dW_t,$$

with terminal condition: $\phi(E_T) = \rho \mathbf{1}_{\{E_T > \Lambda\}} \le Y_T \le \rho \mathbf{1}_{\{E_T \ge \Lambda\}} =: \phi_+(E_T)$. There exists a decoupling field s.t. $Y_t = v(t, P_t, E_t)$ for t < T.

▶ The decoupling field *v* is the "entropy" solution to

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = rv$$
, and $v(T, e, p) = \phi(e)$

 \hookrightarrow v is Lipschitz in p and non decreasing in e.

 $\hookrightarrow \partial_e v$ explodes at T near A, we only know $|\partial_e v(t, p, e)| \leq \frac{C}{T-t}$

 \hookrightarrow Set $\mu(p, v) = -v$ and $\mathcal{L}_p = 0, r = 0$. One obtains a 'backward' inviscid Burgers equation...

Emission Trading Scheme FBSDEs approach One-period model

Results for one-period model

Carmona and Delarue (2013), there exists a unique solution to:

$$dP_t = b(P_t) dt + \sigma(P_t) dW_t,$$

$$dE_t = \mu(P_t, Y_t) dt,$$

$$dY_t = rY_t dt + Z_t dW_t,$$

with terminal condition: $\phi(E_T) = \rho \mathbf{1}_{\{E_T > \Lambda\}} \le Y_T \le \rho \mathbf{1}_{\{E_T \ge \Lambda\}} =: \phi_+(E_T)$. There exists a decoupling field s.t. $Y_t = v(t, P_t, E_t)$ for t < T.

The decoupling field v is the "entropy" solution to

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = rv$$
, and $v(T, e, p) = \phi(e)$

 \hookrightarrow v is Lipschitz in p and non decreasing in e.

 $\hookrightarrow \partial_e v$ explodes at T near A, we only know $|\partial_e v(t, p, e)| \leq \frac{C}{T-t}$

 \hookrightarrow Set $\mu(p, v) = -v$ and $\mathcal{L}_p = 0, r = 0$. One obtains a 'backward' inviscid Burgers equation...

Multi-period model (finite or infinite number of period): Dan Crisan's talk!

Classical FBSDE schemes Splitting scheme

- 4 回 ト 4 三 ト 4 三 ト

臣

Outline

ntroduction Emission Trading Scheme FBSDEs approach One-period model

Approximation schemes Classical FBSDE schemes Splitting scheme

Numerical results

Numerical schemes Examples

Classical FBSDE schemes Splitting scheme

イロト 不同 トイヨト 不良ト 二島

A numerical Toy model

• One-period Toy model (r = 0), dimension d + 1, $\sigma > 0$: $dP_t = \sigma dW_t$, $dE_t = \left(\frac{1}{\sqrt{d}} \sum_{\ell=1}^d P_t^\ell - Y_t\right) dt$, $dY_t = Z_t \cdot dW_t$, and " $Y_T = \mathbf{1}_{[1,\infty)} (E_T)$ ".

Classical FBSDE schemes Splitting scheme

イロト 不同 トイヨト 不良ト 二島

A numerical Toy model

• One-period Toy model (r = 0), dimension d + 1, $\sigma > 0$: $dP_t = \sigma dW_t$, $dE_t = \left(\frac{1}{\sqrt{d}} \sum_{\ell=1}^d P_t^\ell - Y_t\right) dt$, $dY_t = Z_t \cdot dW_t$, and " $Y_T = \mathbf{1}_{[1,\infty)} (E_T)$ ".

The quasi-linear pde associated is:

$$\partial_t \mathbf{v} + \left(\frac{1}{\sqrt{d}} \sum_{\ell=1}^d \mathbf{p}^\ell - \mathbf{v}\right) \partial_e \mathbf{v} + \frac{\sigma^2}{2} \sum_{\ell=1}^d \partial_{\rho_\ell \rho_\ell}^2 \mathbf{v} = \mathbf{0}$$

Classical FBSDE schemes Splitting scheme

A numerical Toy model

• One-period Toy model (r = 0), dimension d + 1, $\sigma > 0$:

$$dP_t = \sigma dW_t, \ dE_t = \left(\frac{1}{\sqrt{d}} \sum_{\ell=1}^d P_t^\ell - Y_t\right) dt, \ dY_t = Z_t \cdot dW_t,$$

and " $Y_T = \mathbf{1}_{[1,\infty)} (E_T)$ ".

The quasi-linear pde associated is:

$$\partial_t \mathbf{v} + \left(\frac{1}{\sqrt{d}} \sum_{\ell=1}^d \mathbf{p}^\ell - \mathbf{v}\right) \partial_e \mathbf{v} + \frac{\sigma^2}{2} \sum_{\ell=1}^d \partial_{\rho_\ell \rho_\ell}^2 \mathbf{v} = \mathbf{0}$$

• Reduced to one dimension via $v(t, p, e) = u(t, e + (T - t)\frac{1}{\sqrt{d}}\sum_{\ell=1}^{d}p^{\ell})$ with

$$\partial_t u - u \partial_\xi u + \frac{\sigma^2 (T-t)^2}{2} \partial_{\xi\xi}^2 u = 0 \text{ and } u(T,\xi) = \mathbf{1}_{\{\xi \ge 1\}}$$

・ロト ・ 回 ト ・ ヨト ・ ヨト ・

Classical FBSDE schemes Splitting scheme

A numerical Toy model

• One-period Toy model (r = 0), dimension d + 1, $\sigma > 0$:

$$dP_t = \sigma dW_t, \ dE_t = \left(\frac{1}{\sqrt{d}} \sum_{\ell=1}^d P_t^\ell - Y_t\right) dt, \ dY_t = Z_t \cdot dW_t,$$

and " $Y_T = \mathbf{1}_{[1,\infty)} (E_T)$ ".

The quasi-linear pde associated is:

$$\partial_t \mathbf{v} + \left(\frac{1}{\sqrt{d}} \sum_{\ell=1}^d \mathbf{p}^\ell - \mathbf{v}\right) \partial_e \mathbf{v} + \frac{\sigma^2}{2} \sum_{\ell=1}^d \partial_{\rho_\ell \rho_\ell}^2 \mathbf{v} = \mathbf{0}$$

• Reduced to one dimension via $v(t, p, e) = u(t, e + (T - t)\frac{1}{\sqrt{d}}\sum_{\ell=1}^{d}p^{\ell})$ with

$$\partial_t u - u \partial_\xi u + \frac{\sigma^2 (T-t)^2}{2} \partial_{\xi\xi}^2 u = 0 \text{ and } u(T,\xi) = \mathbf{1}_{\{\xi \ge 1\}}$$

 \hookrightarrow Particle method associated to scalar conservation law can be used (Bossy, Jourdain, Tallay...) to get a proxy for the true solution: $e \mapsto v(0, 0, e)$.

イロト イ団ト イヨト イヨト

Classical FBSDE schemes Splitting scheme

A ■

< ∃ >

Toward a probabilistic scheme

▶ When d = 1 (dimension of P), PDE methods can be used see e.g. Howison-Schwarz (2012), C.-Chotai-Crisan (2020).

Classical FBSDE schemes Splitting scheme

Toward a probabilistic scheme

- ▶ When d = 1 (dimension of P), PDE methods can be used see e.g. Howison-Schwarz (2012), C.-Chotai-Crisan (2020).
- However in applications d is larger... $(d \ge 3 \text{ e.g.})$ for electricity generation sector producer: demand and two fuel prices).

Classical FBSDE schemes Splitting scheme

(4回) (4回) (4回)

Toward a probabilistic scheme

- ▶ When d = 1 (dimension of P), PDE methods can be used see e.g. Howison-Schwarz (2012), C.-Chotai-Crisan (2020).
- ► However in applications d is larger... (d ≥ 3 e.g. for electricity generation sector producer: demand and two fuel prices).
- We test "classical" FBSDE methods (d = 1):
 - Bender-Zhang Method (decoupling via Picard iteration+regression)
 - Delarue-Menozzi Method (probabilistic layer method, decoupling via predictor method)
 - Deep FBSDE solver (E-Han-Jentzen) learning method+DNN

Classical FBSDE schemes Splitting scheme

Toward a probabilistic scheme

- ▶ When d = 1 (dimension of P), PDE methods can be used see e.g. Howison-Schwarz (2012), C.-Chotai-Crisan (2020).
- ► However in applications d is larger... (d ≥ 3 e.g. for electricity generation sector producer: demand and two fuel prices).
- We test "classical" FBSDE methods (d = 1):
 - Bender-Zhang Method (decoupling via Picard iteration+regression)
 - Delarue-Menozzi Method (probabilistic layer method, decoupling via predictor method)
 - Deep FBSDE solver (E-Han-Jentzen) learning method+DNN
- Results for Bender-Zhang Method to compute Y_0 :

Iterations do not converge (regularisation would help but difficult to tune)

Classical FBSDE schemes Splitting scheme

・ロト ・回ト ・ヨト ・ヨト

R

Other methods

• Results for Delarue-Menozzi scheme:

Classical FBSDE schemes Splitting scheme

Other methods

• Results for Delarue-Menozzi scheme:

• Results for the deep FBSDE solver (learning error is small):

Classical FBSDE schemes Splitting scheme

▲同 ▶ ▲ 臣 ▶

< ∃ >

A splitting scheme

- ▶ The numerical methods above fail to capture the correct weak solution.
- This comes from the degeneracy in e and the irregularity of the final condition. Many PDE methods would work, however the dimension of P is too 'big' in applications.

Classical FBSDE schemes Splitting scheme

A splitting scheme

- ▶ The numerical methods above fail to capture the correct weak solution.
- This comes from the degeneracy in e and the irregularity of the final condition. Many PDE methods would work, however the dimension of P is too 'big' in applications.
- We use a splitting scheme to treat both problem: on a time grid $\pi = (t_n)_{0 \le n \le N}$ we iterate a *transport operator* (fixing *p*) and a *diffusion operator* (fixing *e*)

Classical FBSDE schemes Splitting scheme

▲同 ▶ ▲ 臣 ▶

A splitting scheme

- ▶ The numerical methods above fail to capture the correct weak solution.
- This comes from the degeneracy in e and the irregularity of the final condition. Many PDE methods would work, however the dimension of P is too 'big' in applications.
- ▶ We use a splitting scheme to treat both problem: on a time grid $\pi = (t_n)_{0 \le n \le N}$ we iterate a *transport operator* (fixing *p*) and a *diffusion operator* (fixing *e*)
- The transport part is implemented using methods designed for discontinuous solution.

Classical FBSDE schemes Splitting scheme

A splitting scheme

- ▶ The numerical methods above fail to capture the correct weak solution.
- This comes from the degeneracy in e and the irregularity of the final condition. Many PDE methods would work, however the dimension of P is too 'big' in applications.
- ▶ We use a splitting scheme to treat both problem: on a time grid $\pi = (t_n)_{0 \le n \le N}$ we iterate a *transport operator* (fixing *p*) and a *diffusion operator* (fixing *e*)
- The transport part is implemented using methods designed for discontinuous solution.
- Results:
 - 1. we prove the convergence of the splitting scheme with rate $\frac{1}{2}$, in the setting of existence and uniqueness for singular FBSDEs.
 - 2. we test the splitting scheme using various approximations of the transport operator and the diffusion part (regression).

・ロト ・回ト ・ヨト・

Classical FBSDE schemes Splitting scheme

・ロト ・ 四ト ・ ヨト・

E

Theoretical splitting

• Recall the pde "satisfied" by the decoupling field (r = 0):

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = 0$$
, and $v(T, e, p) = \phi(e)$

and we know $v \in \mathcal{K} := \{(p, e) \mapsto \psi(p, e) : |\partial_p \psi| \le L, \partial_e \psi \ge 0\}$

Classical FBSDE schemes Splitting scheme

イロト イヨト イヨト --

Theoretical splitting

• Recall the pde "satisfied" by the decoupling field (r = 0):

 $\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = 0$, and $v(T, e, p) = \phi(e)$

and we know $v \in \mathcal{K} := \{(p, e) \mapsto \psi(p, e) : |\partial_p \psi| \le L, \partial_e \psi \ge 0\}$

• We define operators from $(0,\infty) \times \mathcal{K} \ni (h,\psi) \mapsto \mathrm{op}_h \in \mathcal{K}$.

Classical FBSDE schemes Splitting scheme

Theoretical splitting

• Recall the pde "satisfied" by the decoupling field (r = 0):

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = 0$$
, and $v(T, e, p) = \phi(e)$

and we know $v \in \mathcal{K} := \{(p, e) \mapsto \psi(p, e) : |\partial_p \psi| \le L, \partial_e \psi \ge 0\}$

- ▶ We define operators from $(0,\infty) \times \mathcal{K} \ni (h,\psi) \mapsto \mathrm{op}_h \in \mathcal{K}.$
 - Transport step: $\mathcal{T}_h(\psi) = \tilde{v}(0, \cdot)$ with \tilde{v} solution to

$$\partial_t w + \mu(w, p) \partial_e w = 0 \quad \forall p \in \mathbb{R}^d$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 \hookrightarrow better to consider the scalar conservation law to avoid issues at ${\cal T}$

Classical FBSDE schemes Splitting scheme

Theoretical splitting

• Recall the pde "satisfied" by the decoupling field (r = 0):

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = 0$$
, and $v(T, e, p) = \phi(e)$

and we know $v \in \mathcal{K} := \{(p, e) \mapsto \psi(p, e) : |\partial_p \psi| \le L, \partial_e \psi \ge 0\}$

- ▶ We define operators from $(0,\infty) \times \mathcal{K} \ni (h,\psi) \mapsto \mathrm{op}_h \in \mathcal{K}.$
 - Transport step: $\mathcal{T}_h(\psi) = \tilde{v}(0, \cdot)$ with \tilde{v} solution to

$$\partial_t w + \mu(w, p) \partial_e w = 0 \quad \forall p \in \mathbb{R}^d$$

 \hookrightarrow better to consider the scalar conservation law to avoid issues at ${\cal T}$

- Diffusion step: $\mathcal{D}_h(\psi) = \bar{v}(0, \cdot)$ with $\bar{v}(t, p, e) = \mathbb{E}[\psi(P_h^{t, p}, e)]$

Classical FBSDE schemes Splitting scheme

Theoretical splitting

• Recall the pde "satisfied" by the decoupling field (r = 0):

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = 0$$
, and $v(T, e, p) = \phi(e)$

and we know $v \in \mathcal{K} := \{(p, e) \mapsto \psi(p, e) : |\partial_p \psi| \le L, \partial_e \psi \ge 0\}$

- ▶ We define operators from $(0,\infty) \times \mathcal{K} \ni (h,\psi) \mapsto \mathrm{op}_h \in \mathcal{K}.$
 - Transport step: $\mathcal{T}_h(\psi) = \tilde{v}(0, \cdot)$ with \tilde{v} solution to

 $\partial_t w + \mu(w, p) \partial_e w = 0 \quad \forall p \in \mathbb{R}^d$

・ロト ・回ト ・ヨト・

 \hookrightarrow better to consider the scalar conservation law to avoid issues at ${\mathcal T}$

- Diffusion step: $\mathcal{D}_h(\psi) = \bar{v}(0, \cdot)$ with $\bar{v}(t, p, e) = \mathbb{E}[\psi(P_h^{t, p}, e)]$
- Then one sets: $S_h = T_h \circ D_h$

Classical FBSDE schemes Splitting scheme

Theoretical splitting

• Recall the pde "satisfied" by the decoupling field (r = 0):

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = 0$$
, and $v(T, e, p) = \phi(e)$

and we know $v \in \mathcal{K} := \{(p, e) \mapsto \psi(p, e) : |\partial_p \psi| \le L, \partial_e \psi \ge 0\}$

- ▶ We define operators from $(0,\infty) \times \mathcal{K} \ni (h,\psi) \mapsto \mathrm{op}_h \in \mathcal{K}.$
 - Transport step: $\mathcal{T}_h(\psi) = \tilde{v}(0, \cdot)$ with \tilde{v} solution to

 $\partial_t w + \mu(w, p) \partial_e w = 0 \quad \forall p \in \mathbb{R}^d$

イロト 不良 トイヨト 不良 トーヨ

 \hookrightarrow better to consider the scalar conservation law to avoid issues at ${\mathcal T}$

- Diffusion step: $\mathcal{D}_h(\psi) = \bar{v}(0, \cdot)$ with $\bar{v}(t, p, e) = \mathbb{E}[\psi(P_h^{t, p}, e)]$
- Then one sets: $S_h = T_h \circ D_h$

Splitting scheme (u^π_n), solution to the backward induction on π = (t_n)_{0≤n≤N}:
 - for n = N, set u^π_N := φ,

- for
$$n < N$$
, $u_n^{\pi} = S_{t_{n+1}-t_n}(u_{n+1}^{\pi})$.

Classical FBSDE schemes Splitting scheme

Theoretical splitting

• Recall the pde "satisfied" by the decoupling field (r = 0):

$$\partial_t v + \mu(p, v) \partial_e v + \mathcal{L}_p v = 0$$
, and $v(T, e, p) = \phi(e)$

and we know $v \in \mathcal{K} := \{(p, e) \mapsto \psi(p, e) : |\partial_p \psi| \le L, \partial_e \psi \ge 0\}$

- ▶ We define operators from $(0,\infty) \times \mathcal{K} \ni (h,\psi) \mapsto \mathrm{op}_h \in \mathcal{K}.$
 - Transport step: $\mathcal{T}_h(\psi) = \tilde{v}(0, \cdot)$ with \tilde{v} solution to

 $\partial_t w + \mu(w, p) \partial_e w = 0 \quad \forall p \in \mathbb{R}^d$

 \hookrightarrow better to consider the scalar conservation law to avoid issues at ${\mathcal T}$

- Diffusion step: $\mathcal{D}_h(\psi) = \bar{v}(0, \cdot)$ with $\bar{v}(t, p, e) = \mathbb{E}[\psi(P_h^{t, p}, e)]$
- Then one sets: $S_h = T_h \circ D_h$

Splitting scheme (u^π_n), solution to the backward induction on π = (t_n)_{0≤n≤N}:
 - for n = N, set u^π_N := φ,

- for
$$n < N$$
, $u_n^{\pi} = \mathcal{S}_{t_{n+1}-t_n}(u_{n+1}^{\pi}).$

► We obtain, under minimal Lipschitz assumption + structure conditions

$$\int_{\mathbb{R}} |v(0,p,e) - u_0^{\pi}(p,e)| \mathrm{d} e \leq C(1+|p|^2) \mathcal{N}^{-rac{1}{2}}\,,$$

J-F Chassagneux

Classical FBSDE schemes Splitting scheme

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Convergence 'proof'

Classically, we study stability of the scheme and truncation error.

• Stability for the error $\mathbb{E}[\int_{\mathbb{R}} |v(t_n, P_{t_n, e}) - u_n^{\pi}(P_{t_n}, e)| de]$, ok because:

 $|\mathcal{T}_h(\psi) - \mathcal{T}_h(\psi')|_{L_1} \leq |\psi - \psi'|_{L_1} \text{ and } |\mathcal{D}_h(\psi) - \mathcal{D}_h(\psi')|_{L_\infty} \leq |\psi - \psi'|_{L_\infty}$

Classical FBSDE schemes Splitting scheme

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Convergence 'proof'

Classically, we study stability of the scheme and truncation error.

• Stability for the error $\mathbb{E}[\int_{\mathbb{R}} |v(t_n, P_{t_n, e}) - u_n^{\pi}(P_{t_n}, e)| de]$, ok because:

 $|\mathcal{T}_h(\psi) - \mathcal{T}_h(\psi')|_{L_1} \leq |\psi - \psi'|_{L_1} \text{ and } |\mathcal{D}_h(\psi) - \mathcal{D}_h(\psi')|_{L_\infty} \leq |\psi - \psi'|_{L_\infty}$

• Truncation error: compare $v(, \cdot)$ and one step of the scheme $\tilde{v}(0, \cdot)$

Classical FBSDE schemes Splitting scheme

イロト イ団ト イヨト イヨト 二日

Convergence 'proof'

Classically, we study stability of the scheme and truncation error.

▶ Stability for the error $\mathbb{E}[\int_{\mathbb{R}} |v(t_n, P_{t_n, e}) - u_n^{\pi}(P_{t_n}, e)| de]$, ok because:

$$|\mathcal{T}_h(\psi)-\mathcal{T}_h(\psi')|_{L_1}\leq |\psi-\psi'|_{L_1} ext{ and } |\mathcal{D}_h(\psi)-\mathcal{D}_h(\psi')|_{L_\infty}\leq |\psi-\psi'|_{L_\infty}$$

▶ Truncation error: compare $v(, \cdot)$ and one step of the scheme $\tilde{v}(0, \cdot)$

- on [0, h], $\tilde{v}(0, \cdot)$ given by $\bar{v}(t, p, e) = \mathbb{E}[\phi(P_h^{t, p}, e)]$ and $\tilde{v}(0, \cdot) = \mathcal{T}_h(\bar{v}(0, \cdot))$,

Classical FBSDE schemes Splitting scheme

Convergence 'proof'

Classically, we study stability of the scheme and truncation error.

▶ Stability for the error $\mathbb{E}[\int_{\mathbb{R}} |v(t_n, P_{t_n, e}) - u_n^{\pi}(P_{t_n}, e)| de]$, ok because:

$$|\mathcal{T}_h(\psi) - \mathcal{T}_h(\psi')|_{L_1} \leq |\psi - \psi'|_{L_1} \text{ and } |\mathcal{D}_h(\psi) - \mathcal{D}_h(\psi')|_{L_\infty} \leq |\psi - \psi'|_{L_\infty}$$

• Truncation error: compare $v(, \cdot)$ and one step of the scheme $\tilde{v}(0, \cdot)$

- on [0, h], $\tilde{v}(0, \cdot)$ given by $\bar{v}(t, p, e) = \mathbb{E}[\phi(P_h^{t, p}, e)]$ and $\tilde{v}(0, \cdot) = \mathcal{T}_h(\bar{v}(0, \cdot))$,
- the associated FBSDE (the characteristics) is well defined: $\tilde{Y}_t := \tilde{v}(t, p, \tilde{E}_t)$

$$\mathrm{d} ilde{E}_t = \mu(ilde{Y}_t, p) \mathrm{d} t$$
 , $\mathrm{d} ilde{Y}_t = 0$, $ilde{Y}_h = ar{v}(t, p, ilde{E}_t)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Classical FBSDE schemes Splitting scheme

Convergence 'proof'

Classically, we study stability of the scheme and truncation error.

▶ Stability for the error $\mathbb{E}[\int_{\mathbb{R}} |v(t_n, P_{t_n, e}) - u_n^{\pi}(P_{t_n}, e)| de]$, ok because:

$$|\mathcal{T}_h(\psi) - \mathcal{T}_h(\psi')|_{L_1} \leq |\psi - \psi'|_{L_1} \text{ and } |\mathcal{D}_h(\psi) - \mathcal{D}_h(\psi')|_{L_\infty} \leq |\psi - \psi'|_{L_\infty}$$

• Truncation error: compare $v(, \cdot)$ and one step of the scheme $\tilde{v}(0, \cdot)$

- on [0, h], $\tilde{v}(0, \cdot)$ given by $\bar{v}(t, p, e) = \mathbb{E}[\phi(P_h^{t, p}, e)]$ and $\tilde{v}(0, \cdot) = \mathcal{T}_h(\bar{v}(0, \cdot))$,
- the associated FBSDE (the characteristics) is well defined: $\tilde{Y}_t := \tilde{v}(t, p, \tilde{E}_t)$

$$\mathrm{d} ilde{E}_t = \mu(ilde{Y}_t, p)\mathrm{d}t$$
 , $\mathrm{d} ilde{Y}_t = 0$, $ilde{Y}_h = ar{v}(t, p, ilde{E}_t)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Expand
$$V_t = ilde{v}(t, p, ilde{E}_t) - v(t, P_t, ilde{E}_t)$$
, to get $|V_t|_\infty \leq C\sqrt{h}$.

Classical FBSDE schemes Splitting scheme

Convergence 'proof'

Classically, we study stability of the scheme and truncation error.

▶ Stability for the error $\mathbb{E}[\int_{\mathbb{R}} |v(t_n, P_{t_n, e}) - u_n^{\pi}(P_{t_n}, e)| de]$, ok because:

$$|\mathcal{T}_h(\psi) - \mathcal{T}_h(\psi')|_{L_1} \leq |\psi - \psi'|_{L_1} \text{ and } |\mathcal{D}_h(\psi) - \mathcal{D}_h(\psi')|_{L_\infty} \leq |\psi - \psi'|_{L_\infty}$$

• Truncation error: compare $v(, \cdot)$ and one step of the scheme $\tilde{v}(0, \cdot)$

- on [0, h], $\tilde{v}(0, \cdot)$ given by $\bar{v}(t, p, e) = \mathbb{E}[\phi(P_h^{t, p}, e)]$ and $\tilde{v}(0, \cdot) = \mathcal{T}_h(\bar{v}(0, \cdot))$,
- the associated FBSDE (the characteristics) is well defined: $\tilde{Y}_t := \tilde{v}(t, p, \tilde{E}_t)$

$$\mathrm{d} ilde{E}_t = \mu(ilde{Y}_t, p)\mathrm{d}t$$
 , $\mathrm{d} ilde{Y}_t = 0$, $ilde{Y}_h = ar{v}(t, p, ilde{E}_t)$

- Expand $V_t = \tilde{v}(t, p, \tilde{E}_t) v(t, P_t, \tilde{E}_t)$, to get $|V_t|_{\infty} \leq C\sqrt{h}$.
- We want to control $\int |V_0| de$: study $t \mapsto \int |V_t \partial_e \tilde{E}_t| de$.

 $\hookrightarrow \mathsf{we} \; \mathsf{get} \; \mathsf{terms} \; \mathsf{like}$

$$\int \partial_{y} \mu(\tilde{v}(t, p, \tilde{E}_{t}), p) \partial_{e} \tilde{v}() \partial_{e} \tilde{E} de = \int \partial_{e} M(\tilde{v}(t, p, \tilde{E}_{t}), p)) de$$

イロト イ団ト イヨト イヨト 二日

that we can control...

Numerical schemes Examples

臣

Outline

Introduction

Emission Trading Scheme FBSDEs approach One-period model

Approximation schemes

Classical FBSDE schemes Splitting scheme

Numerical results Numerical schemes Examples

Numerical schemes Examples

Backward scheme

► For the *E*-direction:

- J be a positive integer and $\mathfrak{E} = (e_j)_{1 \le j \le J}$ a discrete grid of \mathbb{R} .
- $\mathcal{T}_h^{\mathfrak{E}}$ an approximation of the transport operator on \mathfrak{E} :

$$\mathbb{R}^d imes \mathbb{R}^J
i (p, heta) \mapsto \mathcal{T}^{\mathfrak{E}}_h(p, heta) \in \mathbb{R}^J$$

イロト イヨト イヨト イヨト

臣

Numerical schemes Examples

Backward scheme

- For the E-direction:
 - J be a positive integer and $\mathfrak{E} = (e_j)_{1 \leq j \leq J}$ a discrete grid of \mathbb{R} .
 - $\mathcal{T}_h^{\mathfrak{E}}$ an approximation of the transport operator on \mathfrak{E} :

$$\mathbb{R}^d imes \mathbb{R}^J
i (p, heta) \mapsto \mathcal{T}^{\mathfrak{E}}_h(p, heta) \in \mathbb{R}^J$$

< ∃⇒

• Euler scheme associated to P on π , namely, for $n \ge 0$,

$$\widehat{P}_{t_{n+1}}^{\pi} = \widehat{P}_{t_n}^{\pi} + b(\widehat{P}_{t_n}^{\pi})h + \sigma(\widehat{P}_{t_n}^{\pi})\Delta\widehat{W}_n \text{ and } \widehat{P}_0^{\pi} = p.$$

Numerical schemes Examples

Backward scheme

- ► For the *E*-direction:
 - J be a positive integer and $\mathfrak{E} = (e_j)_{1 \leq j \leq J}$ a discrete grid of \mathbb{R} .
 - $\mathcal{T}_h^{\mathfrak{E}}$ an approximation of the transport operator on \mathfrak{E} :

$$\mathbb{R}^d imes \mathbb{R}^J
i (p, heta) \mapsto \mathcal{T}^{\mathfrak{E}}_h(p, heta) \in \mathbb{R}^J$$

• Euler scheme associated to P on π , namely, for $n \ge 0$,

$$\widehat{P}^{\pi}_{t_{n+1}} = \widehat{P}^{\pi}_{t_n} + b(\widehat{P}^{\pi}_{t_n})h + \sigma(\widehat{P}^{\pi}_{t_n})\Delta\widehat{W}_n \text{ and } \widehat{P}^{\pi}_0 = p\,.$$

Scheme:

- 1. For n = N, $\Gamma_N^j = \phi(\widehat{P}_{t_N}^{\pi}, e_j)$ for $1 \le j \le J$.
- 2. Then, compute for n < N

$$\begin{split} \tilde{\Gamma}_n^j &= \mathbb{E}\!\!\left[\Gamma_{n+1}^j | \widehat{P}_{t_n}^{\pi}\right] \ \, \text{for all} \ 1 \leq j \leq J, \\ \Gamma_n &= \mathcal{T}_h^{\mathfrak{E}}(\widehat{P}_{t_n}^{\pi}, \widetilde{\Gamma}_n) \ . \end{split}$$

・ロト ・回ト ・ヨト

Numerical schemes Examples

イロト イポト イヨト イヨト

틙

Implementation

The transport operator is implemented using finite difference schemes: Upwind scheme or Lax-Friedrichs scheme, with J steps in space.

Numerical schemes Examples

(4 回 ト 4 ヨ ト 4 ヨ ト

Implementation

- The transport operator is implemented using finite difference schemes: Upwind scheme or Lax-Friedrichs scheme, with J steps in space.
- ► The regression to estimate functions from R^d → R^J is computed using NN. (simple version of HPW scheme)

Numerical schemes Examples

イロト イヨト イヨト イヨト

Implementation

- The transport operator is implemented using finite difference schemes: Upwind scheme or Lax-Friedrichs scheme, with J steps in space.
- ► The regression to estimate functions from R^d → R^J is computed using NN. (simple version of HPW scheme)
- ▶ We develop also an alternative scheme: the regression is computed on a tree and transport operator approximated by a particles system. This works well for $d \le 4$ and $P_t := f(t, W_t)$. (Convergence with a rate can be proven).

Numerical schemes Examples

Implementation

- The transport operator is implemented using finite difference schemes: Upwind scheme or Lax-Friedrichs scheme, with J steps in space.
- ► The regression to estimate functions from R^d → R^J is computed using NN. (simple version of HPW scheme)
- ▶ We develop also an alternative scheme: the regression is computed on a tree and transport operator approximated by a particles system. This works well for $d \le 4$ and $P_t := f(t, W_t)$. (Convergence with a rate can be proven).
- We test also a multiplicative model:

$$\mathrm{d} P_t^\ell = \mu P_t^\ell \mathrm{d} t + \sigma P_t^\ell \mathrm{d} W_t^\ell, \ P_0^\ell = 1, \ \text{and} \ \mathrm{d} E_t = \tilde{\mu}(Y_t, P_t) \mathrm{d} t$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

with $\tilde{\mu}(y,p) = \left(\prod_{\ell=1}^{d} p^{\ell}\right)^{\frac{1}{\sqrt{d}}} e^{-\theta y}$, for some $\theta > 0$ and $\phi(p,e) = \mathbf{1}_{\{e \ge 0\}}$. \hookrightarrow it can be reduced to a 2-dimensional model!

Numerical schemes Examples

Some numerics on the Toy model

Figure: Linear Toy Model: Comparison of the three methods:

- Neural Nets & Lax-Friedrichs (NN&LF) with d = 10
- an alternative scheme (BT&SPD) with d = 4
- The Proxy solution given by particle method.

Lax-Friedrichs scheme implemented with discretization of space J = 1500, 1000, 500, for $\sigma = 0.01, 0.3, 1$ respectively and number of time step K = 30. The number of time step for the splitting is N = 64. For *BT*&*SPD*, the number of particles is M = 3500 and the number of time steps N = 20.

・ロト ・回 ト ・ヨト ・ヨト

E

Numerical schemes Examples

On the multiplicative model

Figure: A multiplicative model in dimension d = 10. Comparison of two methods: - Neural nets & Upwind scheme

- the alternative scheme on equivalent 4-dimensional model (BT&SPD).

The Upwind scheme used discretization of space J = 100, 400, 500 respectively for $\sigma = 1, 0.3, 0.01$ and number of time step K = 20. The number of time step for the splitting is N = 32. For BT&SPD, the number of particles is M = 3500, and the number of time steps N = 20.

イロト イロト イヨト イヨト

臣