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Carbon markets

I Carbon dioxide (CO2) emission have a negative impact on the environment.

I Carbon markets are implemented to ‘price’ this and hopefully carbon emission
reduction could be achieved

I Since 2005, the EU has had its own emissions trading system (ETS): an example

of cap-and-trade scheme

- A central authority set a limit on pollutant emission during a given period.
Allowances are allocated to participating installations (via auctioning).

- The total amount of allowances is the aggregated cap.
- At the end of the period, each participating installation has to surrender an

allowance for each unit of emission or pay a penalty.

- During the period, participants can trade the allowances.

I China, whose carbon emissions make up approximately one quarter of the global
total, has launched a national emissions trading scheme in July 2021 (with
various pilot schemes already running)
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EUA price (tradingeconomics.com)

Euros per tCO2 (compare with China ETS price: 8.4 euros/tCO2 on 1 April 2022)
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Main features

• Model based on FBSDEs see e.g. Carmona, Delarue, Espinosa & Touzi (2013),
Carmona & Delarue (2013), Howison & Schwarz (2015), C.-Chotai-Crisan (2020)

• Three main processes on one period [0,T ].

1. The spot allowance price Y : we assume that the market is frictionless and
arbitrage-free and that there is a probability such that (e−rtYt)0≤t≤T is a
martingale, namely

dYt = rYtdt + ZtdWt

r is the interest rate, Z is a square integrable process.

2. Auxiliary process P:

dPt = b(Pt)dt + σ(Pt)dWt

Represent state variables that trigger the emission process ( Electricity price or
demand & fuel prices etc.) Fundamentals that are linked to goods emitting CO2.

3. Emission process E : cumulative process with impact from the allowance price

dEt = µ(Pt ,Yt)dt

↪→ µ is decreasing in Y to take into account feedback of the allowance price
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Associated singular FBSDE

I System of Equations: 0 ≤ t ≤ T

dPt = b(Pt)dt + σ(Pt) dWt , (forward)

dEt = µ(Pt ,Yt) dt, (forward coupled)

dYt = rYt dt + Zt dWt , (backward)

E0, P0 is known but Y0 is unknown!

I The terminal condition for the Allowance price Y . There is a cap Λ on the total

emission set by the regulator

1. If non-compliance i.e. ET > Λ then the penalty ρ is paid so YT = ρ

2. If compliance i.e. ET < Λ then the Allowance is worth nothing (Emission

regulation stops at the end of the period) so YT = 0

↪→ YT = φ(ET ) := ρ1{ET>Λ} and Yt = e−r(T−t)E[YT |Ft ]
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Results for one-period model

I Carmona and Delarue (2013), there exists a unique solution to:

dPt = b(Pt)dt + σ(Pt) dWt ,

dEt = µ(Pt ,Yt) dt,

dYt = rYt dt + Zt dWt ,

with terminal condition: φ(ET ) = ρ1{ET>Λ} ≤ YT ≤ ρ1{ET≥Λ} =: φ+(ET ) .

There exists a decoupling field s.t. Yt = v(t,Pt ,Et) for t < T .

I The decoupling field v is the “entropy” solution to

∂tv + µ(p, v)∂ev + Lpv = rv , and v(T , e, p) = φ(e)

↪→ v is Lipschitz in p and non decreasing in e.
↪→ ∂ev explodes at T near Λ, we only know |∂ev(t, p, e)| ≤ C

T−t

↪→ Set µ(p, v) = −v and Lp = 0, r = 0. One obtains a ‘backward’ inviscid
Burgers equation...

I Multi-period model (finite or infinite number of period): Dan Crisan’s talk!
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A numerical Toy model

I One-period Toy model (r = 0), dimension d + 1, σ > 0:

dPt = σdWt , dEt =
(

1√
d

∑d
`=1 P

`
t − Yt

)
dt, dYt = Zt · dWt ,

and “YT = 1[1,∞)(ET )′′.

I The quasi-linear pde associated is:

∂tv +
(

1√
d

∑d
`=1 p

` − v
)
∂ev + σ2

2

∑d
`=1 ∂

2
p`p`v = 0

I Reduced to one dimension via v(t, p, e) = u(t, e + (T − t) 1√
d

∑d
`=1 p

`) with

∂tu − u∂ξu +
σ2(T − t)2

2
∂2
ξξu = 0 and u(T , ξ) = 1{ξ≥1}

↪→ Particle method associated to scalar conservation law can be used (Bossy,
Jourdain, Tallay...) to get a proxy for the true solution: e 7→ v(0, 0, e).
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Toward a probabilistic scheme

I When d = 1 (dimension of P), PDE methods can be used see e.g.
Howison-Schwarz (2012), C.-Chotai-Crisan (2020).

I However in applications d is larger... (d ≥ 3 e.g. for electricity generation sector
producer: demand and two fuel prices).

I We test “classical” FBSDE methods (d = 1):

- Bender-Zhang Method (decoupling via Picard iteration+regression)
- Delarue-Menozzi Method (probabilistic layer method, decoupling via

predictor method)

- Deep FBSDE solver (E-Han-Jentzen) learning method+DNN

• Results for Bender-Zhang Method to compute Y0:

Iterations do not converge (regularisation would help but difficult to tune)
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Iterations do not converge (regularisation would help but difficult to tune)
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• Results for Delarue-Menozzi scheme:

(a) σ = 0.01 (b) σ = 0.3 (c) σ = 1.0

• Results for the deep FBSDE solver (learning error is small):

(d) σ = 0.01 (e) σ = 0.3 (f) σ = 1.0
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Other methods

• Results for Delarue-Menozzi scheme:

(g) σ = 0.01 (h) σ = 0.3 (i) σ = 1.0

• Results for the deep FBSDE solver (learning error is small):

(j) σ = 0.01 (k) σ = 0.3 (l) σ = 1.0
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A splitting scheme

I The numerical methods above fail to capture the correct weak solution.

I This comes from the degeneracy in e and the irregularity of the final condition.
Many PDE methods would work, however the dimension of P is too ’big’ in
applications.

I We use a splitting scheme to treat both problem: on a time grid π = (tn)0≤n≤N

we iterate a transport operator (fixing p) and a diffusion operator (fixing e)

I The transport part is implemented using methods designed for discontinuous
solution.

I Results:

1. we prove the convergence of the splitting scheme with rate 1
2
, in the setting

of existence and uniqueness for singular FBSDEs.

2. we test the splitting scheme using various approximations of the transport

operator and the diffusion part (regression).
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Theoretical splitting

I Recall the pde “satisfied” by the decoupling field (r = 0):

∂tv + µ(p, v)∂ev + Lpv = 0, and v(T , e, p) = φ(e)

and we know v ∈ K := {(p, e) 7→ ψ(p, e) : |∂pψ| ≤ L, ∂eψ ≥ 0}

I We define operators from (0,∞)×K 3 (h, ψ) 7→ oph ∈ K.

- Transport step: Th(ψ) = ṽ(0, ·) with ṽ solution to

∂tw + µ(w , p)∂ew = 0 ∀p ∈ Rd

↪→ better to consider the scalar conservation law to avoid issues at T
- Diffusion step: Dh(ψ) = v̄(0, ·) with v̄(t, p, e) = E

[
ψ(P t,p

h , e)
]

- Then one sets: Sh = Th ◦ Dh

II Splitting scheme (uπn ), solution to the backward induction on π = (tn)0≤n≤N :
- for n = N, set uπN := φ,
- for n < N, uπn = Stn+1−tn (uπn+1).

I We obtain, under minimal Lipschitz assumption + structure conditions∫
R
|v(0, p, e)− uπ0 (p, e)|de ≤ C(1 + |p|2)N−

1
2 ,
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Convergence ‘proof’

Classically, we study stability of the scheme and truncation error.

I Stability for the error E
[∫

R |v(tn,Ptn,e)− uπn (Ptn , e)|de
]
, ok because:

|Th(ψ)− Th(ψ′)|L1 ≤ |ψ − ψ
′|L1 and |Dh(ψ)−Dh(ψ′)|L∞ ≤ |ψ − ψ

′|L∞

I Truncation error: compare v(, ·) and one step of the scheme ṽ(0, ·)

- on [0, h], ṽ(0, ·) given by v̄(t, p, e) = E
[
φ(P t,p

h , e)
]

and ṽ(0, ·) = Th(v̄(0, ·)),

- the associated FBSDE (the characteristics) is well defined: Ỹt := ṽ(t, p, Ẽt)

dẼt = µ(Ỹt , p)dt , dỸt = 0 , Ỹh = v̄(t, p, Ẽt)

- Expand Vt = ṽ(t, p, Ẽt)− v(t,Pt , Ẽt), to get |Vt |∞ ≤ C
√
h.

- We want to control
∫
|V0|de: study t 7→

∫
|Vt∂e Ẽt |de.

↪→ we get terms like∫
∂yµ(ṽ(t, p, Ẽt), p)∂e ṽ()∂e Ẽde =

∫
∂eM(ṽ(t, p, Ẽt), p))de

that we can control...
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- Expand Vt = ṽ(t, p, Ẽt)− v(t,Pt , Ẽt), to get |Vt |∞ ≤ C
√
h.

- We want to control
∫
|V0|de: study t 7→

∫
|Vt∂e Ẽt |de.
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Backward scheme

II For the E -direction:

- J be a positive integer and E = (ej)1≤j≤J a discrete grid of R.
- T E

h an approximation of the transport operator on E:

Rd × RJ 3 (p, θ) 7→ T E
h (p, θ) ∈ RJ

I Euler scheme associated to P on π, namely, for n ≥ 0,

P̂πtn+1
= P̂πtn + b(P̂πtn )h + σ(P̂πtn )∆Ŵn and P̂π0 = p .

I Scheme:

1. For n = N, Γj
N = φ(P̂πtN , ej) for 1 ≤ j ≤ J.

2. Then, compute for n < N

Γ̃j
n = E

[
Γj
n+1|P̂

π
tn

]
for all 1 ≤ j ≤ J,

Γn = T E
h (P̂πtn , Γ̃n) .
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Backward scheme

I For the E -direction:

- J be a positive integer and E = (ej)1≤j≤J a discrete grid of R.
- T E

h an approximation of the transport operator on E:

Rd × RJ 3 (p, θ) 7→ T E
h (p, θ) ∈ RJ
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Implementation

I The transport operator is implemented using finite difference schemes: Upwind
scheme or Lax-Friedrichs scheme, with J steps in space.

I The regression to estimate functions from Rd → RJ is computed using NN.
(simple version of HPW scheme)

I We develop also an alternative scheme: the regression is computed on a tree and
transport operator approximated by a particles system. This works well for d ≤ 4
and Pt := f (t,Wt). ( Convergence with a rate can be proven).

I We test also a multiplicative model:

dP`t = µP`t dt + σP`t dW
`
t , P

`
0 = 1, and dEt = µ̃(Yt ,Pt)dt

with µ̃(y , p) =
(∏d

`=1 p
`
) 1√

d e−θy , for some θ > 0 and φ(p, e) = 1{e≥0} .

↪→ it can be reduced to a 2-dimensional model!
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Some numerics on the Toy model

(m) σ = 0.01 (n) σ = 0.3 (o) σ = 1.0

Figure: Linear Toy Model: Comparison of the three methods:
- Neural Nets & Lax-Friedrichs (NN&LF) with d = 10
- an alternative scheme (BT&SPD) with d = 4
- The Proxy solution given by particle method.

Lax-Friedrichs scheme implemented with discretization of space J = 1500, 1000, 500,

for σ = 0.01, 0.3, 1 respectively and number of time step K = 30. The number of time

step for the splitting is N = 64. For BT&SPD, the number of particles is M = 3500

and the number of time steps N = 20.
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On the multiplicative model

(a) σ = 0.01 (b) σ = 0.3 (c) σ = 1.0

Figure: A multiplicative model in dimension d = 10. Comparison of two methods:
- Neural nets & Upwind scheme
- the alternative scheme on equivalent 4-dimensional model (BT&SPD).

The Upwind scheme used discretization of space J = 100, 400, 500 respectively for

σ = 1, 0.3, 0.01 and number of time step K = 20. The number of time step for the

splitting is N = 32. For BT&SPD, the number of particles is M = 3500, and the

number of time steps N = 20.
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