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ABSDEs

Anticipated backward stochastic differential equations, whose
coefficient depends (in an adapted fashion) on the solution in the
future

First introduced in Peng and Yang (2009)

Agarwal, Marco, Gobet, López-Salas, Noubiagain, and Zhou (2019)
already consider an ABSDE involving a conditional expected shortfall
anticipated term as we do

by contrast with a conditional expectation in the previous ABSDE
literature.
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Exploiting the short horizon of the anticipation in their equation (one
week in their case versus one year in ours) allows them devising
approximations by standard BSDEs, thus avoiding the numerical
problem posed by the anticipated term1.

Jumps that we introduce in the form of a Markov chain add a lot (of
variance) to this problem

1cf. the beginning of Section 3.2 in Agarwal et al. (2019).
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(Market and Default) Model

X = (X , J), for

an Rp valued diffusion

dXt = b(t,Xt)dt + σ(t,Xt)dWt , (1)

a {0, 1}q valued “Markov chain like” component

dJt =
∑

k∈{0,1}q
(k − Jt−)dνkt , (2)

where νkt counts the number of transitions of J to the state k on
(0, t], with compensator γkt dt of dνkt such that γkt = γk(t,Xt) (for
some continuous functions γk(t, x)).
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Equation

We consider the following ABSDE for Y in S l2, the space of Rl valued
càdlàg adapted processes Y such that ‖Y ‖2

S l2
= E

[
sup

0≤t≤T
|Yt |2

]
< +∞:

Yt = Et

[
φ(XT ) +

∫ T

t
f
(
s,Xs ,Ys ,ESs(Φs(M))

)
ds
]
, t ≤ T , (3)

where

E· and ES· are conditional expectation and expected shortfall2,

M, also required to belong to S l2, is the canonical Doob-Meyer
martingale component of the special semimartingale Y , and

2expected loss given the latter exceeds its value-at-risk at some fixed quantile level
α = 97.5% in our numerics.
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Φt(M) := Φ
(
t;X[t,t],M[t,t] −Mt

)
, (e.g. M1

(t+1)∧T −M1
t ), for some

deterministic maps t of time t satisfying t ∈ [t,T ] and Φ of time t
and càdlàg paths x and m on [t, t] such that mt = 0, with Φ
Lipschitz with respect to its last argument in the sense that for every
t ∈ [0,T ],

|Φ(t; x,m)− Φ(t; x,m′)| ≤ C |mt −m′t | (4)

holds for all càdlàg paths x,m,m′ on [t, t] such that mt = m′t = 0.
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Theorem 1

Under the above and otherwise standard (Lipschitz and square
integrability) assumptions on the data:

the ABSDE (3) has a unique special semimartingale solution Y in S l2
with martingale component M in S l2;

The process Y is the limit in S l2 of the Picard iteration defined by
Y (0) = 0 and, for j ≥ 1,

Y
(j)
t = Et

[
φ(XT ) +

∫ T

t
f
(
s,Xs ,Y

(j−1)
s ,ESs(Φs(M(j−1)))

)
ds
]
, (5)

where M(j−1) ∈ S l2 is the martingale part of the special
semimartingale Y (j−1) ∈ S l2.

No Feynman-Kac representation for (Y ,ES·(Φ·(M))) so far..
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0 = t0 < t1 < . . . < tn = T with ∆ti+1 := ti+1 − ti ≤ h.

Explicit time discretization for (Y ,ES·(Φ·(M))) (with M the
martingale part of the solution Y to (3)):
Process (Y h, ρh) defined at grid times by Y h

tn = φ(X h
T ), ρhtn = Φh

T (0)
and, for i decreasing from n − 1 to 0,

Y h
ti

= Eti

[
Y h
ti+1

+ f
(
ti ,X h

ti
,Y h

ti+1
, ρhti+1

)
∆ti+1

]
ρhti = ESti

(
Φh
t i

(
Y h
tl

+
∑
k<l

f (tk ,X h
tk
,Y h

tk+1
, ρhtk+1

)∆tk+1, l = 0, . . . , n
))
.

(6)
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Picard iteration associated with the implicit time discretization for
(Y ,ES·Φ·̄(M)):
Sequence of discrete time processes (Y 0,h, ρ0,h) = (0, 0) and, for each

j increasing from 1 to ∞: Y j ,h
tn = φ(X h

T ), ρj ,htn = Φh
T (0) and, for i

decreasing from n − 1 to 0,

Y j ,h
ti = Eh

ti

[
Y j ,h
ti+1

+ f
(
ti ,X h

ti
,Y j−1,h

ti , ρj−1,h
ti

)
∆ti+1

]
,

ρj ,hti = EShti
(

Φh
t i

(
Y j ,h
tl +

∑
k<l

f (tk ,X h
tk
,Y j−1,h

tk , ρj−1,h
tk )∆tk+1, l = 0, . . . , n

))
.

(7)
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The time-consistency of these schemes, i.e. the convergence of the
Y h (resp. Y h,j) to Y as h goes to 0 (resp. h goes to 0 and j goes to
infinity), can be studied by the techniques initiated in Bouchard and
Touzi (2004) and Zhang (2004).

Only partial results so far, due to the absence of a Feynman-Kac
representation for the limiting ABSDE.

Our focus hereafter is the discretization in space of (6) and (7).

13 / 46



Outline

1 Limiting Equations

2 Approximation Schemes
Time Discretizations
Fully Discrete Algorithms

3 A Posteriori Monte Carlo Validation Scheme

4 XVA Application

14 / 46



Whenever a process Mh on the time grid is such that Mh
{t=ti ,...,t̄i} −Mh

ti
is

a measurable functional of (ti ,X h
ti

), . . . , (t̄i ,X h
t̄i

) with Φh
t̄ (Mh) square

integrable, an application of Barrera, Crépey, Gobet, Nguyen, and
Saadeddine (2022, Theorem 2.3)3 yields

ESht (Φh
t̄ (Mh)) = φ∗(t,X h

t ),

where

φ∗· (t, ·) = argminφ·(t,·)∈B(1− α)−1E[(Φh
t̄ (Mh)1{Φh

t̄
(Mh)≥ϕ∗(t,X h

t )} − φ(t,X h
t ))2], (8)

in which (Rockafellar and Uryasev 2000)

ϕ∗· (t, ·) = argminϕ·(t,·)∈B E[(ϕ(t,X h
t ) + (1− α)−1(Φh

t̄ (Mh)− ϕ(t,X h
t ))+], (9)

both minimizations bearing over the set B of the Borel functions of (x , k).

3additionally assuming Φh
t̄ (Mh) atomless given Ft .
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By (nonparametric) quantile regression estimates of ϕ∗(t,X h
t ) and

φ∗(t,X h
t ), we mean ϕ̂∗(t,X h

t ) and φ̂∗(t,X h
t ) where the functions ϕ̂∗(t, ·)

and φ̂∗(t, ·) are obtained by replacing in (8)-(9):

B, by a to-be-specified hypothesis space of functions,

E, by the sample mean over a sufficiently large number of
independent realizations of X h,

minimization, by approximate numerical minimization through Adam
stochastic gradient descent,

ϕ∗ in (8), by ϕ̂∗.
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In practice we use hypothesis spaces of functions represented by
feedforward neural networks.

Knowing a (value-at-risk) candidate ϕ̂∗ in neural network form, one
can look for an (expected shortfall) approximator φ̂∗ using a neural
network with the same architecture as the one used for ϕ∗, set the
weights of all hidden layers to those of the ϕ̂∗ network and then
freeze them. The training of φ̂∗ then falls down to a linear regression
to determine the weights of the output layer.

The fully (time and space) discrete counterparts of (6) and (7) follow
by estimating, at each grid time t = ti going backward, the
embedded conditional expectations (resp. expected shortfalls)
through nonparametric least-squares regression against X h

t (resp.
quantile regression against X h

t as explained above).
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Neural net parameterizations for the targeted conditional expectations
and expected shortfalls lead to “nonlinear regressions” that can only
be performed by numerical nonconvex minimization.

We can state some concentration inequalities yielding a
nonasymptotic a priori error control on the corresponding regression
errors (at least, locally at each given time step (Barrera, Crépey,
Gobet, Nguyen, and Saadeddine 2022)), but this is assuming global
minimization is achieved in all training tasks.
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Instead, our focus below is on a way to a posteriori Monte Carlo
validate this spatial regression error.

RSME vs. projection error in an estimation problem for E(Y |X )

²

²
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Let Y (1) and Y (2) denote two independent copies of Y conditional on
X 4. Given any u(X ) (e.g. estimator of E(Y |X )), we have by
conditional independence and the tower rule:

E[(u(X )− E[Y |X ])2] = E[u(X )2 − (Y (1) + Y (2))u(X ) + Y (1)Y (2)].(10)

Thus, one can approximate the L2 error of any estimator for the
conditional expectation, without any knowledge on the latter, using
only two inner paths (as opposed to a much heavier nested Monte
Carlo).

Extended to quantile regression in Barrera, Crépey, Gobet, Nguyen,
and Saadeddine (2022, Section 4.4).

4The conditional independence means that for any Borel bounded functions h1 and
h2, we have E[h1(Y (1))h2(Y (2))|X ] = E[h1(Y (1))|X ]E[h2(Y (2))|X ].
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In a standard Λf -Lipschitz f = f (t, x , y) BSDE time-discretizated
setup (skipping ·h on this slide for notational simplicity), based on the
estimate Ŷti+1 for Yti+1 at the next time step ti+1, let εti = |Ỹti − Ŷti |,
where Ỹti and Ŷti denote the theoretical (with true conditional
expectation) and empirical (with trained conditional expectation)
dynamic programming estimates of Yti .

Theorem 2

E[|Yti − Ŷti |] ≤
∑n−1

k=i (1 + Λf h)k−i
√
E[ε2

tk ], where the

E[ε2
tk

] = E
[
Ŷ 2
tk
− 2Ŷtk (Ŷtk+1

+ f (tk ,Xtk , Ŷtk+1
)h)+

(Ŷ 1
tk+1

+ f (tk ,Xtk , Ŷ
1
tk+1

)h)(Ŷ 2
tk+1

+ f (tk ,Xtk , Ŷ
2
tk+1

)h)
] (11)

can be estimated by Monte Carlo based on two conditionally independenta

copies Ŷ 1
tk+1

and Ŷ 2
tk+1

of Ŷtk+1
= uk+1(Xtk+1

), in which u is the regressed

functional form of Ŷtk+1
.

acorresponding to two independent realizations of Xtk+1 given the same
starting point Xtk . 22 / 46



In the anticipated BSDE case, the analogous propagation of the local
regression error terms εti and eti (where eti is for the expected

shortfall) into global regression error controls for E[|Y h
tk
− Ŷ h

tk
|] and

E[|ρhtk − ρ̂htk |] is much more involved.

23 / 46



Outline

1 Limiting Equations

2 Approximation Schemes
Time Discretizations
Fully Discrete Algorithms

3 A Posteriori Monte Carlo Validation Scheme

4 XVA Application



XVA Metrics in a Nutshell

What do they capture?

CVA is the expected cost for the bank of the default risk of its clients

FVA is the expected cost for the bank of its own default risk

via the implications of this risk in terms of funding spread for the bank

KVA is the cost for the bank of having to remunerate its shareholders
at some hurdle rate r for their capital at risk

capital required by the regulator as a safety cushion against the
residual risk left uncovered by reserve capital CVA + FVA (as default
risk cannot be hedged by the bank)
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Albanese, Crépey, Hoskinson, and Saadeddine (2021):

CVAt = Et

[∑
c

∫ T

t
(MtM

(c)
s )+δτ (c)(ds)

]

FVAt = Et

[ ∫ T

t
γ

(b)
s

(∑
c

1{s<τ (c)}MtM
(c)
s − CVAs

−FVAs −max(ECs ,KVAs))+ ds
]

KVAt = Et

[∫ T

t
r(ECs −KVAs)+ds

]
,

(12)

where ECt = ESt [L(t+1)∧T − Lt ], in which the loss process L satisfies
(starting from 0 at time 0)

dLt =
∑
c

(MtM
(c)
t )+δτ (c)(dt) + dCVAt + dFVAt

γ
(b)
s

(∑
c

1{t<τ (c)}MtM
(c)
t − CVAt − FVAt −max(ECt ,KVAt)

)+

dt.

(13)
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XVA Computational Strategy

CVA estimated first by regression-based Monte Carlo, then above
numerical schemes applied for obtaining Y = (FVA,KVA)

Hybrid market and default model → Adopting the hierarchical
simulation scheme of Abbas-Turki, Crépey, and Saadeddine (2021) is
key to the numerical stability of all the below-displayed results

On the XVA side, the use of regression-based Monte Carlo
simulations is not new. It was already presented in Cesari, Aquilina,
and Charpillon (2010) as a key CVA computational paradigm,
intended to avoid nested Monte Carlo.
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However, from such traditional XVA computations to the neural net
regressions of Huge and Savine (2020), the regressions are only used

for computing the MtM(c)s

mark-to-market cube of the prices of all the contracts of the bank with
all its clients at all times of a simulation time-grid, out of which the
XVAs of the bank at time 0 (and only it) are obtained by integration
proxies.

By contrast, in our case, we aim at learning the genuine XVA metrics
as processes, i.e. at every node of a simulation for all risk factors

based on a mark-to-market cube computed by model analytics (or/and
standard regressions) at the forward simulation stage.
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Gnoatto, Reisinger, and Picarelli (2021) deep-hedge and learn the
CVA and the FVA, but this is in a purely diffusive setup, after the
default of the bank and its (assumed single) counterparty have been
eliminated from the model by the reduction of filtration technique of
Crépey and Song (2015).

This technique of reduction of filtration is not extendible to the
realistic case of a bank involved in transactions with several (in
practice, several thousands) clients, the default times of which enter
the ensuing FVA (and KVA) equations in a nonlinear fashion, so that
there is then no other choice but simulating these defaults and
including them in the training.

The genuine XVA equations are not amenable to a deep-hedging
approach, mainly for memory limitation reasons.
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CVA Warm-Up

Density plot of the CVA of a vanilla call, at mid-life of the option.
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Random variables CVA1 and CVA7 (respectively observed after 1 and
7 years) obtained by learning (blue histogram) versus nested Monte
Carlo (orange histogram). All histograms are based on out-of-sample
paths.
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QQ-plot of learned versus nested Monte Carlo CVA for the random
variables CVA1 (left) and CVA7 (right). Paths are out-of-sample.
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Relative RMSE of the prediction against a nested Monte Carlo
benchmark (left) and the prediction against the ground-truth CVA
(right) at the pricing time i = 5 years, for different combinations of
the number of market paths M and of the hierarchical simulation
factor N .
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XVA Case Study

Risk factors: 10 IR Vasicek, 9 FX GBM, 9 CR CIR and 8 default
indicator processes, adding up to 36 risk factors used as deep learning
features

Portfolio of the bank comprised of 100 interest rate swaps with
random characteristics (notional, maturity, counterparty and
currency). In particular, their maturities are between 0.9375 and
T = 10 years.

Python
numba−→ CUDA GPU implementation of the simulations

including MtM computations

Learning with PyTorch

for its proximity to the CUDA programming model

available on https://github.com/BouazzaSE/NeuralXVA
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FVA0 under the Picard iteration scheme with reuse of weigthts across
time steps vs. the explicit scheme.

j = 1 j = 2 j = 3 j = 4 Explicit

h = T
25 463.279938 433.832031 434.391296 433.753998 434.65167

h = T
26 461.329926 433.141876 434.036011 433.835052 433.60974

h = T
27 461.031097 432.506531 433.631531 431.789215 433.18683

h = T
28 460.326050 433.123596 431.992859 432.098328 434.29538
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Mean and quantiles of CVA, FVA, KVA and EC learned by the explicit
scheme at t = T

2
for different sizes of the time step.
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CVA profiles using an explicit scheme and a fine time discretization
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FVA profiles using an explicit scheme
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KVA profiles using an explicit scheme

0 2 4 6 8 10
t

0

25

50

75

100

125

150

175 Mean of learned KVA, out-of-sample
97.5 quantile of learned KVA, out-of-sample
99 quantile of learned KVA, out-of-sample

97.5 quantile of learned KVA, out-of-sample
1 quantile of learned KVA, out-of-sample

39 / 46



EC profiles using an explicit scheme
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Local regression errors
√

E[(εfvati )2] (solid purple) vs. L2 training losses

(dashed grey). Left panel: raw errors. Right panel: errors normalized

by the F̂VA
h

ti
.
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Local regression errors
√

E[(εkvati )2] (solid purple) vs. L2 training

losses (dashed grey). Left panel: raw errors. Right panel: errors

normalized by the K̂VA
h

ti
.
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ANNOUNCEMENT

Postdoc Position in Finance and Data Science at LPSM (Paris), Team
Mathematical Finance and Numerical Probability (Jean-François
Chassagneux, SC, Huyen Pham, Marie-Claire Quenez,...):

https://www.institutlouisbachelier.org/wp-
content/uploads/2022/05/post-doc-announcement-09052022.pdf

Thanks for your attention!
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