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. Motivation

Carbon markets are currently being implemented worldwide.

Since 2005, the EU has had its own emissions trading system (ETS).

China, whose carbon emissions make up approximately one quarter of
the global total, is considering introducing a national emissions trading
scheme for greenhouse gas emissions in the next few years.

In 2013, seven pilots were introduced in seven different regions in China.
The Chinese ETS will be the largest carbon market in the world.

Carbon markets face many criticisms. Some critics claim that they reduce
an industry’s competitiveness, while others believe that the average
carbon price today is not high enough to motivate substantial of
greenhouse gas emissions reductions.

Proponents of ETS claim that they lead to real emissions reductions
when regulators operate them in an appropriate way.

ETS are becoming increasingly important and prevalent. Scientific,
particularly mathematical, studies of them are needed in order to expose
their advantages, their shortcomings, and their efficient implementation.
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. Model for an electricity market under emissions regulation

Single period model:

Single compliance period of a carbon emissions market in isolation.

• the regulator releases Λ emissions allowances into the market at time 0
• the allowances are traded throughout the period [0, T ].
• The market participants only submit allowances at time T , and not earlier.
• At time T , each market participant must surrender one allowance for each
unit of emissions made during this period.
• For any unit of emissions for which an emissions allowance was not
surrendered, a market participant must pay the penalty ρ.

dPt = b(Pt) dt + σ(Pt) ∙ dWt , P0 = p ∈ Rd ,

dEt = μ(Pt , Yt) dt , E0 = e ∈ R,

Yt = E [YT |Ft ] YT = φ(ET ).

• Pt = (St , Dt) St vector of fuel prices
• Dt an inelastic demand curve for electricity
• Et is the level of cumulative emissions at t
• Yt is the spot price of an allowance certificate at time t
• φ the penalty for over emission, φ(e) = 1[Λ,∞)(e)
• Λ represents the cap on total emissions. Typically, we have Λ > 0.

Dan Crisan (Imperial College London) Modelling multi-period carbon markets 27 June 2022 4 / 29



. Model for an electricity market under emissions regulation

• μ(Pt , Yt) instantaneous emission rate, e.g.,

μ(Pt , Yt) = c̃(Pt − Ytec)

• c̃ the inverse of the function giving the marginal costs of the goods
production
• ec the vector (with the same dimension as Pt ) giving the rates of emission
associated to the production of the various goods. Model as an FBSDEs

dPt = b(Pt) dt + σ(Pt) ∙ dWt , P0 = p ∈ Rd ,

dEt = μ(Pt , Yt) dt , E0 = e ∈ R, (1)

dYt = Zt ∙ dWt , YT = φ(ET ).

• W is a standard d dimensional Wiener process
• b, σ and μ satisfy standard Lipschitz and linear growth conditions
• φ is monotone increasing and bounded but not continuous in general.
• y 7→ μ(p, y) is strictly decreasing.

The FBSDE has the following special characteristics:
i. the forward and backward components are coupled
ii. the final condition is singular and
iii. the forward component of the model is degenerate.
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. Assumptions

The functions b : [0, T ] × Rd → Rd , σ : Rd → Rd×d and μ : Rd × R→ R are
s.t. there exist three constants L ≥ 1, l1, l2 > 0, 1/L ≤ l1 ≤ l2 ≤ L

1 b and σ have L-linear growth (this holds uniformly in time for b):

|b(t , p)| + |σ(p)| ≤ L(1 + |p|), p ∈ Rd , t ∈ [0, T ], (2)

and are L-Lipschitz continuous (also uniformly in time for b):

|b(t , p) − b(t , p′)| + |σ(p) − σ(p′)| ≤ L|p − p′|, p, p′ ∈ Rd , t ∈ [0, T ].
(3)

2 μ also has L-linear growth,

|μ(p, y)| ≤ L(1 + |p| + |y |), p ∈ Rd , y ∈ R, (4)

and is L-Lipschitz continuous, satisfying

|μ(p, y) − μ(p′, y ′)| ≤ L (|p − p′| + |y − y ′|) , p, p′ ∈ Rd , y , y ′ ∈ R. (5)

Finally, for any p ∈ Rd , the real function y 7→ μ(p, y) is strictly decreasing
and μ satisfies the following monotonicity condition

l1|y − y ′|2 ≤ (y − y ′) (μ(p, y ′) − μ(p, y)) ≤ l2|y − y ′|2, p ∈ Rd , y , y ′ ∈ R.
(6)
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. Assumptions

Consider a terminal condition (p, e) 7→ φ(p, e) being Lφ-Lipschitz continuous
in the p variable (uniformly in the e variable) and monotone increasing in the e
variable. That is,

|φ(p, e) − φ(p′, e)| ≤ Lφ|p − p′|, p, p′ ∈ Rd , e ∈ R,

φ(p, e′) ≥ φ(p, e) if e′ ≥ e.
(7)

Also, assume that φ takes values in [0, 1], such that, for all p ∈ Rd ,

inf
e∈R

φ(p, e) = 0, sup
e∈R

φ(p, e) = 1. (8)

Spaces
S2,k ([0, T ] the set of Rk -valued cadlag adapted processes Y , s.t.

‖Y‖2
S2 := E

[

sup
0≤t≤T

|Yt |
2

]

< ∞.

S2,k
c [0, T ] is the subspace of continuous process.

H2,k [0, T ] is the set of Rk -valued progressively measurable processes Z ,
such that

‖Z‖2
H2 := E

[∫ T

0
|Zt |

2dt

]

< ∞.

Dan Crisan (Imperial College London) Modelling multi-period carbon markets 27 June 2022 7 / 29



. Single Period Result

Define φ− and φ+ to be the left and right continuous versions of φ:
φ−(p, e) = sup

e′<e
φ(p, e′), φ+(p, e) = inf

e′>e
φ(p, e′).

Theorem

Given any initial condition (p, e) ∈ Rd × R, there exists a unique progressively
measurable 4-tuple of processes
(Pt , Et , Yt , Zt)0≤t≤T ∈ S2,d

c [0, T ] × S2,1
c [0, T ] × S2,1

c [0, T ] ×H2,d [0, T ] satisfying
the dynamics in (1) with (P0, E0) = (p, e) and such that

P [φ−(PT , ET ) ≤ YT ≤ φ+(PT , ET )] = 1, (9)

For any a ≥ 1, there exists a constant C′ > 0 depending on L, Lφ, T and a s.t.

E

[

sup
t∈[0,T ]

|Zt |
a

]

≤ C′(1 + |p|a), (10)

Moreover, if σ is bounded by L then there exists a constant C depending only
on L, Lφ and T , such that |Zt | ≤ C for almost every (t , ω) ∈ [0, T ] × Ω.

Remark. Theorem proved by Carmona and Delarue for φ = φ(e).
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. Single Period Result

The value function

Let Y t0,p,e,φ
t be the solution of the FBSDE (1) with a starting point (t0, p, e) and

a terminal condition φ satisfying the conditions. We define
v(t0, p, e) = Y t0,p,e,φ

t0 ,

Then
Y t0,p,e,φ

t = v(t , Pt0,p
t , Et0,p,e,φ

t )

for every (t0, p, e) ∈ [0, T ) × Rd × R and every t ∈ [t0, T ). Existence and
uniqueness for FBSDE (1) also holds with a starting point (t0, Pt0 , Et0) where
t0 ∈ [0, T ) and Pt0 and Et0 are square integrable, Ft0 -measurable random
variables. In this case,

v(t , P
t0,Pt0
t , E

t0,Pt0 ,Et0 ,φ

t ) = Y
t0,Pt0 ,Et0 ,φ

t .

Theorem

The value function defined above is the unique function s.t.

1 For any t ∈ [0, T ), the function v(t , ∙, ∙) is 1/(l1(T − t))-Lipschitz
continuous wrt e.

2 For any t ∈ [0, T ), the function v(t , ∙, ∙) is C-Lipschitz continuous with
respect to p, where C is a constant depending on L, Lφ and T only.
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. Single Period Result

Theorem

1 Let (Pt)0≤t≤T be the unique strong solution of the forward equation for P
with initial value p. Then, the unique strong solution, (Et)0≤t<T of

Et = e +

∫ t

0
μ(Ps, v(s, Ps, Es))ds, 0 ≤ t < T ,

is such that the process (e−rt v(s, Pt , Et))0≤t<T is a [0, 1]-valued
martingale with respect to the complete filtration generated by W.

2 The limit limt↑T Et exists almost surely and so does
limt↑T (e−rt v(s, Pt , Et)), being the limit of a bounded martingale.

The limit limt↑T v(t , Pt , Et) satisfies

P

[

φ− (PT , ET ) ≤ lim
t↑T

v(s, Pt , Et) ≤ φ+ (PT , ET )

]

= 1.

For any t ∈ [0, T ), p ∈ Rd the function e 7→ v(t , p, e) is monotone increasing
and satisfies

lim
e→∞

v(t , p, e) = e−r(T−t), lim
e→−∞

v(t , p, e) = 0.
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. Multi-period period model

Multi-period period model:

• remove the constraint of compliance period in isolation
• add a discount factor: r is the instantaneous risk-free interest rate

dPt = b(t , Pt)dt + σ(Pt)dWt , P0 = p ∈ Rd

dEt = μ(Pt , Yt)dt , E0 = e ∈ R

dYt = rYtdt + Zt ∙ dWt , YT = Φ(ET ),

(11)

Consider a market with q ≥ 2 trading periods,

[T0 = 0, T1], [T1, T2], ..., [Tq−1, Tq = T ].

For every k ≥ 1, at time Tk there is a penalty for non-compliance ρk if the
cumulative emissions have exceeded a cap Λ̂k .

For each k , Λ̂k could be a constant or a function of the total registered
emissions at Tk−1, the beginning of the period.
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. Multi-period period model

An example

The regulator releases ck+1 ≥ 0 allowances into circulation at each time
Tk for k = 0, 1, ..., q − 1.
At time T1, the level of cumulative emissions is equal to ET1 , and there
are c1 allowances available for compliance. The cap on cumulative
emissions at T1 is therefore simply Λ̂1 = c1.
At time T1, the regulator compares the value of ET1 to the cap c1.
Suppose now that ET1 < c1. Then, at time T1, a total of ET1 allowances
are surrendered by firms in the market for compliance.
c1 − ET1 allowances are left and are carried forward to the next period.
At time T1, the regulator releases c2 allowances into circulation. Hence,
the total number of allowances in circulation at the start of the [T1, T2]
period is Γ2(ET1) = c1 + c2 − ET1 .
Γ2(ET1), the number of allowances in circulation at T1, can be thought of
as the cap on emissions made during the [T1, T2] period.
At time T2, the cumulative emissions are equal to ET2 and the number of
emissions made during the [T1, T2] period is ET2 − ET1 .
At T2, the regulator checks whether ET2 − ET1 < Γ2(ET1), or equivalently
whether ET2 < Λ̂2(ET1), where Λ̂2(e) := Γ2(e) + e.
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. Multi-period period model

Λ̂2(ET1) can be thought of as the cap on cumulative emissions at T2.

In summary, at T2, compliance has occurred if and only if
ET2 − ET1 < Γ2(ET1), where Γ2(ET1) is the number of allowances in
circulation at T1, or equivalently if ET2 < Λ̂2(ET1).

There are different mechanisms that link the trading periods. These affect the
functional form of the cap functions Λ̂k or Γk for 1 ≤ k ≤ q:

Banking: allowances that are not used in one period can be carried
forward for compliance in the next period.

Withdrawal: for any 1 ≤ i ≤ q − 1, if the cap on emissions is exceeded at
Ti , then the regulator removes a quantity of allowances from the [Ti , Ti+1]
market allocation. The quantity of allowances removed is equal to the
level of excess emissions at Ti .

Borrowing: for any 1 ≤ i ≤ q − 1, firms may trade some of the allowances
to be released at Ti during [Ti−1, Ti ]. If each trading period represents a
year, this means that firms can, in a particular year that is not the final
year, use the following year’s allowance allocation for compliance.

Banking, borrowing and withdrawal are all currently in place in the EU ETS
(EU Emissions Trading System manual page 113).
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. Multi-period period model

For each 1 ≤ k ≤ q, the value of Eq
Tk−1

represents the level of cumulative

emissions at Tk−1. The cap on cumulative emissions at Tk will be Λ̂k (Eq
Tk−1

); it
will be FTk−1 measurable and can also be expressed as

Λ̂k (Eq
Tk−1

) = Γk (Eq
Tk−1

) + Eq
Tk−1

,

where Γk (Eq
Tk−1

) is the number of allowances in circulation at Tk−1.

Banking, borrowing and withdrawal

Suppose that, for each 1 ≤ k ≤ q, the regulator has a quantity of allowances
ck ≥ 0 set to be released into the market at Tk−1.

For banking, borrowing and withdrawal, we will have

Γk (e) =

(k+1)∧q∑

i=1

ci − e, (12)

For banking and withdrawal only, we will have

Γk (e) =
k∑

i=1

ci − e, (13)
for every 1 ≤ k ≤ q.
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. Multi-period period model

• Consider a market consisting of firms whose activities cause emissions.
• q represents the number of trading periods being considered.
• Let 0 ≤ T0 < T1 < ... < Tq and consider the q time intervals [T0 = 0, T1],
[T1, T2],..., [Tq−1, Tq = T ].
• During any trading period [Tk−1, Tk ], for 1 ≤ k ≤ q, emissions regulation is
in effect.
• Let (Eq

t )t∈[0,T ] be a real valued continuous process representing, at time t
the cumulative emissions made in the market up to time t .
• We define (Eq

t )t∈[0,T ] such that, for any 1 ≤ k ≤ q, Eq is part of the solution
of the FBSDE (1) on [Tk−1, Tk ].
• Assuming continuity at each compliance time Tk , for 1 ≤ k ≤ q − 1 allows
us to stipulate that, the terminal value of Eq on the [Tk−1, Tk ] FBSDE, and the
initial value of Eq on the [Tk , Tk+1] FBSDE, for 1 ≤ k ≤ q − 1, are equal.
• This is required to specify the initial and terminal conditions for those
FBSDEs, and it means that the solutions of the different FBSDEs defining the
multi period model are coupled: A multi period model is different to several
separate copies of a single period model.
• For every integer 0 ≤ k ≤ q, at time Tk , the regulator records the level of
cumulative emissions ETk , and, for each 0 ≤ k ≤ q − 1, a cap on emissions at
Tk+1 is defined.

Dan Crisan (Imperial College London) Modelling multi-period carbon markets 27 June 2022 15 / 29



. Multi-period period model

• The cap on the emissions made during the [Tk , Tk+1] trading period is equal
to Γk (ETk ), where Γk is a deterministic function which will be assumed to be
monotone decreasing.
• We set Λ̂k (e) = Γk (e) + e for every e ∈ R and every 1 ≤ k ≤ q. At each time
Tk , the regulator checks whether ETk − ETk−1 ≥ Γk (ETk−1) or equivalently
whether ETk ≥ Λ̂k (ETk−1).
•If so, it means that the [Tk−1, Tk ] period’s emissions have exceeded the time
Tk cap and market participants must pay a penalty ρk for each unit of
emissions above the cap, where ρk > 0 is a deterministic constant.
• Since we are aggregating at the level of the market and not considering
individual firms, we model this penalty by stipulating that the allowance price
process should be equal to ρk at Tk if the emissions at Tk have exceeded the
cap. Here, the functions Λ̂k and Γk for every 1 ≤ k ≤ q, are deterministic real
valued, measurable functions. In applications, the functions Γk may also be
bounded. For every 1 ≤ k ≤ q, the cap at Tk is a FTk−1 measurable random
variable that is known to market participants at time Tk−1.
• In reality (e.g. in the EU ETS), there are many firms in the market, each of
which has to surrender emissions allowances at the end of a trading period for
each unit of emissions made during that trading period. Any unit of emissions
that is not covered by an allowance incurs a penalty for the firm.
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. Multi-period period model

• We denote by r ≥ 0 a risk free interest rate such that investment of 1 unit of
currency at time 0 yields ert units of currency at time t .
• The evolution of the process (Pt , Et , Yt , Zt)0≤t≤T is governed by the FBSDE
(1) on [Tk−1, Tk ). Moreover, for every 1 ≤ k ≤ q,

lim
t↗Tk

Yt = YTk , if ETk < Λ̂k (ETk−1),

lim
t↗Tk

Yt = ρk , if ETk > Λ̂k (ETk−1),

YTk ≤ lim
t↑Tk

Yt ≤ ρk , if ETk = Λ̂k (ETk−1),

(14)

for every 1 ≤ k ≤ q.
• the rigurous terminal condition of the FBSDEs is given in terms of the
corresponding value function.
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. The value functions

Let 0 < t0 < T and let Φ be a function satisfying (7) and

inf
e∈R

Φ(p, e) = 0,

sup
e∈R

Φ(p, e) = ρ,
(15)

for some ρ > 0. Well-posedness holds for a FBSDE with terminal condition Φ.
Additionally the terminal condition for the FBSDE on [t0, T ] can depend on a
Ft0 -measurable random variable, and the initial values (p, e) can be replaced
by a pair of square integrable Ft0 random variables (P∗

t0 , E∗
t0).

We can define an operator mapping the parameters of FBSDE to the
components of its solution. Given any 0 ≤ t0 < T and any integer k ≥ 1, we
denote by L2(Ft0 ,R

k ) the set of all square integrable, Ft0 -measurable random
variables taking values in Rk . Also, given any Xt0 ∈ L2(Ft0 ,R

k ) for some k , let
⊕(Xt0) be the set of all random fields Φ : Rd × R→ R, measurable with
respect to the sigma algebra generated by Xt0 , and satisfying both (7) and, for
some ρ > 0, (15), almost surely. Given a T ′ with 0 < T ′ ≤ T , let DT ′ be the
following set.

DT ′ :={(t0, P∗
t0 , E∗

t0 , T ′, Φ) ∈ R× L2(Ft0 ,R
d ) × L2(Ft0 ,R) × R×

⊕(E∗
t0) : 0 ≤ t0 < T ′}.
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. The value functions

For any such T ′, we can now define two operators E : DT ′ → S2
c ([0, T ′] : R)

and Y : DT ′ → S2
c ([0, T ′] : R), mapping a tuple (t0, P∗

t0 , E∗
t0 , T ′, Φ) ∈ DT ′ to the

E and Y components, respectively, of the unique adapted solution of (1) on
[t0, T ′] with initial parameters (t0, P∗

t0 , E∗
t0) and terminal condition Φ at T ′.

Precisely, for (t0, P∗
t0 , E∗

t0 , T ′, Φ) ∈ DT ′ (P∗
t0 , E∗

t0), we set

Et(t0, P∗
t0 , E∗

t0 ; T ′, Φ) = E∗
t , t0 ≤ t ≤ T ′,

Yt(t0, P∗
t0 , E∗

t0 ; T ′, Φ) = Y ∗
t , t0 ≤ t ≤ T ′,

(16)

where we use the notation Et(t0, P∗
t0 , E∗

t0 ; T ′, Φ) =
(
E(t0, P∗

t0 , E∗
t0 ; T ′, Φ)

)
t
,

Yt(t0, P∗
t0 , E∗

t0 ; T ′, Φ) =
(
Y(t0, P∗

t0 , E∗
t0 ; T ′, Φ)

)
t
, and E∗, P∗ and Y ∗ satisfy the

dynamics

t ∈ [t0, T ′]

dP∗
t = b(t , P∗

t )dt + σ(P∗
t )dWt ,

dE∗
t = μ(P∗

t , Y ∗
t )dt

dY ∗
t = rY ∗

t dt + Z ∗
t ∙ dWt ,

(17)

with

Y ∗
T ′ = Φ(P∗

T ′ , E∗
T ′). (18)
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. The value functions

Remarks

The terminal condition for (17), given by (18) should be understood in a
relaxed sense, as described in Theorem 1 (see (8)).

This means that Y ∗ as defined here will not, in general, satisfy
Y ∗

T ′ = Φ(P∗
T ′ , E∗

T ′) exactly.

Note also that the Z ∗ process in (17) is, here and throughout the ensuing
sections, the integrand in the martingale representation of the martingale
(e−rtY ∗

t )t0≤t≤T ′ as a stochastic integral with respect to W .

Given a T ′, this process belongs to H2([0, T ′] : Rd ) and satisfies the
properties of the Z process in Theorem 1.

The Z ∗ process is less important here and can always be obtained by
considering the integrand in the martingale representation of the process
(e−rtY ∗

t )0≤t≤T .
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. The value functions

Now we will define a set of value functions vq
1 , vq

2 , .., .vq
q and terminal

conditions Φq
1 , Φq

2 , ..., Φq
q for the q period pricing problem. We will drop the

superscript q and write e.g. v1 instead of vq
1 . The q period pricing problem

started at time (0, p, e) comes from the solution of the following q FBSDE:
For every integer k such that 1 ≤ k ≤ q, the period k dynamics are

for t ∈ [Tk−1, Tk ) :

Et = Et(Tk−1, PTk−1 , ETk−1 ; Tk , Φk (∙, ∙; ETk−1))

Yt = Yt(Tk−1, PTk−1 , ETk−1 ; Tk , Φk (∙, ∙; ETk−1))

= vk (t , Pt , Et ; ETk−1),

and ETk := lim
t↑Tk

Et .

(19)

where, for any (p, e) ∈ Rd × R and any e0 ∈ R, and any integer k such that
1 ≤ k ≤ q − 1,

Φk (p, e; e0) = vk+1(Tk , p, e; e), if e < Λ̂k (e0), (20)

Φk (p, e; e0) = ρk , otherwise, (21)

and,
Φq(p, e; e0) = 0, if e < Λ̂q(e0), (22)

Φq(p, e; e0) = ρq otherwise. (23)
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. The value functions

Remarks.

As stated before, T0 = 0 and we set P0 = p, E0 = e for some given
(p, e) ∈ Rd × R.

Note that Φq is in fact independent of p.

For each fixed e0 ∈ R, the function vk (∙, ∙, ∙; e0) is simply the value
function v for the FBSDE (1) with terminal time Tk and terminal condition
(p, e) 7→ Φk (p, e; e0). For any t ∈ [Tk−1, Tk ), we have

vk (t , p, e; e0) = Yt(t , p, e; Tk , Φk (∙, ∙; e0)), (24)

for any (p, e) ∈ Rd and e0 ∈ R.

Similarly, with the notation set out above, let v(t0, Pt0 , Et0 ; T , Φ) = Y ∗
t0 .

When T and Φ are fixed, the solution to (17) satisfies Y ∗
t = v(t , P∗

t , E∗
t )

for every t0 ≤ t < T .
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. The value functions

The rationale behind (19) is similar to the argument for the case q = 1
Assuming that there exist processes E and Y satisfying the dynamics (19) for
any integer k such that 1 ≤ k ≤ q, we will have

YTk = vk+1(Tk , PTk , ETk ; ETk−1), (25)

for every integer k such that 1 ≤ k ≤ q. This means that the terminal
condition in (19) at Tk will be

Φk (PTk , ETk ; ETk−1) = YTk , if ETk < Λ̂k (ETk−1), (26)

Φk (PTk , ETk ; ETk−1) = ρk , otherwise, (27)

for every integer k such that 1 ≤ k ≤ q − 1 i.e. (26) is the terminal condition in
(19) for every period before the final one. In the final period, the terminal
condition reduces to

Φq(PTq , ETq ; ETq−1) = ρq1[Λ̂q(ETq−1
),+∞)(ETq ), (28)

which is similar to the terminal condition used in the single period model, but
with an adjusted cap.
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. The value functions

Additional Assumptions

• For every k , the function Γk : R→ R is monotone decreasing and satisfies
lime→−∞ Γk (e) = +∞.
• The penalties (ρk )k≥1 satisfy 0 < e−r(Tk−Tk−1)ρk ≤ ρk−1 for every k ≥ 2 (See
page 134 of the EU ETS handbook).

Theorem

The q period model as described above is well-posed. That is, there exists a
unique progressively measurable 4-tuple of processes
(Pt , Et , Yt , Zt)0≤t≤T ∈ S2,d

c [0, T ] × S2,1
c [0, T ] × S2,1[0, T ] ×H2,d [0, T ] satisfying

on each period [Tk , Tk+1), k ≤ q:

dPt = b(Pt) dt + σ(Pt) dWt ,

dEt = μ(Pt , Yt) dt ,

dYt = rYt dt + Zt dWt .

(29)

In addition, for each integer k such that 1 ≤ k ≤ q, the process Y is
continuous on [Tk−1, Tk ); it can have a jump at Tk as follows: for every
1 ≤ k ≤ q, limt↗Tk Yt = YTk , if ETk < Λ̂k (ETk−1), limt↗Tk Yt = ρk , if
ETk > Λ̂k (ETk−1), and YTk ≤ limt↗Tk Yt ≤ ρk , if ETk = Λ̂k (ETk−1).
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. Asymtotic behaviour of the multi-period model

Theorem

For each q, we consider a q period model with penalties (ρk )1≤k≤q and cap
functions (Λ̂k )1≤k≤q (or equivalently (Γk )1≤k≤q). Under some assumptions on
the penalties (ρk )k≥1, and the cap functions, the corresponding decoupling
fields satisfy

vq−1
1 (0, p, e; e0) ≤ vq

1 (0, p, e; e0), (30)

for every (p, e) ∈ Rd × R and e0 ∈ R. Since the sequence is upper bounded
by the penalty ρ1 it is also convergent.
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. Asymtotic behaviour of the multi-period model

Figure: Plot of (p, e) 7→ vn(0, p, e)

Case study: Sam Howison and Daniel Schwarz. Risk-neutral pricing of
financial instruments in emission markets: a structural approach. SIAM
Journal on Financial Mathematics, 3(1):709739, 2012.
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. Infinite period model

The q period model introduced in this work is more realistic and
applicable than a single period model because it allows one to model
multiple times at which compliance occurs and a new allowance
allocation is released into a carbon market.

One disadvantage of this, however, is that, for a q period model, one
must specify the end date Tq. This is important because, at Tq , the
terminal condition is different to the terminal condition specified at every
prior time Tk , for 1 ≤ k ≤ q − 1,

The time Tq is the time at which all emissions regulation ceases and this
is why the terminal condition at this time specifies that allowances at Tq

will have price 0 if the time Tq cumulative emissions are below the time
Tq cap.

For an more realistic model, one can consider a model for a carbon
market with no specified end date. In the setting of the EU ETS, there is
currently no time at which one can say with certainty that emissions
regulation will cease or the banking of allowances will be prohibited.

We introduce a model for a carbon market in operation over the time
period [0,∞) with no end date and show that it is well posed (under
certain condition).

Dan Crisan (Imperial College London) Modelling multi-period carbon markets 27 June 2022 27 / 29



. Infinite period model

Theorem

Set Tk = kτ and Λk = kλ, λ, τ > 0. Under certain assumptions, there exist a
4-tuple (P, E , Y , Z ) s.t. for any [Tk , Tk+1):

dPt = b(Pt) dt + σ(Pt) dWt

dEt = μ(Pt , Yt) dt

dYt = rYt dt + Zt dWt .

The process Y is continuous on [Tk−1, Tk ). It can jump at (Tk )k≥1, where
YTk

− = YTk , if ETk < Λk ,

YTk
− = 1, if ETk > Λk ,

YTk ≤YTk
− ≤ 1, if ETk = Λk .

(31)

Moreover, there exists a continuous function w : [0, τ )×Rd ×R→ R such that
Yt = w(t − Tk−1, Pt , Et − Λk−1), t ∈ [Tk−1, Tk ), k ≥ 1. Setting, for e ∈ R,

Φ(p, e) =w(0, p, e − λ), if e < λ, (32)

Φ(p, e) =1, otherwise. (33)

the function w satisfies,
Φ−(p, e) ≤ lim inft↑τ w(t , pt , et) ≤ lim supt↑τ w(t , pt , et) ≤ Φ+(p, e), for any
family (pt , et)0≤t<τ converging to (p, e) as t tends to τ .
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. Final remarks

In this paper we study a risk-neutral models for pricing carbon allowances
with multiple/infinite trading periods.
The main result of the paper gives a characterization of the pair of
processes emission rates/carbon allowance price as the unique solution
of a set of FBSDEs that are linked through their transition values at times
Tk , k = 0, . . . , q − 1 and terminal conditions at times Tk , k = 1, . . . , q .
The study of this FBSDE is closely linked to the study of the associated
value function (known as decoupling field in the FBSDE literature). This
decoupling field can be considered to be the solution solution to a
degenerate quasilinear elliptic PDE.
We also introduce a model for a carbon market in operation over the time
period [0,∞) with no end date and show that it is well posed under
certain conditions.
We characterize the pair of processes emission rates/carbon allowance
price as the unique solution of an infinite sequence of FBSDEs that are
linked through their transition values at times Tk , k ≥ 1.
We show that the spot price Y q

t of an allowance certificate for the
q-period model converges, as the number of periods q increases, to the
spot price Y∞

t of an allowance certificate for the infinite period model.

Dan Crisan (Imperial College London) Modelling multi-period carbon markets 27 June 2022 29 / 29


	.
	Talk Synopsis
	Motivation
	Model for an electricity market under emissions regulation
	Assumptions
	Single Period Result
	Multi-period period model
	The value functions
	Asymtotic behaviour of the multi-period model
	Infinite period model
	Final remarks


