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Extended Mean Field Control Problems with Singular
Controls

We consider the state dynamics

dXt = b(t,mt ,Xt , ξt)dt + σ(t,mt ,Xt , ξt)dWt + γ(t)dξt ,

where mt := P(Xt ,ξt) and ξ a non-decreasing, càdlàg control.

The goal is maximising the reward functional

J(ξ) :=

∫ T

0
f (t,mt)dt + g(mT )− E

[∫
[0,T ]

c(t)dξt

]
.

→ How to extend this to c(t,mt ,Xt , ξt)?
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Connection to Regular Controls

Suppose ξ is absolutely continuous with ‖ξ̇t‖ ≤ K . → bounded velocity
We can view instead ut := ξ̇t as the control for the new dynamics

dXt = [b(t,Xt , ξt) + γ(t)ut ] dt + σ(t,Xt , ξt)dWt

dξt = utdt.

The reward functional can then be written as

J(u) = E
[∫ T

0
f (t,Xt , ξt)dt + g(XT , ξT )−

∫ T

0
c(t) · utdt

]
.

→ Singular controls arise as the limit of bounded velocity controls.

Robert Denkert (HU Berlin) MFC with Singular Controls 3 / 19



Connection to Regular Controls

Suppose ξ is absolutely continuous with ‖ξ̇t‖ ≤ K . → bounded velocity
We can view instead ut := ξ̇t as the control for the new dynamics

dXt = [b(t,Xt , ξt) + γ(t)ut ] dt + σ(t,Xt , ξt)dWt

dξt = utdt.

The reward functional can then be written as

J(u) = E
[∫ T

0
f (t,Xt , ξt)dt + g(XT , ξT )−

∫ T

0
c(t) · utdt

]
.

→ Singular controls arise as the limit of bounded velocity controls.

Robert Denkert (HU Berlin) MFC with Singular Controls 3 / 19



The Extended Reward Functional
We define

J(t,m; ξ) :=

∫ T

t
f (s,ms)ds + g(mT )− E

[∫ T

t
c(s,ms ,Xs , ξs)dξs

]
,

for absolutely continuous controls.

For general singular controls we define the reward as the maximal reward
we can get via absolutely continuous approximations

J(t,m, ξ) := sup
ξn→ξ

lim sup
n→∞

J(t,m, ξn).

The value function is defined as usual

V (t,m) := sup
ξ, ξt−=m

J(t,m, ξ).

→ Use the weak M1 topology.
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The M1 topology in R
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The M1 topology in R

So we define the costs for such a jump from (t−, ξt−) to (t, ξt) as∫ ξt−ξt−

0
c(t,mt ,Xt− + γ(t)ζ, ξt− + ζ)dζ.
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The Weak M1 topology in Rd
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The Weak M1 topology in Rd
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So we define

Cξ(t,m,Xt−, ξt−, ξt) := inf
ζ∈Ξ(ξ,ξ′)

∫ 1

0
c(t,m,Xt− + γ(t)(ζλ − ξt−), ζλ)dζλ,

over the set Ξ(ξ, ξ′) of all absolutely continuous and monotone paths from
ξt− to ξt .

→ We can generalise this idea to jumps in t 7→ mt ∈ P2 and define

Cm(t,m,m′)

as the minimal costs of an interpolating path from (t−,m) to (t,m′).
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An Explicit Representation of J

Theorem
The reward functional J defined before has the following alternative
characterisation

J(t,m, ξ)

=

∫ T

t
f (s,ms)ds + g(mT )−

∑
J[t,T ](m)

Cm(s,ms−,ms)

− E
[ ∑
Jc

[t,T ]
(m)∩J[t,T ](ξ)

Cξ(s,ms ,Xs−, ξs−, ξs)

+

∫
Jc

[t,T ]
(m)∩Jc

[t,T ]
(ξ)

c(s,ms ,Xs , ξs)dξs

]
,

where J and Jc denote the jump and continuity sets respectively.
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Dynamic Programming Principle

Theorem
Let (t,m) ∈ [0,T ]× P2(Rd × Rl). For all s ∈ [t,T ], we have the
following dynamic programming principle

V (t,m)

= sup
ξ,ξt−=m

[
V (s,ms−) +

∫ s

t
f (r ,mr )dr −

∑
J[t,s](m)

Cm(r ,mr−,mr )

− E
[ ∑
Jc

[t,s]
(m)∩J[t,s](ξ)

Cξ(r ,mr ,Xr−, ξr−, ξr )

+

∫
Jc

[t,s]
(m)∩Jc

[t,s]
(ξ)

c(r ,mr ,Xr , ξr )dξr

]]
.
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Wasserstein Calculus

A function u : P2(Rd)→ R admits a linear derivative if there exists a
function δmu : P2(Rd)× Rd → R such that

u(m′)− u(m) =

∫ 1

0

∫
Rd

δmu(λm′ + (1− λ)m, x)(m′ −m)(dx)dλ.

As example, for functions of the form

u(m) =

∫
Rd×Rl

ψ(x)m(dx),

the linear derivative is given, up to an additive constant, by

δmu(m, x) = ψ(x).
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QVI, Continuation Region

Theorem (Itô formula without jumps by Cosso et al, 2022)

Let u ∈ C 1,2
2 and ξr = ξt− for all r ∈ [t, s]. Then

u(s,ms) = u(t,mt) +

∫ s

t
Lu(r ,mr )dr ,

where L is the infinitesimal generator of (t,Xt)t∈[0,T ] defined by

Lu(t,m) := ∂tu(t,m) +

∫
Rd×Rl

b(t,m, x , ξ) · ∂xδmu(t,m, x , ξ)

+
1

2
σσT (t,m, x , ξ) : ∂2

xxδmu(t,m, x , ξ)m(dx , dξ).

→ In the continuation region the optimal control is ξt = ξt−, hence we
can derive an HJB from the DPP and Itô’s formula.

−Lu − f = 0.
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QVI, Intervention Region
The intervention region should be characterised by

V (t,m) = sup
m′�tm,m′ 6=m

[V (t,m′)− Cm(t,m,m′)],

where {m′ �t m} are the reachable states (t,m′) starting from (t−,m).

→ This is not a good characterisation since m′n → m always gives equality.

Lemma
Assume that u ∈ C 1,2

2 and let t ∈ [0,T ] be fixed. Let m ∈ P2(Rd ×Rl), if
we have

u(t,m) + Cm(t,m,m′) ≥ u(t,m′) for all m′ �t m,

then

∂(x ,ξ)δmu(t,m, x , ξ) · (γ(t), 1) ≤ c(t,m, x , ξ) for all (x , ξ) ∈ Rd × Rl .
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Quasi-Variational Inequality

Theorem
Suppose the value function V is continuous, then it is the minimal
bounded viscosity supersolution to

min

{
− Lu(t,m)− f (t,m),

inf
(x ,ξ)∈Rd×Rl

[
c(t,m, x , ξ)− ∂(x ,ξ)δmu(t,m, x , ξ) · (γ(t), 1)

]}
= 0,

min

{
u(T ,m)− g(T ,m),

inf
(x ,ξ)∈Rd×Rl

[
c(T ,m, x , ξ)− ∂(x ,ξ)δmu(T ,m, x , ξ) · (γ(t), 1)

]}
= 0.
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Proof Idea: Connection to Regular Controls (revisited)

Recall the bounded velocity control problem:
We consider a regular control u with u ≥ 0 and ‖u‖ ≤ K and

dXt = [b(t,mt ,Xt , ξt) + γ(t)ut ] dt + σ(t,mt ,Xt , ξt)dWt

dξt = utdt.

We want to maximise

J(t,m; u) =

∫ T

t
f (t,mt)dt + g(mT )− E

[∫
[t,T ]

c(t,mt ,Xt , ξt) · utdt

]
.

Define the corresponding value function as

VK (t,m) := sup
u≥0,‖u‖≤K

J(t,m; u).

→ We expect VK ↑ V as K →∞.
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Proof Idea: The Master Equation for VK

The master equation for the bounded velocity problem is

−Lv(t,m)− f (t,m)

+

∫
Rd×Rl

inf
u≥0,‖u‖≤K

{[
c(t,m, x , ξ)− ∂(x,ξ)δmv(t,m, x , ξ) · (γ(t), 1)

]
· u
}
m(dx , dξ)

= 0,

v(T , ·) = g .

→ This equation looks very similar to our QVI.
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Quasi-Variational Inequality (revisited)

Theorem
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Thank you

preprint on arXiv soon
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