Extended Mean Field Control Problems with Singular Controls

Robert Denkert

joint work with Ulrich Horst

Humboldt University of Berlin

Extended Mean Field Control Problems with Singular Controls

We consider the state dynamics

$$
d X_{t}=b\left(t, m_{t}, X_{t}, \xi_{t}\right) d t+\sigma\left(t, m_{t}, X_{t}, \xi_{t}\right) d W_{t}+\gamma(t) d \xi_{t}
$$

where $m_{t}:=\mathbb{P}_{\left(X_{t}, \xi_{t}\right)}$ and ξ a non-decreasing, càdlàg control.
The goal is maximising the reward functional

$$
J(\xi):=\int_{0}^{T} f\left(t, m_{t}\right) d t+g\left(m_{T}\right)-\mathbb{E}\left[\int_{[0, T]} c(t) d \xi_{t}\right]
$$

Extended Mean Field Control Problems with Singular Controls

We consider the state dynamics

$$
d X_{t}=b\left(t, m_{t}, X_{t}, \xi_{t}\right) d t+\sigma\left(t, m_{t}, X_{t}, \xi_{t}\right) d W_{t}+\gamma(t) d \xi_{t}
$$

where $m_{t}:=\mathbb{P}_{\left(X_{t}, \xi_{t}\right)}$ and ξ a non-decreasing, càdlàg control.
The goal is maximising the reward functional

$$
J(\xi):=\int_{0}^{T} f\left(t, m_{t}\right) d t+g\left(m_{T}\right)-\mathbb{E}\left[\int_{[0, T]} c(t) d \xi_{t}\right]
$$

\rightarrow How to extend this to $c\left(t, m_{t}, X_{t}, \xi_{t}\right)$?

Connection to Regular Controls

Suppose ξ is absolutely continuous with $\left\|\dot{\xi}_{t}\right\| \leq K . \rightarrow$ bounded velocity We can view instead $u_{t}:=\dot{\xi}_{t}$ as the control for the new dynamics

$$
\begin{aligned}
d X_{t} & =\left[b\left(t, X_{t}, \xi_{t}\right)+\gamma(t) u_{t}\right] d t+\sigma\left(t, X_{t}, \xi_{t}\right) d W_{t} \\
d \xi_{t} & =u_{t} d t
\end{aligned}
$$

The reward functional can then be written as

$$
J(u)=\mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}, \xi_{t}\right) d t+g\left(X_{T}, \xi_{T}\right)-\int_{0}^{T} c(t) \cdot u_{t} d t\right]
$$

Connection to Regular Controls

Suppose ξ is absolutely continuous with $\left\|\dot{\xi}_{t}\right\| \leq K . \rightarrow$ bounded velocity We can view instead $u_{t}:=\dot{\xi}_{t}$ as the control for the new dynamics

$$
\begin{aligned}
d X_{t} & =\left[b\left(t, X_{t}, \xi_{t}\right)+\gamma(t) u_{t}\right] d t+\sigma\left(t, X_{t}, \xi_{t}\right) d W_{t} \\
d \xi_{t} & =u_{t} d t
\end{aligned}
$$

The reward functional can then be written as

$$
J(u)=\mathbb{E}\left[\int_{0}^{T} f\left(t, X_{t}, \xi_{t}\right) d t+g\left(X_{T}, \xi_{T}\right)-\int_{0}^{T} c(t) \cdot u_{t} d t\right] .
$$

\rightarrow Singular controls arise as the limit of bounded velocity controls.

The Extended Reward Functional

We define

$$
J(t, m ; \xi):=\int_{t}^{T} f\left(s, m_{s}\right) d s+g\left(m_{T}\right)-\mathbb{E}\left[\int_{t}^{T} c\left(s, m_{s}, X_{s}, \xi_{s}\right) d \xi_{s}\right]
$$

for absolutely continuous controls.
For general singular controls we define the reward as the maximal reward we can get via absolutely continuous approximations

$$
J(t, m, \xi):=\sup _{\xi^{n} \rightarrow \xi} \limsup _{n \rightarrow \infty} J\left(t, m, \xi^{n}\right)
$$

The value function is defined as usual

$$
V(t, m):=\sup _{\xi, \xi_{t-=m}} J(t, m, \xi)
$$

The Extended Reward Functional

We define

$$
J(t, m ; \xi):=\int_{t}^{T} f\left(s, m_{s}\right) d s+g\left(m_{T}\right)-\mathbb{E}\left[\int_{t}^{T} c\left(s, m_{s}, X_{s}, \xi_{s}\right) d \xi_{s}\right]
$$

for absolutely continuous controls.
For general singular controls we define the reward as the maximal reward we can get via absolutely continuous approximations

$$
J(t, m, \xi):=\sup _{\xi^{n} \rightarrow \xi} \limsup _{n \rightarrow \infty} J\left(t, m, \xi^{n}\right)
$$

The value function is defined as usual

$$
V(t, m):=\sup _{\xi, \xi_{t-=m}} J(t, m, \xi)
$$

\rightarrow Use the weak M_{1} topology.

The M_{1} topology in \mathbb{R}

The M_{1} topology in \mathbb{R}

The M_{1} topology in \mathbb{R}

So we define the costs for such a jump from $\left(t-, \xi_{t-}\right)$ to $\left(t, \xi_{t}\right)$ as

$$
\int_{0}^{\xi_{t}-\xi_{t-}} c\left(t, m_{t}, X_{t-}+\gamma(t) \zeta, \xi_{t-}+\zeta\right) d \zeta
$$

The Weak M_{1} topology in \mathbb{R}^{d}

The Weak M_{1} topology in \mathbb{R}^{d}

So we define
$C_{\xi}\left(t, m, X_{t-}, \xi_{t-}, \xi_{t}\right):=\inf _{\zeta \in \Xi\left(\xi, \xi^{\prime}\right)} \int_{0}^{1} c\left(t, m, X_{t-}+\gamma(t)\left(\zeta_{\lambda}-\xi_{t-}\right), \zeta_{\lambda}\right) d \zeta_{\lambda}$,
over the set $\equiv\left(\xi, \xi^{\prime}\right)$ of all absolutely continuous and monotone paths from ξ_{t-} to ξ_{t}.

So we define
$C_{\xi}\left(t, m, X_{t-}, \xi_{t-}, \xi_{t}\right):=\inf _{\zeta \in \Xi\left(\xi, \xi^{\prime}\right)} \int_{0}^{1} c\left(t, m, X_{t-}+\gamma(t)\left(\zeta_{\lambda}-\xi_{t-}\right), \zeta_{\lambda}\right) d \zeta_{\lambda}$,
over the set $\equiv\left(\xi, \xi^{\prime}\right)$ of all absolutely continuous and monotone paths from ξ_{t-} to ξ_{t}.
\rightarrow We can generalise this idea to jumps in $t \mapsto m_{t} \in \mathcal{P}_{2}$ and define

$$
C_{m}\left(t, m, m^{\prime}\right)
$$

as the minimal costs of an interpolating path from $(t-, m)$ to $\left(t, m^{\prime}\right)$.

An Explicit Representation of J

Theorem

The reward functional J defined before has the following alternative characterisation

$$
\begin{aligned}
& J(t, m, \xi) \\
& =\int_{t}^{T} f\left(s, m_{s}\right) d s+g\left(m_{T}\right)-\sum_{J_{[t, T]}(m)} C_{m}\left(s, m_{s-}, m_{s}\right) \\
& \quad-\mathbb{E}\left[\sum_{J_{[t, T]}^{c}(m) \cap J_{[t, T]}(\xi)} C_{\xi}\left(s, m_{s}, X_{s-}, \xi_{s-}, \xi_{s}\right)\right. \\
& \left.\quad+\int_{J_{[t, T]}^{c}(m) \cap J_{[t, T]}^{c}(\xi)} c\left(s, m_{s}, X_{s}, \xi_{s}\right) d \xi_{s}\right]
\end{aligned}
$$

where J and J^{c} denote the jump and continuity sets respectively.

Dynamic Programming Principle

Theorem

Let $(t, m) \in[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{\prime}\right)$. For all $s \in[t, T]$, we have the following dynamic programming principle

$$
\begin{aligned}
& V(t, m) \\
& =\sup _{\xi, \xi_{t-}=m}\left[V\left(s, m_{s-}\right)+\int_{t}^{s} f\left(r, m_{r}\right) d r-\sum_{J_{[t, s]}(m)} C_{m}\left(r, m_{r-}, m_{r}\right)\right. \\
& \quad-\mathbb{E}\left[\sum_{J_{[t, s]}^{c}(m) \cap J_{[t, s]}(\xi)} C_{\xi}\left(r, m_{r}, X_{r-}, \xi_{r-}, \xi_{r}\right)\right. \\
& \left.\left.\quad+\int_{J_{[t, s]}^{c}(m) \cap J_{[t, s]}^{c}(\xi)} c\left(r, m_{r}, X_{r}, \xi_{r}\right) d \xi_{r}\right]\right] .
\end{aligned}
$$

Wasserstein Calculus

A function $u: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ admits a linear derivative if there exists a function $\delta_{m} u: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
u\left(m^{\prime}\right)-u(m)=\int_{0}^{1} \int_{\mathbb{R}^{d}} \delta_{m} u\left(\lambda m^{\prime}+(1-\lambda) m, x\right)\left(m^{\prime}-m\right)(d x) d \lambda
$$

As example, for functions of the form

$$
u(m)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{\prime}} \psi(x) m(d x)
$$

the linear derivative is given, up to an additive constant, by

$$
\delta_{m} u(m, x)=\psi(x)
$$

QVI, Continuation Region

Theorem (Itô formula without jumps by Cosso et al, 2022)
Let $u \in C_{2}^{1,2}$ and $\xi_{r}=\xi_{t-}$ for all $r \in[t, s]$. Then

$$
u\left(s, m_{s}\right)=u\left(t, m_{t}\right)+\int_{t}^{s} \mathbb{L} u\left(r, m_{r}\right) d r
$$

where \mathbb{L} is the infinitesimal generator of $\left(t, X_{t}\right)_{t \in[0, T]}$ defined by

$$
\begin{aligned}
\mathbb{L} u(t, m):= & \partial_{t} u(t, m)+\int_{\mathbb{R}^{d} \times \mathbb{R}^{\prime}} b(t, m, x, \xi) \cdot \partial_{x} \delta_{m} u(t, m, x, \xi) \\
& +\frac{1}{2} \sigma \sigma^{T}(t, m, x, \xi): \partial_{x x}^{2} \delta_{m} u(t, m, x, \xi) m(d x, d \xi) .
\end{aligned}
$$

\rightarrow In the continuation region the optimal control is $\xi_{t}=\xi_{t-}$, hence we can derive an HJB from the DPP and Itô's formula.

$$
-\mathbb{L} u-f=0
$$

QVI, Intervention Region

The intervention region should be characterised by

$$
V(t, m)=\sup _{m^{\prime} \preceq t m, m^{\prime} \neq m}\left[V\left(t, m^{\prime}\right)-C_{m}\left(t, m, m^{\prime}\right)\right]
$$

where $\left\{m^{\prime} \preceq_{t} m\right\}$ are the reachable states $\left(t, m^{\prime}\right)$ starting from $(t-, m)$.

QVI, Intervention Region

The intervention region should be characterised by

$$
V(t, m)=\sup _{m^{\prime} \preceq t m, m^{\prime} \neq m}\left[V\left(t, m^{\prime}\right)-C_{m}\left(t, m, m^{\prime}\right)\right],
$$

where $\left\{m^{\prime} \preceq_{t} m\right\}$ are the reachable states $\left(t, m^{\prime}\right)$ starting from $(t-, m)$. \rightarrow This is not a good characterisation since $m_{n}^{\prime} \rightarrow m$ always gives equality.

QVI, Intervention Region

The intervention region should be characterised by

$$
V(t, m)=\sup _{m^{\prime} \preceq t m, m^{\prime} \neq m}\left[V\left(t, m^{\prime}\right)-C_{m}\left(t, m, m^{\prime}\right)\right]
$$

where $\left\{m^{\prime} \preceq_{t} m\right\}$ are the reachable states $\left(t, m^{\prime}\right)$ starting from $(t-, m)$. \rightarrow This is not a good characterisation since $m_{n}^{\prime} \rightarrow m$ always gives equality.

Lemma

Assume that $u \in C_{2}^{1,2}$ and let $t \in[0, T]$ be fixed. Let $m \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{\prime}\right)$, if we have

$$
u(t, m)+C_{m}\left(t, m, m^{\prime}\right) \geq u\left(t, m^{\prime}\right) \quad \text { for all } m^{\prime} \preceq_{t} m
$$

then

$$
\partial_{(x, \xi)} \delta_{m} u(t, m, x, \xi) \cdot(\gamma(t), 1) \leq c(t, m, x, \xi) \quad \text { for all }(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{\prime}
$$

Quasi-Variational Inequality

Theorem
Suppose the value function V is continuous, then it is the minimal bounded viscosity supersolution to

$$
\begin{aligned}
& \min \{-\mathbb{L} u(t, m)-f(t, m), \\
& \\
& \left.\inf _{(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{\prime}}\left[c(t, m, x, \xi)-\partial_{(x, \xi)} \delta_{m} u(t, m, x, \xi) \cdot(\gamma(t), 1)\right]\right\}=0, \\
& \min \{u(T, m)-g(T, m), \\
& \\
& \left.\inf _{(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{\prime}}\left[c(T, m, x, \xi)-\partial_{(x, \xi)} \delta_{m} u(T, m, x, \xi) \cdot(\gamma(t), 1)\right]\right\}=0 .
\end{aligned}
$$

Proof Idea: Connection to Regular Controls (revisited)

Recall the bounded velocity control problem:
We consider a regular control u with $u \geq 0$ and $\|u\| \leq K$ and

$$
\begin{aligned}
d X_{t} & =\left[b\left(t, m_{t}, X_{t}, \xi_{t}\right)+\gamma(t) u_{t}\right] d t+\sigma\left(t, m_{t}, X_{t}, \xi_{t}\right) d W_{t} \\
d \xi_{t} & =u_{t} d t
\end{aligned}
$$

We want to maximise

$$
J(t, m ; u)=\int_{t}^{T} f\left(t, m_{t}\right) d t+g\left(m_{T}\right)-\mathbb{E}\left[\int_{[t, T]} c\left(t, m_{t}, X_{t}, \xi_{t}\right) \cdot u_{t} d t\right] .
$$

Define the corresponding value function as

$$
V_{K}(t, m):=\sup _{u \geq 0,\|u\| \leq K} J(t, m ; u)
$$

\rightarrow We expect $V_{K} \uparrow V$ as $K \rightarrow \infty$.

Proof Idea: The Master Equation for V_{K}

The master equation for the bounded velocity problem is

$$
\begin{aligned}
& -\mathbb{L} v(t, m)-f(t, m) \\
& +\int_{\mathbb{R}^{d} \times \mathbb{R}^{\prime}} \inf _{u \geq 0,\|u\| \leq K}\left\{\left[c(t, m, x, \xi)-\partial_{(x, \xi)} \delta_{m} v(t, m, x, \xi) \cdot(\gamma(t), 1)\right] \cdot u\right\} m(d x, d \xi) \\
& =0, \\
& v(T, \cdot)=g .
\end{aligned}
$$

\rightarrow This equation looks very similar to our QVI.

Quasi-Variational Inequality (revisited)

Theorem
Suppose the value function V is continuous, then it is the minimal bounded viscosity supersolution to

$$
\begin{aligned}
& \min \{-\mathbb{L} u(t, m)-f(t, m), \\
& \\
& \left.\inf _{(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{\prime}}\left[c(t, m, x, \xi)-\partial_{(x, \xi)} \delta_{m} u(t, m, x, \xi) \cdot(\gamma(t), 1)\right]\right\}=0, \\
& \min \{u(T, m)-g(T, m), \\
& \\
& \left.\inf _{(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{\prime}}\left[c(T, m, x, \xi)-\partial_{(x, \xi)} \delta_{m} u(T, m, x, \xi) \cdot(\gamma(t), 1)\right]\right\}=0 .
\end{aligned}
$$

Thank you

preprint on arXiv soon

