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Extended Mean Field Control Problems with Singular
Controls

We consider the state dynamics
dXt - b(ta mt, Xta ét)dt + U(ta mt7 Xta gt)th + ’Y(t)dé-ta
where m; .= P(x, ¢,) and £ a non-decreasing, cadlag control.

The goal is maximising the reward functional

J(E) = /O F(t, me)dt + g(my) — E [ /[0 . c(r)dgt] .
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Extended Mean Field Control Problems with Singular
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We consider the state dynamics
dXt - b(ta mt, Xta ét)dt + U(ta mt7 Xta gt)th + ’Y(t)dé-ta
where m; .= P(x, ¢,) and £ a non-decreasing, cadlag control.

The goal is maximising the reward functional

J(E) = /O F(t, me)dt + g(my) — E [ /[0 . c(r)dgt] .

— How to extend this to c(t, m¢, X, &t)?
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Connection to Regular Controls

Suppose ¢ is absolutely continuous with ||€;|| < K. — bounded velocity
We can view instead u; = £; as the control for the new dynamics

dXt = [b(t, Xt, 51;) + ’y(t)ut] dt + O'(t, Xt, gt)th
d&t = Utdt.

The reward functional can then be written as

T

J(u)=E [/OT f(t, Xe,&e)dt + g(XT1,€71) —/0 c(t) - utdt} .
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Connection to Regular Controls

Suppose ¢ is absolutely continuous with ||€;|| < K. — bounded velocity
We can view instead u; = £; as the control for the new dynamics

dXe = [b(t, Xe, &) + () ue] dt + o (t, Xe, &) dWe
d&t = Utdt.
The reward functional can then be written as

T

J(u)=E [/OT f(t, Xe,&e)dt + g(XT1,€71) —/0 c(t) - utdt} .

— Singular controls arise as the limit of bounded velocity controls.
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L
The Extended Reward Functional
We define

T T
Semi€) = [ f(smads-+glmr) £ | [ clo.meXe)ds].
t t
for absolutely continuous controls.

For general singular controls we define the reward as the maximal reward
we can get via absolutely continuous approximations

J(t,m, &) = sup limsup J(t, m,&").

En—E n—oo

The value function is defined as usual

V(t,m) = sup J(t,m§).
§ §e—=m
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We define

T T
Semi€) = [ f(smads-+glmr) £ | [ clo.meXe)ds].
t t
for absolutely continuous controls.

For general singular controls we define the reward as the maximal reward
we can get via absolutely continuous approximations

J(t,m, &) = sup limsup J(t, m,&").

En—E n—oo

The value function is defined as usual

V(t,m) = sup J(t,m§).
§ §e—=m

— Use the weak M; topology.
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The My topology in R
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The My topology in R

A
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The My topology in R

A

>

So we define the costs for such a jump from (t—, &) to (t,&;) as

§e—&t—
/0 c(t, me, Xe— +~(t)¢, §e— + ()dC.
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NS
The Weak M; topology in R
A

/g__/"_

t

/ 3e-
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NS
The Weak M; topology in R

A
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So we define

1
Cf(ta m, Xt77 gtfv ft) = Ceg(‘;{/)/o C(ta m, th + V(t)(gk - gtf)v C)\)dC/\7

over the set =(&,¢’) of all absolutely continuous and monotone paths from

§t— to &t
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So we define

1
CE(ta m, Xt77 gtfv 51‘) = Ceg(‘;{/)/o C(ta m, th + V(t)(gk - gtf)a C)\)dC/\7

over the set =(&,¢’) of all absolutely continuous and monotone paths from

§t— to &t

— We can generalise this idea to jumps in t — m; € P, and define
Cm(t, m,m’)

as the minimal costs of an interpolating path from (t—, m) to (t, m’).
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NS
An Explicit Representation of J

Theorem

The reward functional J defined before has the following alternative
characterisation

J(t,m,§)

T
/ f(s,ms)ds + g(mr) — Z Cm(s, ms_, ms)
t

Jie, 71(m)

_E|: Z Cg(s, mS,Xs—ags—vé‘s)

Jie, 7 (MmN e, 71 (€)
+/ C($7 mS7XS7§S)d65:|7
S (MmN 11(6)

where J and J¢ denote the jump and continuity sets respectively.
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Dynamic Programming Principle

Theorem

Let (t,m) € [0, T] x Po(RY x R). For all s € [t, T], we have the
following dynamic programming principle

V(t, m)

S
= sup [V(s,ms_)—i—/ f(r,m.)dr — Z Cm(r,me—,m;)
£t—=m t

Jit,51(m)

—E[ Z Cg(r,thr—7€r—7£r)

I, (MmN e, (€)

+/ c(r, mr7Xr7£r)d£r:|]-
Jie.q (MNJG 4(6)
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Wasserstein Calculus

A function u : P(RY) — R admits a linear derivative if there exists a
function 6w : Po(RY) x RY — R such that

1
u(m') — u(m) = / St + (1 — \)m, x)(m' — m)(dx)dA.
o JRrd
As example, for functions of the form

um) = [ wlxm(a),
RI xR/
the linear derivative is given, up to an additive constant, by

Omu(m, x) = 1(x).
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L
QVI, Continuation Region

Theorem (Itd formula without jumps by Cosso et al, 2022)
Let u € C21’2 and & =& for all r € [t,s]. Then

u(s, ms) = u(t, my) +/ Lu(r, m,)dr,

t

where 1L is the infinitesimal generator of (t, Xt)sc(o, 1] defined by

Lu(t, m) = Oru(t, m) +/

b(ta m,x,§) : 6X(smu(t’ m7X7£)
RIxR/

¥ 5007 (6, mx,€) - dmn(t, m, x, € m{o, dE).

— In the continuation region the optimal control is £&; = £;_, hence we
can derive an HJB from the DPP and It6's formula.

—Lu—-f=0.
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L
QVI, Intervention Region

The intervention region should be characterised by

V(t,m) = sup  [V(t,m) — Cu(t, m,m)],

m'<tm,m’'#m

where {m" <; m} are the reachable states (t, m’) starting from (t—, m).
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— This is not a good characterisation since m/, — m always gives equality.
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L
QVI, Intervention Region

The intervention region should be characterised by

V(t,m) = sup  [V(t,m) — Cu(t, m,m)],

m'<tm,m’'#m

where {m" <; m} are the reachable states (t, m’) starting from (t—, m).
— This is not a good characterisation since m/, — m always gives equality.

Lemma

Assume that u € C21’2 and let t € [0, T] be fixed. Let m € Po(R? x R), if
we have

u(t,m) + Cp(t,m,m’) > u(t,m’) for all m' < m,
then

Oxe)0mu(t, m, x,€) - (v(t),1) < c(t, m, x,§) for all (x,€) € RY x R,
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Quasi-Variational Inequality

Theorem

Suppose the value function V' is continuous, then it is the minimal
bounded viscosity supersolution to

min { — Lu(t, m) — f(t, m),

et mx €)= egdmale.mx,€) - (20 1)] | =0

min { (T, m) - (7. m).

f T, 9Ny _ax (Sm 7—7 , X, . t,]. :O
(x.£)CRIXR! [c(T, m,x,€) — Oxe)0mu( T, m,x,€) - ((t), 1)] }
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Proof Idea: Connection to Regular Controls (revisited)

Recall the bounded velocity control problem:
We consider a regular control u with v > 0 and |ju|| < K and

dXt = [b(tv mg, Xta é't) + ’Y(t)Ut] dt + O-(t7 my, Xh gt)th
dé-t = Utdt.

We want to maximise

J(t,m;u) = /tT f(t,m:)dt + g(mr) —E

/ C(t, mt,Xt,ﬁt) . Utdt .
[t,T]
Define the corresponding value function as

Vk(t,m) = sup  J(t,m;u).
u>0,[lul|<K

— We expect Vx 1V as K — .
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NS
Proof Idea: The Master Equation for Vi

The master equation for the bounded velocity problem is
—Lv(t,m) — f(t, m)

+/]Rd><R’ uZO,i\?ufugK { [C(ta m7X7£) - 8(x,f)(smv(t‘) m, X, g) : (V(t)v 1)] ’ u}m(dx, dg)

— This equation looks very similar to our QVI.
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Quasi-Variational Inequality (revisited)

Theorem

Suppose the value function V' is continuous, then it is the minimal
bounded viscosity supersolution to

min { — Lu(t, m) — f(t, m),

et mx €)= egdmale.mx,€) - (20 1)] | =0

min { (T, m) - (7. m).

f T, 9Ny _ax (Sm 7—7 , X, . t,]. :O
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Thank you

preprint on arXiv soon
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