Mean Field Game of Mutual Holding (MFG–MH)

Joint work with Nizar Touzi

Mao Fabrice Djete

École Polytechnique

June 30, 2022
Motivation and Presentation

1. N–Player game
2. Intuition of the limit: Mean Field Game of Mutual Holding

MFG of Mutual Holding

1. Formulation of the problem
2. MFG of Mutual Holding
Table of Contents

1 Motivation and Presentation
 - N–Player game
 - Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding
 - Formulation of the problem
 - MFG of Mutual Holding
Table of Contents

1 Motivation and Presentation
 • N–Player game
 • Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding
 • Formulation of the problem
 • MFG of Mutual Holding
Goal: Study optimal behavior of many agents who can hold each other
Goal: Study optimal behavior of many agents who can hold each other

2–Player game model

- Agents 1 and 2 hold each other through the dynamics X^1 and X^2:

Agent 1 holds part of Agent 2 via $\pi^{1,2}$ and Agent 2 holds part of Agent 1 via $\pi^{2,1}$
Motivation and Presentation

\textbf{N}-Player game

\textbf{Goal:} Study optimal behavior of many agents who can hold each other

\textbf{2-Player game model}

- Agents 1 and 2 hold each other through the dynamics X^1 and X^2:
 - Agent 1 holds part of Agent 2 via $\pi^{1,2}$ and Agent 2 holds part of Agent 1 via $\pi^{2,1}$

\[
\begin{align*}
 dX^1_t &= dP^1_t + \pi^{1,2}_t dX^2_t - \pi^{2,1}_t dX^1_t \\
 dX^2_t &= dP^2_t + \pi^{2,1}_t dX^1_t - \pi^{1,2}_t dX^2_t
\end{align*}
\]

with

\[
\begin{align*}
 dP^1_t &= b^1_t dt + \sigma^1_t dW^1_t + \sigma^{0,1}_t dW^0_t \\
 dP^2_t &= b^2_t dt + \sigma^2_t dW^2_t + \sigma^{0,2}_t dW^0_t
\end{align*}
\]
Goal: Study optimal behavior of many agents who can hold each other

2–Player game model

- Agents 1 and 2 hold each other through the dynamics X^1 and X^2:

 Agent 1 holds part of Agent 2 via $\pi^{1,2}$ and Agent 2 holds part of Agent 1 via $\pi^{2,1}$

 \[
 dX_t^1 = dP_t^1 + \pi_t^{1,2} dX_t^2 - \pi_t^{2,1} dX_t^1 \\
 \text{with} \quad dP_t^1 = b_t^1 dt + \sigma_t^1 dW_t + \sigma_t^{0,1} dW_t^0
 \]

 and

 \[
 dX_t^2 = dP_t^2 + \pi_t^{2,1} dX_t^1 - \pi_t^{1,2} dX_t^2 \\
 \text{with} \quad dP_t^2 = b_t^2 dt + \sigma_t^2 dW_t + \sigma_t^{0,2} dW_t^0
 \]

- $\pi^{1,2}$ and $\pi^{2,1}$ are the strategies/controls of players.

- Reward:

 \[
 J_1(\pi^{1,2}, \pi^{2,1}) := \mathbb{E}[U(X_T^1)] \quad \text{and} \quad J_2(\pi^{1,2}, \pi^{2,1}) := \mathbb{E}[U(X_T^2)]
 \]

- Objective: Find $(\pi^{*,1,2}, \pi^{*,2,1})$ a Nash equilibrium
N–Player game formulation

- Asset X^i of agent $i = 1, \ldots, N$ follows:

$$\begin{align*}
\text{Part I hold} & \quad \text{Part owned by others} \\
P^i_t \text{ and } (\pi^i,j X^j) & \quad \text{d}X^i_t = dP^i_t - \sum_{j=1}^{N} \pi^i,j dX^j_t - \sum_{j=1}^{N} \pi^j,i dX^i_t
\end{align*}$$

with $dP^i_t = b^i_t dt + \sigma^i_t dW^i_t + \sigma^0,i dW^0_t$ and π^i,j is the investment of agent i in agent j.

- The control of agent i is

$$\Pi^i := (\pi^{i,1}, \ldots, \pi^{i,N}).$$

- Reward of agent i is

$$J_i(\Pi^1, \ldots, \Pi^N) := \mathbb{E}[U(X^i_T)]$$
N–Player game

N–player game formulation

- Asset X^i of agent $i = 1, \ldots, N$ follows:

$$
\begin{align*}
\text{Part I hold} & \quad \text{Part owned by others} \\
P_t^i \text{ and } (\pi_t^{i,j}X_t^j)_j & \quad (\pi_t^{j,i}X_t^i)_j \\
\rightarrow dX_t^i = dP_t^i + \sum_{j=1}^{N} \pi_t^{i,j}dX_t^j - \sum_{j=1}^{N} \pi_t^{j,i}dX_t^i
\end{align*}
$$

with $dP_t^i = b_t^i dt + \sigma_t^i dW_t + \sigma_0^i dW_0$ and $\pi_t^{i,j}$ is the investment of agent i in agent j.

- The control of agent i is

$$
\Pi^i := (\pi_t^{i,1}, \ldots, \pi_t^{i,N}).
$$

- Reward of agent i is

$$
J_i(\Pi^1, \ldots, \Pi^N) := \mathbb{E}[U(X_T^i)]
$$

- **Goal:** Find a Nash equilibrium (Π^1, \ldots, Π^N) i.e. for each i

$$
J_i(\Pi^1, \ldots, \Pi^N) \geq J_i(\Pi^1, \ldots, \Pi^{i-1}, \beta, \Pi^{i+1}, \ldots, \Pi^N), \text{ for all } \beta = (\beta^1, \ldots, \beta^N)
$$

Literature: Bertucci–Touzi, Bassou–Touzi (*in preparation*)

- **Important feature**

Control of **one** agent $i \Pi_t^i$ is s.t. $\Pi_t^i \in \mathbb{R} \times \cdots \times \mathbb{R} \longrightarrow$ what happens when $N \rightarrow \infty$

N times

Mao Fabrice Djeté

École Polytechnique

9th International Colloquium on Backward Stochastic Differential Equations and Mean Field Systems
Motivation and Presentation

- N-Player game
- Intuition of the limit: Mean Field Game of Mutual Holding

MFG of Mutual Holding

- Formulation of the problem
- MFG of Mutual Holding
Recall the formulation

\[dX_t^i = dP_t^i + \sum_{j=1}^{N} \pi_{t}^{i,j} dX_t^j - \sum_{j=1}^{N} \pi_{t}^{j,i} dX_t^i \quad \text{with} \quad dP_t^i = b_t^i dt + \sigma_t^i dW_t^i + \sigma_t^{0,i} dB_t. \]

control of agent \(i \) is \(\Pi^i := (\pi^{i,1}, \ldots, \pi^{i,N}) \)
Recall the formulation

$$dX_t^i = dP_t^i + \sum_{j=1}^{N} \pi_{t}^{i,j} dX_t^j - \sum_{j=1}^{N} \pi_{t}^{j,i} dX_t^i$$
with
$$dP_t^i = b_t^i dt + \sigma_t^i dW_t^i + \sigma_t^{0,i} dB_t.$$

control of agent i is $\Pi^i := (\pi^{i,1}, \cdots, \pi^{i,N})$

Need of symmetry and rescaling

$$(b_t^i, \sigma_t^i, \sigma_t^{0,i}) \xrightarrow{\text{replaced by}} (b, \sigma, \sigma^0)(t, X_t^i, \mu^N_t)$$
and
$$\pi_{t}^{i,j} \xrightarrow{\text{replaced by}} \frac{1}{N} \pi_{t}^{i,j}$$
Recall the formulation

\[dX_t^i = dP_t^i + \sum_{j=1}^{N} \pi_t^{i,j} dX_t^j - \sum_{j=1}^{N} \pi_t^{j,i} dX_t^i \] with \[dP_t^i = b_t^i dt + \sigma_t^i dW_t^i + \sigma_t^{0,i} dB_t. \]

control of agent \(i \) is \(\Pi^i := (\pi_i^1, \cdots, \pi_i^N) \)

Need of symmetry and rescaling

\((b_t^i, \sigma_t^i, \sigma_t^{0,i}) \) replaced by \((b, \sigma, \sigma^0)(t, X_t^i, \mu_t^N) \) and \(\pi_t^{i,j} \) replaced by \(\frac{1}{N} \pi_t^{i,j} \)

Intuition of the optimal control

\(\pi_t^{i,j} \) the optimal investment of agent \(i \) in agent \(j \) has the shape

\[\pi_t^{i,j} = \pi(t, X_t^i, X_t^j, \mu_t^N) \]
Following our guessing, the deviating player’s dynamic is rewritten

\[dX_t^i = dP_t^i + \frac{1}{N} \sum_{j=1}^{N} \beta(t, X_t^i, X_t^j, \mu_t^N) dX_t^j - \frac{1}{N} \sum_{j=1}^{N} \pi(t, X_t^j, X_t^i, \mu_t^N) dX_t^i \]
Motivation and Presentation

Intuition of the limit: Mean Field Game of Mutual Holding

- Following our guessing, the deviating player’s dynamic is rewritten

\[
dX^i_t = dP^i_t + \frac{1}{N} \sum_{j=1}^{N} \beta(t, X^i_t, X^j_t, \mu^N_t) dX^j_t - \frac{1}{N} \sum_{j=1}^{N} \pi(t, X^i_t, X^j_t, \mu^N_t) dX^i_t
\]

- **Optimization problem** (by propagation of chaos intuition) \((\pi, \mu)\) solves

\[
\hat{E}^\mu [U(\hat{X}_T)] = E[U(X_T^{\pi, \pi, \mu})] \geq E[U(X_T^{\beta, \pi, \mu})], \text{ for each } \beta
\]

where \(X^{\beta, \pi, \mu} := X^\beta\) with

\[
X^\beta = P^\beta + \hat{E}^\mu \left[\int_0^T \beta(t, X^\beta_t, \hat{X}_t, \mu_t) d\hat{X}_t \right] - \int_0^T \hat{E}^\mu \left[\pi(t, \hat{X}_t, X^\beta_t, \mu_t) \right] dX^\beta_t
\]

and

\[
dP^\beta_t = b(t, X^\beta_t, \mu_t) dt + \sigma(t, X^\beta_t, \mu_t) dW_t + \sigma^0(t, X^\beta_t, \mu_t) dW^0_t
\]

\[\rightarrow \text{Two parameters} \text{ are fixed!}\]
Following our guessing, the deviating player’s dynamic is rewritten

\[dX^i_t = dP^i_t + \frac{1}{N} \sum_{j=1}^{N} \beta(t, X^i_t, X^j_t, \mu^N_t) dX^j_t - \frac{1}{N} \sum_{j=1}^{N} \pi(t, X^j_t, X^i_t, \mu^N_t) dX^i_t \]

Optimization problem (by propagation of chaos intuition) \((\pi, \mu)\) solves

\[\hat{E}^{\mu} [U(\hat{X}_T)] = E[U(X^\pi_T, \pi, \mu)] \geq E[U(X^\beta_T, \pi, \mu)], \text{ for each } \beta \]

where \(X^{\beta, \pi, \mu} := X^\beta\) with

\[X^\beta = P^\beta + \hat{E}^{\mu} \left[\int_0^T \beta(t, X^\beta_t, \hat{X}_t, \mu_t) d\hat{X}_t \right] - \int_0^T \hat{E}^{\mu} \left[\pi(t, \hat{X}_t, X^\beta_t, \mu_t) \right] dX^\beta_t \]

and \(dP^\beta_t = b(t, X^\beta_t, \mu_t) dt + \sigma(t, X^\beta_t, \mu_t) dW_t + \sigma^0(t, X^\beta_t, \mu_t) dW^0_t \)

\(\rightarrow\) Two parameters are fixed!

Optimal solution

\[X = P + \hat{E}^{\mu} \left[\int_0^T \pi(t, X_t, \hat{X}_t, \mu_t) d\hat{X}_t \right] - \int_0^T \hat{E}^{\mu} \left[\pi(t, \hat{X}_t, X_t, \mu_t) \right] dX_t, \]

with \(dP_t = b(t, X_t, \mu_t) dt + \sigma(t, X_t, \mu_t) dW_t + \sigma^0(t, X_t, \mu_t) dW^0_t\) and \(\mu = \mathcal{L}(X|W^0)\).
Following our guessing, the deviating player’s dynamic is rewritten

\[dX_t^i = dP_t^i + \frac{1}{N} \sum_{j=1}^{N} \beta(t, X_t^i, X_t^j, \mu_t^N) dX_t^j - \frac{1}{N} \sum_{j=1}^{N} \pi(t, X_t^j, X_t^i, \mu_t^N) dX_t^i \]

Optimization problem (by propagation of chaos intuition) \((\pi, \mu)\) solves

\[\hat{E}^\mu [U(\hat{X}_T)] = E[U(\hat{X}^\pi_T, \pi, \mu)] \geq E[U(X_T^\beta, \pi, \mu)] \]

where \(X^\beta, \pi, \mu := X^\beta\) with

\[X_t^\beta = P_t^\beta + \hat{E}^\mu \left[\int_0^t \beta(t, X_t^\beta, \hat{X}_t, \mu_t) d\hat{X}_t \right] - \int_0^t \hat{E}^\mu \left[\pi(t, \hat{X}_t, X_t^\beta, \mu_t) \right] dX_t^\beta \]

and \(dP_t^\beta = b(t, X_t^\beta, \mu_t) dt + \sigma(t, X_t^\beta, \mu_t) dW_t + \sigma^0(t, X_t^\beta, \mu_t) dW_t^0\)

\[\rightarrow \text{Two parameters are fixed!} \]

Optimal solution

\[X_t = P_t + \hat{E}^\mu \left[\int_0^t \pi(t, X_t, \hat{X}_t, \mu_t) d\hat{X}_t \right] - \int_0^t \hat{E}^\mu \left[\pi(t, \hat{X}_t, X_t, \mu_t) \right] dX_t, \]

with \(dP_t = b(t, X_t, \mu_t) dt + \sigma(t, X_t, \mu_t) dW_t + \sigma^0(t, X_t, \mu_t) dW_t^0\) and \(\mu = \mathcal{L}(X|W^0)\).

Via \(\hat{E}^\mu [\int_0^t \cdots d\hat{X}_t]\), the (conditional) law of the differential appears in the dynamic!
Table of Contents

1 Motivation and Presentation
 - N–Player game
 - Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding
 - Formulation of the problem
 - MFG of Mutual Holding
Table of Contents

1 Motivation and Presentation
 - N–Player game
 - Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding
 - Formulation of the problem
 - MFG of Mutual Holding
Optimization problem \(X \) the optimal process is semi–martingale i.e.

\[
dX_t = B^\mu(t, X)dt + \Sigma^\mu(t, X)dW_t + \Sigma^{\mu,0}(t, X)dW_t^0.
\]

Given \((\pi, \mu)\), the controlled process \(X^\beta \) is rewritten
Optimization problem X the optimal process is semi–martingale i.e.
\[dX_t = B^\mu(t, X_t)dt + \Sigma^\mu(t, X_t)dW_t + \Sigma^\mu,0(t, X_t)dW^0_t. \]

Given (π, μ), the controlled process X^β is rewritten
\[dX^\beta_t = \frac{\hat{\mathbb{E}}^\mu[\beta(t, X_t^\beta, \hat{X}_t, \mu_t) B^\mu(t, \hat{X})] + b(t, X_t^\beta, \mu_t)}{1 + \hat{\mathbb{E}}^\mu[\pi(t, \hat{X}_t, X_t^\beta, \mu_t)]} dt + \frac{\sigma(t, X_t^\beta, \mu_t)}{1 + \hat{\mathbb{E}}^\mu[\pi(t, \hat{X}_t, X_t^\beta, \mu_t)]} dW_t + \frac{\hat{\mathbb{E}}^\mu[\beta(t, X_t^\beta, \hat{X}_t, \mu_t) \Sigma^\mu,0(t, \hat{X})] + \sigma^0(t, X_t^\beta, \mu_t)}{1 + \hat{\mathbb{E}}^\mu[\pi(t, \hat{X}_t, X_t^\beta, \mu_t)]} dW^0_t. \]
Optimization problem \(X \) the optimal process is semi–martingale i.e.

\[
dX_t = B^\mu(t, X)dt + \Sigma^\mu(t, X)dW_t + \Sigma^{\mu,0}(t, X)dW^0_t.
\]

Given \((\pi, \mu)\), the controlled process \(X^\beta \) is rewritten

\[
dX^\beta_t = \frac{\hat{E}^\mu[\beta(t, X^\beta_t, \hat{X}_t, \mu_t)B^\mu(t, \hat{X})] + b(t, X^\beta_t, \mu_t)}{1 + \hat{E}^\mu[\pi(t, \hat{X}_t, X^\beta_t, \mu_t)]}dt + \frac{\sigma(t, X^\beta_t, \mu_t)}{1 + \hat{E}^\mu[\pi(t, \hat{X}_t, X^\beta_t, \mu_t)]}dW_t
\]

\[
+ \frac{\hat{E}^\mu[\beta(t, X^\beta_t, \hat{X}_t, \mu_t)\Sigma^{\mu,0}(t, \hat{X})] + \sigma^0(t, X^\beta_t, \mu_t)}{1 + \hat{E}^\mu[\pi(t, \hat{X}_t, X^\beta_t, \mu_t)]}dW^0_t
\]

Drift and Volatility at the equilibrium: \(\mu_t(dx)dt \) almost every \((t, x)\)

\[
\Sigma^\mu(t, x) = \frac{\sigma(t, x, \mu_t)}{1 + \int \pi(t, y, x, \mu_t)\mu_t(dy)}
\]

and

\[
(B^\mu, \Sigma^\mu)(t, x) = \frac{\int \pi(t, x, y, \mu_t)(B^\mu, \Sigma^\mu)(dy) + (b, \sigma^0)(t, x, \mu_t)}{1 + \int \pi(t, y, x, \mu_t)\mu_t(dy)}
\]

\(\rightarrow \) Optimization problem with control of volatility !

\(\rightarrow \) Equations over the drift and the volatility
Simple representation

- Let \((F, G, G^0)\) be known. Given \(\mu, \pi\) and \((B, \Sigma, \Sigma^0)\),

\[
dX_t^\beta = F_t(X_t^\beta, \mu, \beta, \pi, B)\,dt + G_t(X_t^\beta, \mu, \beta, \pi, \Sigma)\,dW_t + G^0_t(X_t^\beta, \mu, \beta, \pi, \Sigma^0)\,dW^0_t
\]

1- Optimization

\[
\sup_{\beta \in \mathcal{A}} \mathbb{E}[U(X_T^\beta)] \xrightarrow{\text{leading to}} \beta_t^* = \beta^*(t, X_t^\beta, \mu, \pi, (B, \Sigma, \Sigma^0))
\]

2- Consistency properties

\[
\begin{bmatrix}
B_t, \Sigma_t, \Sigma_t^0
\end{bmatrix} = \begin{bmatrix}
F_t(x, \mu, \pi, \pi, B),
G_t(x, \mu, \pi, \Sigma),
G^0_t(x, \mu, \pi, \Sigma^0)
\end{bmatrix}
\]

and

\[
\beta^*(t, X_t^\beta, \mu, \pi, (B, \Sigma, \Sigma^0)) = \pi_t \quad \text{and} \quad \mu_t = \mathcal{L}(X_t^\beta^* | W^0)
\]
Formulation of the problem

Simple representation

- Let \((F, G, G^0)\) be known. Given \(\mu, \pi\) and \((B, \Sigma, \Sigma^0)\),

\[
dX_t^\beta = F_t(X_t^\beta, \mu, \beta, \pi, B)dt + G_t(X_t^\beta, \mu, \beta, \pi, \Sigma)dW_t + G_t^0(X_t^\beta, \mu, \beta, \pi, \Sigma^0)dW_t^0
\]

1- **Optimization**

\[
\sup_{\beta \in A} \mathbb{E}[U(X_T^\beta)] \quad \text{leading to} \quad \beta_t^* = \beta^*(t, X_t^\beta, \mu, \pi, (B, \Sigma, \Sigma^0))
\]

2- **Consistency properties**

\[
\begin{bmatrix}
B_t, \Sigma_t, \Sigma_t^0
\end{bmatrix} = \begin{bmatrix}
F_t(x, \mu, \pi, \pi, B), & G_t(x, \mu, \pi, \pi, \Sigma), & G_t^0(x, \mu, \pi, \pi, \Sigma^0)
\end{bmatrix}
\]

and

\[
\beta^*(t, X_t^\beta, \mu, \pi, (B, \Sigma, \Sigma^0)) = \pi_t \quad \text{and} \quad \mu_t = \mathcal{L}(X_{t^*}^\beta | W^0)
\]

- In our case: \(A = \{\text{All maps } \beta : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathcal{P}(\mathbb{R}) \to [0, 1]\}\),

\[
G_t(x, \nu, \beta, \pi, \Sigma) = \frac{\sigma(t, x, \nu)}{1 + \int \pi(t, \hat{x}, x, \nu)d\hat{x}}
\]

and

\[
(F_t, G_t^0)(\cdots) = \frac{\int \beta(t, x, \hat{x}, \nu)(B, \Sigma^0)(t, \hat{x})\nu(d\hat{x}) + (b, \sigma^0)(t, x, \nu)}{1 + \int \pi(t, \hat{x}, x, \nu)\nu(d\hat{x})}
\]
Table of Contents

1 Motivation and Presentation
 • N–Player game
 • Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding
 • Formulation of the problem
 • MFG of Mutual Holding
No common noise i.e. \(\sigma^0 = 0 \) Solving \(\sup_\beta \mathbb{E}[U(X_T^\beta)] \) leading to \(\beta^* \) where

\[
\begin{align*}
\text{d}X^\beta_t &= \frac{\widehat{\mathbb{E}}^\mu \left[\beta(t, X_t^\beta, \hat{X}_t, \mu_t) B^\mu(t, \hat{X}) \right] + b(t, X_t^\beta, \mu_t)}{1 + \widehat{\mathbb{E}}^\mu \left[\pi(t, \hat{X}_t, X_t^\beta, \mu_t) \right]} \text{d}t + \frac{\sigma(t, X_t^\beta, \mu_t)}{1 + \widehat{\mathbb{E}}^\mu \left[\pi(t, \hat{X}_t, X_t^\beta, \mu_t) \right]} \text{d}W_t
\end{align*}
\]

and verifying

\[
\pi = \beta^* \quad + \quad \mu = \mathcal{L}(X^{\pi, \pi, \mu}) \quad + \quad \text{equation over the drift } B^\mu
\]
No common noise i.e. $\sigma^0 = 0$ Solving $\sup_\beta \mathbb{E}[U(X^\beta_T)]$ leading to β^* where

$$dX^\beta_t = \frac{\widehat{\mathbb{E}}^\mu \left[\beta(t, X^\beta_t, \hat{X}_t, \mu_t) B^\mu(t, \hat{X}) \right] + b(t, X^\beta_t, \mu_t)}{1 + \widehat{\mathbb{E}}^\mu \left[\pi(t, \hat{X}_t, X^\beta_t, \mu_t) \right]} dt + \frac{\sigma(t, X^\beta_t, \mu_t)}{1 + \widehat{\mathbb{E}}^\mu \left[\pi(t, \hat{X}_t, X^\beta_t, \mu_t) \right]} dW_t$$

and verifying

$$\pi = \beta^* + \mu = \mathcal{L}(X^{\pi, \pi, \mu}) + \text{equation over the drift } B^\mu$$

\rightarrow No control of volatility!

\rightarrow Not an obvious fact Indeed, remember N–player game

$$dX^i_t = dP^i_t + \frac{1}{N} \sum_{j=1}^N \beta^j_t dX^j_t - \frac{1}{N} \sum_{j=1}^N \pi^j,^i_t dX^i_t \rightarrow dX_t = \mathbf{M}(t, \beta, \Pi, \mu^N_t) \bullet \left[b_t dt + \sigma_t \bullet dW_t \right] \text{.}$$

$N \times N$ matrix
Motivation and Presentation

No common noise i.e. $\sigma^0 = 0$ Solving $\sup_{\beta} \mathbb{E}[U(X_T^\beta)]$ leading to β^* where

$$dX_t^\beta = \frac{\widehat{\mathbb{E}}^\mu \left[\beta(t, X_t^\beta, \hat{X}_t, \mu_t) B^\mu(t, \hat{X}_t) \right]}{1 + \widehat{\mathbb{E}}^\mu \left[\pi(t, \hat{X}_t, X_t^\beta, \mu_t) \right]} dt + \frac{\sigma(t, X_t^\beta, \mu_t)}{1 + \widehat{\mathbb{E}}^\mu \left[\pi(t, \hat{X}_t, X_t^\beta, \mu_t) \right]} dW_t$$

and verifying

$$\pi = \beta^* + \mu = \mathcal{L}(X^\pi, \pi; \mu) + \text{ equation over the drift } B^\mu$$

\rightarrow No control of volatility!

\rightarrow Not an obvious fact Indeed, remember N–player game

$$dX_t^i = dP_t^i + \frac{1}{N} \sum_{j=1}^N \beta_t^j dX_t^j - \frac{1}{N} \sum_{j=1}^N \pi_t^{i,j} dX_t^i \quad \longrightarrow \quad dX_t = M(t, \beta, \Pi, \mu_t^N) \bullet \left[b_t dt + \sigma_t \bullet dW_t \right].$$

Theorem (D. and Touzi (2021)) Under technical conditions over (b, σ, U) and $U \nearrow$, there is at least one MFG-MH equilibrium (π^*, μ) with $\pi^*(t, x, y) = 1_{\left\{ b(t, y, \mu_t) \geq -c(t, \mu_t) \right\}}$

$$B(t, x, m) := \left(\frac{1}{2} (b + c)^+ - (b + c)^- \right)(t, x, m) \quad \text{and} \quad \Sigma(t, x, m) := \frac{\sigma(t, x, m)}{1 + 1_{\left\{ B(t, x, m) \geq 0 \right\}}}$$

$c(t, m) \geq 0$ is the unique solution of the equation $c = \frac{1}{2} \int_{\mathbb{R}} \left(c + b(t, y, m) \right)^+ m(dy)$.
Non-negative drift i.e. \(b \geq 0 \quad \rightarrow \quad c(t, m) = \int_{\mathbb{R}} b(t, y, m)m(dy) \)

- **Optimal control** \(\pi^*(t, x, y) = 1 \)

- **Equilibrium dynamics** \(B(t, x, m) := \frac{1}{2} (b(t, x, m) + c(t, m)) \) and \(\Sigma(t, x, m) := \frac{1}{2} \sigma(t, x, m) \)
Non-negative drift i.e. \(b \geq 0 \) \(\implies \) \(c(t, m) = \int_{\mathbb{R}} b(t, y, m) m(dy) \)

- **Optimal control** \(\pi^*(t, x, y) = 1 \)
- **Equilibrium dynamics** \(B(t, x, m) := \frac{1}{2} (b(t, x, m) + c(t, m)) \) and \(\Sigma(t, x, m) := \frac{1}{2} \sigma(t, x, m) \)

- **Example** When \((b, \sigma)\) constant

\[
\begin{aligned}
\left\{ \begin{array}{l}
dP_t = b dt + \sigma dW_t \\
P_t \sim \mathcal{N}(bt, \sigma^2 t)
\end{array} \right. &\quad \implies \quad \left\{ \begin{array}{l}
dX^*_t = b dt + \frac{1}{2} \sigma dW_t \\
X^*_t \sim \mathcal{N}(bt, \frac{1}{4} \sigma^2 t)
\end{array} \right.
\end{aligned}
\]
Non–negative drift i.e. \(b \geq 0 \longrightarrow c(t, m) = \int_{\mathbb{R}} b(t, y, m)m(dy) \)

- **Optimal control** \(\pi^*(t, x, y) = 1 \)

- **Equilibrium dynamics** \(B(t, x, m) := \frac{1}{2} (b(t, x, m) + c(t, m)) \) and \(\Sigma(t, x, m) := \frac{1}{2} \sigma(t, x, m) \)

Example When \((b, \sigma) \) constant

\[
\begin{align*}
\begin{cases}
dP_t &= bdt + \sigma dW_t \\
P_t &\sim \mathcal{N}(bt, \sigma^2 t)
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
dX^*_t &= bdt + \frac{1}{2} \sigma dW_t \\
X^*_t &\sim \mathcal{N}(bt, \frac{1}{4} \sigma^2 t)
\end{cases}
\end{align*}
\]

Negative drift i.e. \(b < 0 \longrightarrow c(t, m) = 0 \)

- **Optimal control** \(\pi^*(t, x, y) = 0 \)

- **Equilibrium dynamics** \(B(t, x, m) := b(t, x, m) \) and \(\Sigma(t, x, m) := \sigma(t, x, m) \)
Non-negative drift i.e. $b \geq 0 \rightarrow c(t, m) = \int_{\mathbb{R}} b(t, y, m) m(dy)$

- **Optimal control** $\pi^*(t, x, y) = 1$

- **Equilibrium dynamics** $B(t, x, m) := \frac{1}{2} (b(t, x, m) + c(t, m))$ and $\Sigma(t, x, m) := \frac{1}{2} \sigma(t, x, m)$

- **Example** When (b, σ) constant

 $\begin{aligned}
 \left\{ \begin{aligned}
 \mathrm{d}P_t &= b \mathrm{d}t + \sigma \mathrm{d}W_t \\
 P_t &\sim \mathcal{N}(bt, \sigma^2 t)
 \end{aligned} \right.
 \rightarrow
 \left\{ \begin{aligned}
 \mathrm{d}X^*_t &= b \mathrm{d}t + \frac{1}{2} \sigma \mathrm{d}W_t \\
 X^*_t &\sim \mathcal{N}(bt, \frac{1}{4} \sigma^2 t)
 \end{aligned} \right.
 \end{aligned}$

Negative drift i.e. $b < 0 \rightarrow c(t, m) = 0$

- **Optimal control** $\pi^*(t, x, y) = 0$

- **Equilibrium dynamics** $B(t, x, m) := b(t, x, m)$ and $\Sigma(t, x, m) := \sigma(t, x, m)$

General drift \rightarrow No explicit $c(t, m)$! But, a combination of the two previous situations occurs
O–U dynamics i.e. $b(t, x, m) = \theta(m - x)$ and $\sigma(t, x, m) = \bar{\sigma}$
Approximate solution for the N–player game

Given $\Gamma := (\gamma^{i,j})_{1 \leq i,j \leq N}$,

$$dX_t^i = dP_t^i + \frac{1}{N} \sum_{i=1}^{N} \gamma_t^{i,j} dX_t^j - \frac{1}{N} \sum_{j=1}^{N} \gamma_t^{j,i} dX_t^j \rightarrow dX_t = B(t, X_t, \Gamma_t) dt + \Sigma(t, X_t, \Gamma_t) \cdot dW_t$$

Let $\pi(t, x^i, m^N) = \pi^i(t, x) := 1\{B(t, x^i, m^N) \geq 0\}$,

$$\Sigma^{i,j}(t, x) := \frac{\sigma(t, x^i, m^N) 1\{i=j\} + \frac{1}{N} A^j(t, x) \sigma(t, x^q, m^N)}{1 + \pi(t, x^i, m^N)} , \quad A^j(t, x) := \frac{\frac{\pi^j(t, x)}{1 + \pi^j(t, x)}}{1 - \frac{1}{N} \sum_{k=1}^{N} \frac{\pi^k(t, x)}{1 + \pi^k(t, x)}}$$

$$dX_t^i = B(t, X_t^i, \mu_t^N) dt + \sum_{j=1}^{N} \Sigma^{i,j}(t, X_t^i, \mu_t^N) dW_t^j \rightarrow dX_t = B(t, X_t, \Pi_t) dt + \Sigma(t, X_t, \Pi_t) \cdot dW_t$$

where $\Pi_t^N := (\pi^{i,j}_t)_{1 \leq i,j \leq N}$ with $\pi^{i,j}_t = \pi^j_t := 1\{B(t, X_t^j, \mu_t^N) \geq 0\}$

For $\beta := (\beta^1, \ldots, \beta^N)^T$, $\Gamma^{-i}(\beta) := \left((\gamma^1, \ldots, \gamma^{i-1}, \beta_t, \gamma^{i+1}, \ldots, \gamma^N)^T\right)^T$

Theorem (D. and Touzi (2022)) For all $N \geq 1$,

$$| \Sigma^{k,k}(t, \Pi^{-i}_t(\beta), x) - \Sigma^{k,k}(t, \Pi_t, x) | + | B^{k}(t, \Pi^{-i}_t(\beta), x) - B^{k}(t, \Pi_t, x) | \leq \frac{C}{N} \quad \text{for all } k \neq i,$$

$$\sup_{1 \leq q \neq e \leq N} | \Sigma^{e,q}(t, \Pi_t, x) | + \sup_{1 \leq k \leq N} \left| \Sigma^{k,k}(t, \Pi_t, x) - \frac{\sigma(t, x^k, m^N_t(x))}{1 + \pi^k_t} \right| \leq \frac{C}{N}$$

and the mutual holding strategy Π^N is an ε_N–Nash equilibrium with $\lim_{N \to \infty} \varepsilon_N = 0$.

Mao Fabrice Djete

École Polytechnique

9th International Colloquium on Backward Stochastic Differential Equations and Mean Field Systems
THANK YOU FOR YOUR ATTENTION