9th International Colloquium on Backward Stochastic Differential Equations and Mean Field Systems

Mean Field Game of Mutual Holding (MFG–MH)

Joint work with Nizar Touzi

Mao Fabrice Djete

École Polytechnique

June 30, 2022

Mao Fabrice Djete

École Polytechnique

Table of Contents

1 Motivation and Presentation

- *N*–Player game
- Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding

- Formulation of the problem
- MFG of Mutual Holding

Mao Fabrice Djete

École Polytechnique

MFG of Mutual Holding 000 000000

Table of Contents

1 Motivation and Presentation

- *N*–Player game
- Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding

- Formulation of the problem
- MFG of Mutual Holding

Mao Fabrice Djete

École Polytechnique

Motivation and Presentation \bullet 00 \circ 000 *N*-Player game

Table of Contents

MFG of Mutual Holding 000 000000

1 Motivation and Presentation

• N-Player game

• Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding

- Formulation of the problem
- MFG of Mutual Holding

Mao Fabrice Djete

École Polytechnique

Motivation and Presentation	MFG of Mutual Holding
000 000	000 000000
N-Player game	

<u>Goal</u>: Study optimal behavior of many agents who can hold each other

Mao Fabrice Djete

École Polytechnique

Motivation and Presentation	MFG of Mutual Holding
○ ● ○ ○○○	000 000000
N-Player game	

<u>Goal</u>: Study optimal behavior of many agents who can hold each other

2–Player game model

• Agents 1 and 2 hold each other through the dynamics X^1 and X^2 :

Agent 1 holds part of Agent 2 via $\pi^{1,2}$

and Agent 2 holds part of Agent 1 via $\pi^{2,1}$

Mao Fabrice Djete

École Polytechnique

Motivation and Presentation $0 \bullet 0$ $0 \circ 0$ N - Player game

MFG of Mutual Holding 000 000000

<u>Goal</u>: Study optimal behavior of many agents who can hold each other

2–Player game model

• Agents 1 and 2 hold each other through the dynamics X^1 and X^2 :

Agent 1 holds part of Agent 2 via $\pi^{1,2}$ and Agent 2 holds part of Agent 1 via $\pi^{2,1}$

$$dX_t^1 = dP_t^1 + \pi_t^{1,2} dX_t^2 - \pi_t^{2,1} dX_t^1 \text{ with } dP_t^1 = b_t^1 dt + \sigma_t^1 dW_t^1 + \sigma_t^{0,1} dW_t^0$$

and

$$dX_t^2 = dP_t^2 + \pi_t^{2,1} dX_t^1 - \pi_t^{1,2} dX_t^2 \text{ with } dP_t^2 = b_t^2 dt + \sigma_t^2 dW_t^2 + \sigma_t^{0,2} dW_t^0$$

Mao Fabrice Djete

École Polytechnique

Motivation and Presentation $0 \bullet 0$ $0 \circ 0$ N-Player game MFG of Mutual Holding 000 000000

<u>Goal</u>: Study optimal behavior of many agents who can hold each other

2–Player game model

• Agents 1 and 2 hold each other through the dynamics X^1 and X^2 :

Agent 1 holds part of Agent 2 via $\pi^{1,2}$ and Agent 2 holds part of Agent 1 via $\pi^{2,1}$

$$\mathrm{d}X_t^1 = \mathrm{d}P_t^1 + \begin{bmatrix} \pi_t^{1,2} \mathrm{d}X_t^2 \\ \pi_t^{2,1} \mathrm{d}X_t^1 \end{bmatrix} \text{ with } \mathrm{d}P_t^1 = b_t^1 \mathrm{d}t + \sigma_t^1 \mathrm{d}W_t^1 + \sigma_t^{0,1} \mathrm{d}W_t^0$$

and

$$dX_t^2 = dP_t^2 + \pi_t^{2,1} dX_t^1 - \pi_t^{1,2} dX_t^2 \text{ with } dP_t^2 = b_t^2 dt + \sigma_t^2 dW_t^2 + \sigma_t^{0,2} dW_t^0$$

• $\pi^{1,2}$ and $\pi^{2,1}$ are the strategies/controls of players.

• <u>Reward</u>:

$$J_1(\pi^{1,2},\pi^{2,1}) := \mathbb{E}[U(X_T^1)] \text{ and } J_2(\pi^{1,2},\pi^{2,1}) := \mathbb{E}[U(X_T^2)]$$

• <u>Objective</u>: Find $(\pi^{\star,1,2}, \pi^{\star,2,1})$ a Nash equilibrium

Mao Fabrice Djete

École Polytechnique

Motivation and Presentation $00 \bullet$ 000N-Player game MFG of Mutual Holding 000 000000

N-player game formulation

• Asset X^i of agent i = 1, ..., N follows:

 $\begin{array}{c|c} \text{Part I hold} & \text{Part owned by others} \\ P_t^i \text{ and } (\pi_t^{i,j} X_t^j)_j & (\pi_t^{j,i} X_t^i)_j \end{array} \rightarrow \mathrm{d} X_t^i = \mathrm{d} P_t^i + \sum_{j=1}^N \pi_t^{i,j} \mathrm{d} X_t^j - \sum_{j=1}^N \pi_t^{j,i} \mathrm{d} X_t^i \end{array}$

with $\mathrm{d}P_t^i = b_t^i \mathrm{d}t + \sigma_t^i \mathrm{d}W_t^i + \sigma_t^{0,i} \mathrm{d}W_t^0$ and $\pi^{i,j}$ is the investment of agent *i* in agent *j*.

• The control of agent *i* is

$$\Pi^i := (\pi^{i,1}, \cdots, \pi^{i,N}).$$

• Reward of agent i is

 $J_i(\Pi^1, \cdots, \Pi^N) := \mathbb{E}[U(X_T^i)]$

Mao Fabrice Djete

École Polytechnique

Motivation and Presentation $00 \bullet$ 000N-Player game MFG of Mutual Holding 000 000000

N-player game formulation

• Asset X^i of agent i = 1, ..., N follows:

 $\begin{array}{c|c} \text{Part I hold} & \text{Part owned by others} \\ P_t^i \text{ and } (\pi_t^{i,j} X_t^j)_j & (\pi_t^{j,i} X_t^i)_j \end{array} \rightarrow \mathrm{d} X_t^i = \mathrm{d} P_t^i + \sum_{j=1}^N \pi_t^{i,j} \mathrm{d} X_t^j - \sum_{j=1}^N \pi_t^{j,i} \mathrm{d} X_t^i \end{array}$

with $dP_t^i = b_t^i dt + \sigma_t^i dW_t^i + \sigma_t^{0,i} dW_t^0$ and $\pi^{i,j}$ is the investment of agent *i* in agent *j*.

• The control of agent *i* is

$$\Pi^i := (\pi^{i,1}, \cdots, \pi^{i,N}).$$

• Reward of agent i is

$$J_{\boldsymbol{i}}(\Pi^1,\cdots,\Pi^N) := \mathbb{E}[U(X_T^{\boldsymbol{i}})]$$

• <u>Goal</u>: Find a Nash equilibrium (Π^1, \dots, Π^N) i.e. for each *i*

 $J_{i}(\Pi^{1}, \cdots, \Pi^{N}) \geq J_{i}(\Pi^{1}, \cdots, \Pi^{i-1}, \beta, \Pi^{i+1}, \cdots, \Pi^{N}), \text{ for all } \beta = (\beta^{1}, \cdots, \beta^{N})$ <u>Literature:</u> Bertucci–Touzi, Bassou–Touzi (*in preparation*)

• Important feature

Control of one agent
$$i \Pi_t^i$$
 is s.t. $\Pi_t^i \in \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{N \text{ times}} \longrightarrow$ what happens when $N \to \infty$

Mao Fabrice Djete

École Polytechnique

MFG of Mutual Holding 000 000000

Table of Contents

1 Motivation and Presentation

• N–Player game

• Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding

- Formulation of the problem
- MFG of Mutual Holding

Mao Fabrice Djete

École Polytechnique

• Recall the formulation

$$\mathbf{d}X_t^i = \mathbf{d}P_t^i + \sum_{j=1}^N \pi_t^{i,j} \mathbf{d}X_t^j - \sum_{j=1}^N \pi_t^{j,i} \mathbf{d}X_t^i \text{ with } \mathbf{d}P_t^i = b_t^i \mathbf{d}t + \sigma_t^i \mathbf{d}W_t^i + \sigma_t^{0,i} \mathbf{d}B_t.$$

control of agent i is $\Pi^i := (\pi^{i,1}, \cdots, \pi^{i,N})$

Mao Fabrice Djete

École Polytechnique

• Recall the formulation

$$\mathbf{d}X_t^i = \mathbf{d}P_t^i + \sum_{j=1}^N \pi_t^{i,j} \mathbf{d}X_t^j - \sum_{j=1}^N \pi_t^{j,i} \mathbf{d}X_t^i \text{ with } \mathbf{d}P_t^i = b_t^i \mathbf{d}t + \sigma_t^i \mathbf{d}W_t^i + \sigma_t^{0,i} \mathbf{d}B_t.$$

control of agent i is $\Pi^i := \left(\pi^{i,1}, \cdots, \pi^{i,N}\right)$

• Need of symmetry and rescaling

$$(b_t^i, \sigma_t^i, \sigma_t^{0,i}) \xrightarrow{\text{replaced by}} (b, \sigma, \sigma^0)(t, X_t^i, \mu_t^N) \text{ and } \pi_t^{i,j} \xrightarrow{\text{replaced by}} \frac{1}{N} \pi_t^{i,j}$$

Mao Fabrice Djete

École Polytechnique

• Recall the formulation

$$\mathbf{d}X_t^i = \mathbf{d}P_t^i + \sum_{j=1}^N \pi_t^{i,j} \mathbf{d}X_t^j - \sum_{j=1}^N \pi_t^{j,i} \mathbf{d}X_t^i \quad \text{with} \quad \mathbf{d}P_t^i = b_t^i \mathbf{d}t + \sigma_t^i \mathbf{d}W_t^i + \sigma_t^{0,i} \mathbf{d}B_t.$$

control of agent i is $\Pi^i := (\pi^{i,1}, \cdots, \pi^{i,N})$

• Need of symmetry and rescaling

$$(b_t^i, \sigma_t^i, \sigma_t^{0,i}) \xrightarrow{\text{replaced by}} (b, \sigma, \sigma^0)(t, X_t^i, \mu_t^N) \text{ and } \pi_t^{i,j} \xrightarrow{\text{replaced by}} \frac{1}{N} \pi_t^{i,j}$$

• Intuition of the optimal control

 $\pi^{i,j}$ the optimal investment of agent i in agent j has the shape

$$\pi_t^{i,j} = \pi\big(t, X_t^i, X_t^j, \mu_t^N\big)$$

Mao Fabrice Djete

École Polytechnique

- MFG of Mutual Holding 000 000000
- Following our guessing, the deviating player's dynamic is rewritten

$$dX_t^i = dP_t^i + \frac{1}{N} \sum_{j=1}^N \beta(t, X_t^i, X_t^j, \mu_t^N) dX_t^j - \frac{1}{N} \sum_{j=1}^N \pi(t, X_t^j, X_t^i, \mu_t^N) dX_t^i$$

Mao Fabrice Djete

École Polytechnique

- MFG of Mutual Holding 000 000000
- Following our guessing, the deviating player's dynamic is rewritten

$$dX_t^i = dP_t^i + \frac{1}{N} \sum_{j=1}^N \beta(t, X_t^i, X_t^j, \mu_t^N) dX_t^j - \frac{1}{N} \sum_{j=1}^N \pi(t, X_t^j, X_t^i, \mu_t^N) dX_t^i$$

• Optimization problem (by propagation of chaos intuition) (π, μ) solves

$$\widehat{\mathbb{E}}^{\mu} \left[U(\widehat{X}_{T}) \right] = \mathbb{E} \left[U(X_{T}^{\pi,\pi,\mu}) \right] \geq \mathbb{E} \left[U(X_{T}^{\beta,\pi,\mu}) \right], \text{ for each } \beta$$
where $X^{\beta,\pi,\mu} := X^{\beta}$ with
$$X^{\beta}_{\cdot} = P^{\beta}_{\cdot} + \widehat{\mathbb{E}}^{\mu} \left[\int_{0}^{\cdot} \beta(t, X_{t}^{\beta}, \widehat{X}_{t}, \mu_{t}) \mathrm{d}\widehat{X}_{t} \right] - \int_{0}^{\cdot} \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_{t}, X_{t}^{\beta}, \mu_{t}) \right] \mathrm{d}X_{t}^{\beta}$$
and $\mathrm{d}P_{t}^{\beta} = b(t, X_{t}^{\beta}, \mu_{t}) \mathrm{d}t + \sigma(t, X_{t}^{\beta}, \mu_{t}) \mathrm{d}W_{t} + \sigma^{0}(t, X_{t}^{\beta}, \mu_{t}) \mathrm{d}W_{t}^{0}$
 $\longrightarrow \text{Two parameters are fixed } !$

Mao Fabrice Djete

École Polytechnique

- MFG of Mutual Holding 000 000000
- Following our guessing, the deviating player's dynamic is rewritten

$$dX_t^i = dP_t^i + \frac{1}{N} \sum_{j=1}^N \beta(t, X_t^i, X_t^j, \mu_t^N) dX_t^j - \frac{1}{N} \sum_{j=1}^N \pi(t, X_t^j, X_t^i, \mu_t^N) dX_t^i$$

• Optimization problem (by propagation of chaos intuition) (π, μ) solves

$$\widehat{\mathbb{E}}^{\mu} \left[U(\widehat{X}_{T}) \right] = \mathbb{E} \left[U(X_{T}^{\pi,\pi,\mu}) \right] \geq \mathbb{E} \left[U(X_{T}^{\beta,\pi,\mu}) \right], \text{ for each } \beta$$
where $X^{\beta,\pi,\mu} := X^{\beta}$ with
$$X_{\cdot}^{\beta} = P_{\cdot}^{\beta} + \widehat{\mathbb{E}}^{\mu} \left[\int_{0}^{\cdot} \beta(t, X_{t}^{\beta}, \widehat{X}_{t}, \mu_{t}) \mathrm{d}\widehat{X}_{t} \right] - \int_{0}^{\cdot} \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_{t}, X_{t}^{\beta}, \mu_{t}) \right] \mathrm{d}X_{t}^{\beta}$$
and $\mathrm{d}P_{t}^{\beta} = b(t, X_{t}^{\beta}, \mu_{t}) \mathrm{d}t + \sigma(t, X_{t}^{\beta}, \mu_{t}) \mathrm{d}W_{t} + \sigma^{0}(t, X_{t}^{\beta}, \mu_{t}) \mathrm{d}W_{t}^{0}$
 $\longrightarrow \text{Two parameters are fixed } !$

• Optimal solution

$$X_{\cdot} = P_{\cdot} + \widehat{\mathbb{E}}^{\mu} \left[\int_{0}^{\cdot} \pi(t, X_{t}, \widehat{X}_{t}, \mu_{t}) d\widehat{X}_{t} \right] - \int_{0}^{\cdot} \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_{t}, X_{t}, \mu_{t}) \right] dX_{t},$$

with $dP_t = b(t, X_t, \mu_t) dt + \sigma(t, X_t, \mu_t) dW_t + \sigma^0(t, X_t, \mu_t) dW_t^0$ and $\mu = \mathcal{L}(X|W^0)$.

Mao Fabrice Djete

École Polytechnique

- Field Game of Mutual Holding
- Following our guessing, the deviating player's dynamic is rewritten

$$dX_t^i = dP_t^i + \frac{1}{N} \sum_{j=1}^N \beta(t, X_t^i, X_t^j, \mu_t^N) dX_t^j - \frac{1}{N} \sum_{j=1}^N \pi(t, X_t^j, X_t^i, \mu_t^N) dX_t^i$$

• Optimization problem (by propagation of chaos intuition) (π, μ) solves

$$\widehat{\mathbb{E}}^{\mu} \left[U(\widehat{X}_{T}) \right] = \mathbb{E} \left[U(X_{T}^{\pi,\pi,\mu}) \right] \geq \mathbb{E} \left[U(X_{T}^{\beta,\pi,\mu}) \right], \text{ for each } \beta$$
where $X^{\beta,\pi,\mu} := X^{\beta}$ with
$$X^{\beta}_{\cdot} = P^{\beta}_{\cdot} + \widehat{\mathbb{E}}^{\mu} \left[\int_{0}^{\cdot} \beta(t, X_{t}^{\beta}, \widehat{X}_{t}, \mu_{t}) \mathrm{d}\widehat{X}_{t} \right] - \int_{0}^{\cdot} \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_{t}, X_{t}^{\beta}, \mu_{t}) \right] \mathrm{d}X_{t}^{\beta}$$
and $\mathrm{d}P_{t}^{\beta} = b(t, X_{t}^{\beta}, \mu_{t}) \mathrm{d}t + \sigma(t, X_{t}^{\beta}, \mu_{t}) \mathrm{d}W_{t} + \sigma^{0}(t, X_{t}^{\beta}, \mu_{t}) \mathrm{d}W_{t}^{0}$
 $\longrightarrow \text{Two parameters are fixed } !$

• Optimal solution

$$\boldsymbol{X}_{\cdot} = P_{\cdot} + \widehat{\mathbb{E}}^{\boldsymbol{\mu}} \left[\int_{0}^{\cdot} \pi(t, \boldsymbol{X}_{t}, \widehat{X}_{t}, \boldsymbol{\mu}_{t}) \mathrm{d}\widehat{X}_{t} \right] - \int_{0}^{\cdot} \widehat{\mathbb{E}}^{\boldsymbol{\mu}} \left[\pi(t, \widehat{X}_{t}, \boldsymbol{X}_{t}, \boldsymbol{\mu}_{t}) \right] \mathrm{d}\boldsymbol{X}_{t},$$

with $dP_t = b(t, X_t, \mu_t) dt + \sigma(t, X_t, \mu_t) dW_t + \sigma^0(t, X_t, \mu_t) dW_t^0$ and $\mu = \mathcal{L}(X|W^0)$.

Via $\widehat{\mathbb{E}}^{\mu} \left[\int_{0}^{\cdot} \cdots d\widehat{X}_{t} \right]$, the (conditional) law of the differential appears in the dynamic !

Mao Fabrice Djete

École Polytechnique

Table of Contents

1 Motivation and Presentation

- N–Player game
- Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding

- Formulation of the problem
- MFG of Mutual Holding

Mao Fabrice Djete

École Polytechnique

Table of Contents

MFG of Mutual Holding •00 000000

1 Motivation and Presentation

- N–Player game
- Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding

- Formulation of the problem
- MFG of Mutual Holding

Mao Fabrice Djete

École Polytechnique

• Optimization problem X the optimal process is semi-martingale i.e.

 $\mathrm{d}X_t = B^{\mu}(t, X)\mathrm{d}t + \Sigma^{\mu}(t, X)\mathrm{d}W_t + \Sigma^{\mu,0}(t, X)\mathrm{d}W_t^0.$

Given (π, μ) , the controlled process X^{β} is rewritten

Mao Fabrice Djete

École Polytechnique

• Optimization problem X the optimal process is semi-martingale i.e.

$$\mathrm{d}X_t = B^{\mu}(t, X)\mathrm{d}t + \Sigma^{\mu}(t, X)\mathrm{d}W_t + \Sigma^{\mu,0}(t, X)\mathrm{d}W_t^0.$$

Given (π, μ) , the controlled process X^{β} is rewritten

$$dX_{t}^{\beta} = \frac{\widehat{\mathbb{E}}^{\mu} \left[\beta(t, X_{t}^{\beta}, \widehat{X}_{t}, \mu_{t}) B^{\mu}(t, \widehat{X})\right] + b(t, X_{t}^{\beta}, \mu_{t})}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_{t}, X_{t}^{\beta}, \mu_{t})\right]} dt + \frac{\sigma(t, X_{t}^{\beta}, \mu_{t})}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_{t}, X_{t}^{\beta}, \mu_{t})\right]} dW_{t}$$
$$+ \frac{\widehat{\mathbb{E}}^{\mu} \left[\beta(t, X_{t}^{\beta}, \widehat{X}_{t}, \mu_{t}) \Sigma^{\mu, 0}(t, \widehat{X})\right] + \sigma^{0}(t, X_{t}^{\beta}, \mu_{t})}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_{t}, X_{t}^{\beta}, \mu_{t})\right]} dW_{t}^{0}$$

Mao Fabrice Djete

École Polytechnique

• Optimization problem X the optimal process is semi-martingale i.e.

$$\mathrm{d}X_t = B^{\mu}(t, X)\mathrm{d}t + \Sigma^{\mu}(t, X)\mathrm{d}W_t + \Sigma^{\mu,0}(t, X)\mathrm{d}W_t^0$$

Given (π, μ) , the controlled process X^{β} is rewritten

$$dX_t^{\beta} = \frac{\widehat{\mathbb{E}}^{\mu} \left[\beta(t, X_t^{\beta}, \widehat{X}_t, \mu_t) B^{\mu}(t, \widehat{X}) \right] + b(t, X_t^{\beta}, \mu_t)}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_t, X_t^{\beta}, \mu_t) \right]} dt + \frac{\sigma(t, X_t^{\beta}, \mu_t)}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_t, X_t^{\beta}, \mu_t) \right]} dW_t$$
$$+ \frac{\widehat{\mathbb{E}}^{\mu} \left[\beta(t, X_t^{\beta}, \widehat{X}_t, \mu_t) \Sigma^{\mu, 0}(t, \widehat{X}) \right] + \sigma^0(t, X_t^{\beta}, \mu_t)}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_t, X_t^{\beta}, \mu_t) \right]} dW_t^0$$

• Drift and Volatility at the equilibrium: $\mu_t(dx)dt$ almost every (t,x)

$$\Sigma^{\mu}(t,x) = \frac{\sigma(t,x,\mu_t)}{1 + \int \pi(t,y,x,\mu_t)\mu_t(\mathrm{d}y)}$$

and

$$(B^{\mu}, \Sigma^{\mu})(t, x) = \frac{\int \pi(t, x, y, \mu_t) (B^{\mu}, \Sigma^{\mu}) (\mathrm{d}y) + (b, \sigma^0)(t, x, \mu_t)}{1 + \int \pi(t, y, x, \mu_t) \mu_t (\mathrm{d}y)}$$

 \longrightarrow Optimization problem with control of volatility !

 \longrightarrow Equations over the drift and the volatility

Mao Fabrice Djete

École Polytechnique

MFG of Mutual Holding 00● 000000

Simple representation

- Let (F, G, G^0) be known. Given μ , π and (B, Σ, Σ^0) , $dX_t^\beta = F_t(X_t^\beta, \mu, \beta, \pi, B)dt + G_t(X_t^\beta, \mu, \beta, \pi, \Sigma)dW_t + G_t^0(X_t^\beta, \mu, \beta, \pi, \Sigma^0)dW_t^0$
 - 1- Optimization

$$\sup_{\beta \in A} \mathbb{E}[U(X_T^{\beta})] \xrightarrow{\text{leading to}} \beta_t^{\star} = \beta^{\star}(t, X^{\beta}, \mu, \pi, (B, \Sigma, \Sigma^0))$$

2- Consistency properties

$$\begin{bmatrix} B_t, \ \Sigma_t, \ \Sigma_t^0 \end{bmatrix} = \begin{bmatrix} F_t(x, \mu, \pi, \pi, B), & G_t(x, \mu, \pi, \pi, \Sigma), & G_t^0(x, \mu, \pi, \pi, \Sigma^0) \end{bmatrix}$$

and

$$\beta^{\star}(t, X^{\beta}, \mu, \pi, (B, \Sigma, \Sigma^{0})) = \pi_{t} \text{ and } \mu_{t} = \mathcal{L}(X_{t}^{\beta^{\star}} | W^{0})$$

Mao Fabrice Djete

École Polytechnique

MFG of Mutual Holding ○○● ○○○○○○

Simple representation

- Let (F, G, G^0) be known. Given μ , π and (B, Σ, Σ^0) , $dX_t^\beta = F_t(X_t^\beta, \mu, \beta, \pi, B)dt + G_t(X_t^\beta, \mu, \beta, \pi, \Sigma)dW_t + G_t^0(X_t^\beta, \mu, \beta, \pi, \Sigma^0)dW_t^0$
 - 1- Optimization

$$\sup_{\beta \in A} \mathbb{E}[U(X_T^{\beta})] \xrightarrow{\text{leading to}} \beta_t^{\star} = \beta^{\star}(t, X^{\beta}, \mu, \pi, (B, \Sigma, \Sigma^0))$$

2- Consistency properties

$$\begin{bmatrix} B_t, \ \Sigma_t, \ \Sigma_t^0 \end{bmatrix} = \begin{bmatrix} F_t(x, \mu, \pi, \pi, B), & G_t(x, \mu, \pi, \pi, \Sigma), & G_t^0(x, \mu, \pi, \pi, \Sigma^0) \end{bmatrix}$$

and

$$\beta^{\star}(t, X^{\beta}, \mu, \pi, (B, \Sigma, \Sigma^{0})) = \pi_{t} \text{ and } \mu_{t} = \mathcal{L}(X_{t}^{\beta^{\star}} | W^{0})$$

• In our case: $A = \{ \text{All maps } \beta : [0,T] \times \mathbb{R} \times \mathbb{R} \times \mathcal{P}(\mathbb{R}) \to [0,1] \},$

$$G_t(x,\nu,\beta,\pi,\Sigma) = \frac{\sigma(t,x,\nu)}{1 + \int \pi(t,\hat{x},x,\nu) d\hat{x}}$$

and

$$(F_t, G_t^0)(\cdots) = \frac{\int \beta(t, x, \widehat{x}, \nu)(B, \Sigma^0)(t, \widehat{x})\nu(\mathrm{d}\widehat{x}) + (b, \sigma^0)(t, x, \nu)}{1 + \int \pi(t, \widehat{x}, x, \nu)\nu(\mathrm{d}\widehat{x})}$$

Mao Fabrice Djete

École Polytechnique

Motivation and Presentation 000 000 MFG of Mutual Holding

Table of Contents

MFG of Mutual Holding 000 •00000

1 Motivation and Presentation

- N–Player game
- Intuition of the limit: Mean Field Game of Mutual Holding

2 MFG of Mutual Holding

- Formulation of the problem
- MFG of Mutual Holding

Mao Fabrice Djete

École Polytechnique

MFG of Mutual Holding

No common noise i.e. $\sigma^0 = 0$ Solving $\sup_{\beta} \mathbb{E}[U(X_T^{\beta})]$ leading to β^* where

$$\mathrm{d}X_t^\beta = \frac{\widehat{\mathbb{E}}^{\mu} \left[\beta(t, X_t^\beta, \widehat{X}_t, \mu_t) B^{\mu}(t, \widehat{X}) \right] + b(t, X_t^\beta, \mu_t)}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_t, X_t^\beta, \mu_t) \right]} \mathrm{d}t + \frac{\sigma(t, X_t^\beta, \mu_t)}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_t, X_t^\beta, \mu_t) \right]} \mathrm{d}W_t$$

and verifying

 $\pi = \beta^{\star} + \mu = \mathcal{L}(X^{\pi,\pi,\mu}) + \text{equation over the drift } B^{\mu}$

Mao Fabrice Djete

École Polytechnique

MFG of Mutual Holding

No common noise i.e. $\sigma^0 = 0$ Solving $\sup_{\beta} \mathbb{E}[U(X_T^{\beta})]$ leading to β^* where

$$\mathrm{d}X_t^\beta = \frac{\widehat{\mathbb{E}}^{\mu} \left[\beta(t, X_t^\beta, \widehat{X}_t, \mu_t) B^{\mu}(t, \widehat{X}) \right] + b(t, X_t^\beta, \mu_t)}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_t, X_t^\beta, \mu_t) \right]} \mathrm{d}t + \frac{\sigma(t, X_t^\beta, \mu_t)}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_t, X_t^\beta, \mu_t) \right]} \mathrm{d}W_t$$

and verifying

 $\pi = \beta^{\star} + \mu = \mathcal{L}(X^{\pi,\pi,\mu}) + \text{equation over the drift } B^{\mu}$

 \longrightarrow No control of volatility !

 \longrightarrow <u>Not an obvious fact</u> Indeed, remember N-player game

$$dX_t^i = dP_t^i + \frac{1}{N} \sum_{j=1}^N \beta_t^j dX_t^j - \frac{1}{N} \sum_{j=1}^N \pi_t^{j,i} dX_t^i \longrightarrow d\mathbf{X}_t = \underbrace{\mathbf{M}(t,\beta,\Pi,\mu_t^N)}_{N \times N \text{ matrix}} \bullet \left[\mathbf{b}_t dt + \boldsymbol{\sigma}_t \bullet d\mathbf{W}_t \right].$$

Mao Fabrice Djete

École Polytechnique

MFG of Mutual Holding

MFG of Mutual Holding

No common noise i.e. $\sigma^0 = 0$ Solving $\sup_{\beta} \mathbb{E}[U(X_T^{\beta})]$ leading to β^* where

$$\mathrm{d}X_t^\beta = \frac{\widehat{\mathbb{E}}^{\mu} \left[\beta(t, X_t^\beta, \widehat{X}_t, \mu_t) B^{\mu}(t, \widehat{X}) \right] + b(t, X_t^\beta, \mu_t)}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_t, X_t^\beta, \mu_t) \right]} \mathrm{d}t + \frac{\sigma(t, X_t^\beta, \mu_t)}{1 + \widehat{\mathbb{E}}^{\mu} \left[\pi(t, \widehat{X}_t, X_t^\beta, \mu_t) \right]} \mathrm{d}W_t$$

and verifying

 $\pi = \beta^{\star} + \mu = \mathcal{L}(X^{\pi,\pi,\mu}) + \text{equation over the drift } B^{\mu}$

 \longrightarrow No control of volatility !

 \longrightarrow <u>Not an obvious fact</u> Indeed, remember N-player game

$$dX_t^i = dP_t^i + \frac{1}{N} \sum_{j=1}^N \beta_t^j dX_t^j - \frac{1}{N} \sum_{j=1}^N \pi_t^{j,i} dX_t^i \longrightarrow d\mathbf{X}_t = \underbrace{\mathbf{M}(t,\beta,\Pi,\boldsymbol{\mu}_t^N)}_{N \times N \text{ matrix}} \bullet \left[\mathbf{b}_t dt + \boldsymbol{\sigma}_t \bullet d\mathbf{W}_t \right].$$

Theorem (D. and Touzi (2021)) Under technical conditions over (b, σ, U) and $U \nearrow$, there is at least one MFG-MH equilibrium (π^*, μ) with $\pi^*(t, x, y) = \mathbf{1}_{\{b(t, y, \mu_t) \ge -c(t, \mu_t)\}}$ $B(t, x, m) := \left(\frac{1}{2}(b+c)^+ - (b+c)^-\right)(t, x, m)$ and $\Sigma(t, x, m) := \frac{\sigma(t, x, m)}{1 + \mathbf{1}_{\{B(t, x, m) \ge 0\}}}$ $c(t, m) \ge 0$ is the unique solution of the equation $c = \frac{1}{2} \int_{\mathbb{R}} (c + b(t, y, m))^+ m(\mathrm{d}y).$

Mao Fabrice Djete

École Polytechnique

Motivation	\mathbf{and}	Presentation
000		
000		
MFG of Mu	itual	Holding

Non–negative drift i.e. $b \ge 0 \longrightarrow c(t,m) = \int_{\mathbb{R}} b(t,y,m)m(\mathrm{d}y)$

- Optimal control $\pi^*(t, x, y) = 1$
- Equilibrium dynamics $B(t, x, m) := \frac{1}{2} (b(t, x, m) + c(t, m))$ and $\Sigma(t, x, m) := \frac{1}{2} \sigma(t, x, m)$

Mao Fabrice Djete

École Polytechnique

<u>Non-negative drift</u> i.e. $b \ge 0 \longrightarrow c(t,m) = \int_{\mathbb{R}} b(t,y,m)m(\mathrm{d}y)$

- Optimal control $\pi^*(t, x, y) = 1$
- Equilibrium dynamics $B(t, x, m) := \frac{1}{2} \left(b(t, x, m) + c(t, m) \right)$ and $\Sigma(t, x, m) := \frac{1}{2} \sigma(t, x, m)$
- Example When (b, σ) constant

$$\begin{cases} \mathrm{d}P_t = b\mathrm{d}t + \sigma\mathrm{d}W_t \\ P_t \sim \mathcal{N}(bt, \sigma^2 t) \end{cases} \longrightarrow \begin{cases} \mathrm{d}X_t^\star = b\mathrm{d}t + \frac{1}{2}\sigma\mathrm{d}W_t \\ X_t^\star \sim \mathcal{N}(bt, \frac{1}{4}\sigma^2 t) \end{cases}$$

Mao Fabrice Djete

École Polytechnique

<u>Non-negative drift</u> i.e. $b \ge 0 \longrightarrow c(t,m) = \int_{\mathbb{R}} b(t,y,m)m(\mathrm{d}y)$

- Optimal control $\pi^*(t, x, y) = 1$
- Equilibrium dynamics $B(t, x, m) := \frac{1}{2} \left(b(t, x, m) + c(t, m) \right)$ and $\Sigma(t, x, m) := \frac{1}{2} \sigma(t, x, m)$
- Example When (b, σ) constant

$$\begin{cases} \mathrm{d}P_t = b\mathrm{d}t + \sigma\mathrm{d}W_t\\ P_t \sim \mathcal{N}(bt, \sigma^2 t) \end{cases} \longrightarrow \begin{cases} \mathrm{d}X_t^\star = b\mathrm{d}t + \frac{1}{2}\sigma\mathrm{d}W_t\\ X_t^\star \sim \mathcal{N}(bt, \frac{1}{4}\sigma^2 t) \end{cases}$$

Negative drift i.e. $b < 0 \longrightarrow c(t,m) = 0$

- Optimal control $\pi^*(t, x, y) = 0$
- Equilibrium dynamics B(t, x, m) := b(t, x, m) and $\Sigma(t, x, m) := \sigma(t, x, m)$

Mao Fabrice Djete

École Polytechnique

<u>Non-negative drift</u> i.e. $b \ge 0 \longrightarrow c(t,m) = \int_{\mathbb{R}} b(t,y,m)m(\mathrm{d}y)$

- Optimal control $\pi^*(t, x, y) = 1$
- Equilibrium dynamics $B(t, x, m) := \frac{1}{2} \left(b(t, x, m) + c(t, m) \right)$ and $\Sigma(t, x, m) := \frac{1}{2} \sigma(t, x, m)$
- Example When (b, σ) constant

$$\begin{cases} \mathrm{d}P_t = b\mathrm{d}t + \sigma\mathrm{d}W_t\\ P_t \sim \mathcal{N}(bt, \sigma^2 t) \end{cases} \longrightarrow \begin{cases} \mathrm{d}X_t^\star = b\mathrm{d}t + \frac{1}{2}\sigma\mathrm{d}W_t\\ X_t^\star \sim \mathcal{N}(bt, \frac{1}{4}\sigma^2 t) \end{cases}$$

Negative drift i.e. $b < 0 \longrightarrow c(t,m) = 0$

- Optimal control $\pi^*(t, x, y) = 0$
- Equilibrium dynamics B(t, x, m) := b(t, x, m) and $\Sigma(t, x, m) := \sigma(t, x, m)$

<u>General drift</u> \rightarrow No explicit c(t, m) ! But, a <u>combination</u> of the two previous situations occurs

Mao Fabrice Djete

École Polytechnique

MFG of Mutual Holding

<u>O–U dynamics</u> i.e. $b(t, x, m) = \theta(\overline{m} - x)$ and $\sigma(t, x, m) = \overline{\sigma}$

Mao Fabrice Djete

École Polytechnique

MFG of Mutual Holding

Approximate solution for the *N*-player game Given $\Gamma := (\gamma^{i,j})_{1 \le i,j \le N}$,

$$dX_t^i = dP_t^i + \frac{1}{N} \sum_{i=1}^N \gamma_t^{i,j} dX_t^j - \frac{1}{N} \sum_{j=1}^N \gamma_t^{j,i} dX_t^j \longrightarrow d\mathbf{X}_t = \mathbf{B}(t, \mathbf{X}_t, \Gamma_t) dt + \mathbf{\Sigma}(t, \mathbf{X}_t, \Gamma_t) \bullet d\mathbf{W}_t$$

Let $\pi(t, x^i, m^N) = \pi^i(t, \mathbf{x}) := \mathbf{1}_{\{B(t, x^i, m^N) \ge 0\}},$

$$\Sigma^{i,j}(t,\mathbf{x}) := \frac{\sigma(t,x^i,m^N)\mathbf{1}_{\{i=j\}} + \frac{1}{N}A^j(t,\mathbf{x})\sigma(t,x^q,m^N)}{1 + \pi(t,x^i,m^N)}, \ A^j(t,\mathbf{x}) := \frac{\frac{\pi^j(t,\mathbf{x})}{1 + \pi^j(t,\mathbf{x})}}{1 - \frac{1}{N}\sum_{k=1}^N \frac{\pi^k(t,\mathbf{x})}{1 + \pi^k(t,\mathbf{x})}}$$

$$dX_t^i = B(t, X_t^i, \mu_t^N) dt + \sum_{j=1}^N \Sigma^{i,j}(t, X_t^i, \mu_t^N) dW_t^j \longrightarrow d\mathbf{X}_t = \mathbf{B}(t, \mathbf{X}_t, \Pi_t) dt + \mathbf{\Sigma}(t, \mathbf{X}_t, \Pi_t) \bullet d\mathbf{W}_t$$

where
$$\Pi_t^N := (\pi_t^{i,j})_{1 \le i,j \le N}$$
 with $\pi_t^{i,j} = \pi_t^j := \mathbf{1}_{\{B(t,X_t^j,\mu_t^N) \ge 0\}}$

For $\beta := (\beta^1, \dots, \beta^N)^{\mathsf{T}}, \Gamma^{-i}(\beta) := \left((\gamma^{1,\cdot})^{\mathsf{T}}, \dots, (\gamma^{i-1,\cdot})^{\mathsf{T}}, \beta_t, (\gamma^{i+1,\cdot})^{\mathsf{T}}, \dots, (\gamma^{N,\cdot})^{\mathsf{T}} \right)^{\mathsf{T}}$ Theorem (D. and Touzi (2022)) For all $N \ge 1$,

$$\left| \boldsymbol{\Sigma}^{k,k}(t, \Pi_t^{-i}(\beta), \mathbf{x}) - \boldsymbol{\Sigma}^{k,k}(t, \Pi_t, \mathbf{x}) \right| + \left| \mathbf{B}^k(t, \Pi_t^{-i}(\beta), \mathbf{x}) - \mathbf{B}^k(t, \Pi_t, \mathbf{x}) \right| \le \frac{C}{N} \text{ for all } k \neq i,$$

$$\sup_{1 \le q \ne e \le N} \left| \boldsymbol{\Sigma}^{e,q}(t, \Pi_t, \mathbf{x}) \right| + \sup_{1 \le k \le N} \left| \boldsymbol{\Sigma}^{k,k}(t, \Pi_t, \mathbf{x}) - \frac{\sigma(t, x^*, m^*(\mathbf{x}))}{1 + \pi_t^k} \right| \le \frac{\sigma}{N}$$

and the mutual holding strategy Π^N is an ε_N -Nash equilibrium with $\lim_{N\to\infty} \varepsilon_N = 0$.

Mao Fabrice Djete

École Polytechnique

THANK YOU FOR YOUR ATTENTION

Mao Fabrice Djete

École Polytechnique