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Time-change process

Let (Ω,F ,P) be a complete probability space and X := [0,T ]× R, we will consider
X = ([0,T ] ∪ {0}) ∪ ([0,T ]× R0) , where R0 = R\{0} and T > 0.

Denote BX the Borel σ-algebra on X . Throughout this presentation ∆ ⊂ X
denotes an element ∆ in BX .
Let λ :=

(
λB , λH

)
be a two dimensional stochastic process such that each

component λl , l = B,H, satisfies
(i) λlt ≥ 0 P-a.s. for all t ∈ [0,T ],

(ii) limh→0 P
(∣∣∣λlt+h − λ

l
t

∣∣∣ ≥ ε) = 0 for all ε > 0 and almost all t ∈ [0,T ],

(iii) E
[´ T

0 λltdt
]
<∞.

The space of all processes λ :=
(
λB , λH

)
satisfying (i)-(iii) above is denoted by L,

and it is supplied with the random measure Λ on X ,

Λ(∆) :=

ˆ T

0
1{(t,0)∈∆}(t)λBt dt +

ˆ T

0

ˆ
R0

1∆(t, z)ν(dz)λHt dt, (1)

as the mixture of measures on disjoint sets. Here ν is a deterministic, σ-finite
measure on the Borel sets of R0 satisfying

´
R0

z2ν(dz) <∞.



We define the σ-algebra generated by the values of Λ as FΛ, while ΛH denotes
the restriction of Λ to [0,T ]× R0 and ΛB the restriction of Λ to [0,T ]× {0}.
Hence for ∆ ⊆ X

Λ(∆) = ΛB(∆ ∩ [0,T ]× {0}) + ΛH (∆ ∩ [0,T ]× R0) .

For Λ It follow from (1) that

Λ(ds, {0}) = λBs ds,

Λ(ds, dz) = λHs ds, z ∈ R0.

Definition ( Di Nunno, Sjursen, 2014)

(A1) P
(
B(∆) ≤ x | FΛ

)
= P

(
B(∆) ≤ x | ΛB(∆)

)
= Φ

(
x√

ΛB (∆)

)
,

x ∈ R,∆ ⊆ [0,T ]× {0},
(A2) B (∆1) and B (∆2) are conditionally independent given FΛ whenever ∆1 and ∆2 are
disjoint sets.
(A3) P

(
H(∆) = k | FΛ

)
= P

(
H(∆) = k | ΛH(∆)

)
=

ΛH (∆)k

k! e−ΛH (∆),
k ∈ N,∆ ⊆, [0,T ]× R0,
(A4) H (∆1) and H (∆2) are conditionally independent given FΛ whenever ∆1 and ∆2 are
disjoint sets.
(A5) B and H are conditionally independent given FΛ.



Definition ( Di Nunno, Sjursen, 2014)
The random measure µ on the Borel subsets of X is defined by

µ(∆) := B(∆ ∩ [0,T ]× {0}) + H̃ (∆ ∩ [0,T ]× R0) , ∆ ⊆ X , (2)

where H̃ := H − ΛH be the signed random measure given by

H̃(∆) = H(∆)− ΛH(∆), ∆ ⊂ [0,T ]× R0.

Properties:

B
(A1)⇒ E

[
B(∆) | FΛ

]
= 0

(A3)⇒ E
[
H(∆) | FΛ

]
= ΛH(∆) ⇐⇒ E

[
H̃(∆) | FΛ

]
= 0

}
⇒ E

[
µ(∆) | FΛ

]
= 0

B
(A2), (A5)⇒ E

[
B(∆)2 | FΛ

]
= ΛB(∆)

(A4), (A5)⇒ E
[
H̃(∆)2 | FΛ

]
= ΛH(∆)

}
⇒
{

E
[
µ(∆)2 | FΛ

]
= Λ(∆),

E
[
µ (∆1)µ (∆2) | FΛ

]
= 0



The random measures B and H are related to a specific form of time-change for
Brownian motion and pure jump Lévy process. More specifically define

Bt : = B([0, t]× {0}), ΛB
t :=

ˆ t

0
λBs ds,

ηt :=

ˆ t

0

ˆ
R0

zH̃(ds, dz), Λ̂H
t :=

ˆ t

0
λHs ds, t ∈ [0,T ].

Theorem 1. (Richard F. Serfozo, 1972, Bronius Grigelionis, 1972)

Let Wt , t ∈ [0,T ] be a Brownian motion and Nt , t ∈ [0,T ] be a centered pure jump Lévy
process with Lévy measure ν. Assume that both W and N are independent of Λ. Then

B satisfies (A1) and (A2) if and only if, for any t ≥ 0

Bt
d
= WΛB

t
,

η satisfies (A3) and (A4) if and only if , for any t ≥ 0

ηt
d
= NΛ̂H

t
.



Filtrations

Let us define Fµ =
{
Fµt , t ∈ [0,T ]

}
as the smallest filtration generated by

µ(∆),∆ ⊂ [0, t]× R. From the definition it follows that for any t ∈ [0,T ]

Fµt := FB
t ∨ FH

t ∨ FΛ
t ,

where
· FB

t is generated by B(∆ ∩ [0,T ]× {0}),
· FH

t is generated by H (∆ ∩ [0,T ]× R0) ,
· FΛ

t is generated by Λ(∆),∆ ∈ [0, t]× R.
This follows from the application of the results from Winkel, 2001 & Di Nunno,
Sjursen, 2013.
Let us set F = {Ft , t ∈ [0,T ]} where

Ft =
⋂
r>t

Fµr .

Furthermore, we set G = {Gt , t ∈ [0,T ]} where

Gt = Fµt ∨ F
Λ.

Remark that GT = FT , G0 = FΛ, while Fµ0 is trivial.

(In the sequel notation F = FT will be used.)



Reference filtration F is the smallest right-continuous filtration to which µ is
adapted.

The filtration G is right-continuous.

The random field µ is a martingale random field with respect to F (different
representations hold under lack of informations) and G, since:

1 µ has a σ-finite variance measure;
2 It is additive;
3 Adapted;
4 It has the martingale property;
5 µ It has conditionally orthogonal values.



Representation results

G Denote IG as the subspace of L2 ([0,T ]× R× Ω,BX × P,Λ× P) of the random fields
admitting a G-predictable modification, in particular

‖φ‖IG :=

(
E
[ˆ T

0
φs(0)2λBs ds +

ˆ T

0

ˆ
R0

φs(z)2ν(dz)λHs ds

]) 1
2

<∞.

Theorem 2. (Di Nunno, Sjursen, 2014) Martingale representation under G.

Assume Mt , t ∈ [0,T ], is a G-martingale. Then there exists a unique φ ∈ IG such that

Mt = E
[
MT | FΛ

]
+

ˆ t

0

ˆ
R
φs(z)µ(ds, dz), t ∈ [0,T ],

Theorem 3. Version of Doob–Meyer decomposition under filtration G.
Let St , t ∈ [0,T ], is square integrable G-supermartingale. There exists a unique square-
integrable martingal Mt , and a nondecreasing RCLL (right continuous with left limits) pre-
dictable process A, for which E(A2

T ) <∞ and A0 = 0, such that for every t ∈ [0,T ]

St = Mt + At ,



F Denote IF a set of random fields for which

IF :=
{
ϕ ∈ L2(Ω,F ,P),F− predictable :

(
E

[ˆ T

0
ϕ2
sdΛs

]) 1
2

<∞
}
.

Corollary 1. (Di Nunno, Sjursen, 2014) Martingale representation under F.

Assume Mt , t ∈ [0,T ], is a F-martingale from L2(Ω,F ,P). Then there exists a unique
φ ∈ IF , and F-martingale Nt which are orthogonal to µ, such that

Mt = Nt +

ˆ t

0

ˆ
R
φs(z)µ(ds, dz), t ∈ [0,T ].

Theorem 4. Version of Doob–Meyer decomposition under filtration F.

Assume SFt ,t ∈ [0,T ], is square integrable F-supermartingale. Then there exist orthogonal
martingale components Nt and φF , a nondecreasing RCLL (right continuous with left limits)
predictable process AF , for which E [(AFT )2] <∞ and AF0 = 0, such that for every t ∈ [0,T ]

SFt = NFt +

ˆ t

0

ˆ
R
φFs (z)µ(ds, dz) + AFt .



Reflected backward stochastic differential equations with time-change

Lévy noises and lower barrier

For F := G,F let us denote:

Lp(F) is the set of random variables ξ which are F-measurable and p-integrable,
p > 1;
SF2 be the space of real-valued RCLL F-adapted stochastic processes
Yt , t ∈ [0,T ], ω ∈ Ω, such that

‖Y ‖SF2 :=

√√√√E[ sup
0≤t≤T

|Yt |2
]
<∞;

HG2 is the space of F-predictable stochastic processes ft , t ∈ [0,T ], ω ∈ Ω, such
that

‖fs‖HF:2 := E
[ˆ T

0
f 2s ds

]
<∞;

T0 be the set of stopping times τ ∈ [0,T ] a.s. .
For S in T0, let TS be the set of stopping times τ such that τ ∈ [S,T ] a.s. .



Existence and uniqueness of the G-solution

B For T > 0 let RBSDE driven by time-change Lévy noises and lower barrier under G be
rewritten in following form

Yt = YT +

ˆ T

t
gs(λs ,Ys , φs(z))ds −

ˆ T

t
φs(0)dBs −

ˆ T

t

ˆ
R0

φs(z)H̃(ds, dz) +

ˆ T

t
dAs ,

which is equivalent to equation

Yt = YT +

ˆ T

t
gs(λs ,Ys , φs(z))ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dAs ,

where (standard assumptions under G are)

YT ∈ L2(Ω,G,P) (final value-reaching point of state process of BSDE).

Function g is a drift coefficient, ie driver which satisfies:
· g(λ,Y , φ, ·) is G-adapted for all λ ∈ L,Y ∈ SG2 , φ ∈ IG ,
· g(λ, 0, 0, ·) ∈ HG2 , for all λ ∈ L.

Obstacle/barrier process ξ is RCLL from SG2 .



Definition
Triple (Yt , φt(·),At)t∈[0,T ] is a G-solution of RBSDE associated with triple (YT , gt , ξt)Gt∈[0,T ]

(YT is final condition, obstacle ξ is RCLL from SG2 , and driver g with introduced properties),
if:

1 (Yt , φt(·),At)t∈[0,T ] ∈ SG2 × IG × SG2 ,

2 triple satisfies equation

Yt = YT +

ˆ T

t
gs(λs ,Ys , φs(z))ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dAs , (3)

with YT the terminal condition, YT = ξT ,

3 Yt ≥ ξt for every t ∈ [0,T ] a.s., where ξt ∈ S2 is a càdlàg Gt −adapted process,

4 A is a nondecreasing RCLL (right-continuous with left limits) predictable
process with A0 = 0, such that

(i) ˆ T

0
(Yt − ξt)dAc

t = 0 a.s., (4)

(ii) ∆Ad
t = −∆Yt1{Yt−=ξt−} a.s.,

where Ac denotes the continuous part of A and Ad its discontinuous part.



Remark 1. Instead of saying that (Yt , φt(·),At)t∈[0,T ] progressively measurable processes is a
solution of RBSDE, we can say that pair of progressively measurable processes
(Yt , φt(·))t∈[0,T ] is a solution of RBSDE where:

– processes Yt , φt(·) are from SG2 × IG ;
– process Yt satisfies property 3. from the definition of the solution;
– process At , t ∈ [0,T ] has nonegative values and it is defined with

At = A0 − Yt −
ˆ t

0
gs(λs ,Ys , φs(z))ds −

ˆ t

0

ˆ
R
φs(z)µ(ds, dz),

In this sense we can prove that there exist unique pair of progressively measurable processes
(Yt , φt(·))t∈[0,T ] which solves equation.

B We introduce Lipschitz driver”.

(H1) If function g : [0,T ]× [0,∞)2 × R× Φ× Ω→ R satisfies (for some Lg > 0)∣∣gt ((λB , λH) , y1, φ(1)
)
− gt

((
λB , λH

)
, y2, φ(2)

)∣∣ ≤ Lg (||y1 − y2||

+
∣∣φ(1)(0)− φ(2)(0)

∣∣√λB +
√´

R0

∣∣φ(1)(z)− φ(2)(z)
∣∣2 ν(dz)

√
λH
)
,

for all
(
λB , λH

)
∈ [0,∞)2, y1, y2 ∈ R, and φ(1), φ(2) ∈ Φ, dt × dP a.e.



B “Simple” RBSDE with time change & lower barrier

Yt = YT +

ˆ T

t
gs(λs)ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dAs .

Lemma 1. (Di Nunno, Sjursen, 2014)] Estimate for the driver.

Let (Y , φ), (U, ψ) ∈ SG2 ×IG , and g : [0,T ]× [0,∞)2×R×Φ×Ω→ R, g(λ, 0, 0, ·) ∈ HG2 ,
for all λ ∈ L, satisfy (H1). Then, for any t ∈ [0,T ],

E

(ˆ T

t
gs (λs ,Ys , φs)− gs (λs ,Us , ψs) ds

)2
 ≤ 3L2g(T − t)

E
[

(T − t) sup
t≤r≤T

|Yr − Ur |2 +

ˆ T

t

ˆ
R
|φs(z)− ψs(z)|2 Λ(ds, dz)

]
,

and

E

(ˆ T

t
|gs (λs ,Us , ψs)| ds

)2
 ≤ (T − t)E

[
2
ˆ T

t
|gs (λs , 0, 0)|2 ds

+6L2g

(
(T − t) sup

t≤r≤T
|Ur |2 +

ˆ T

t

ˆ
R
|ψs(z)|2 Λ(ds, dz)

)]
.



Lemma 2. Estimate for the state process.

Let U ∈ SG2 and φ,ψ ∈ IG and let (YT , gs , ξt) be standard parameters of RBSDEs with a
lower barrier. We define stochastic process Yt for t ∈ [0,T ] in following way

Yt : = YT +

ˆ T

t
gs(λs ,Us , ψs)ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dAs . (5)

Then Y ∈ SG2 and

E[ sup
t≤r≤T

|Yr |2] ≤ E

4Y 2
T + 4

(ˆ T

t
|gs(λs ,Us , φs)|ds

)2

+ 4A2
T + 40

ˆ T

0

ˆ
R
φ2s (z)Λ(ds, dz)

 .



Line of the proof.
It follows

E[ sup
t≤r≤T

|Yr |2] ≤ 4E

Y 2
T + 4

(ˆ T

t
|gs(λs ,Us , ψs)|ds

)2

+ 4

(ˆ T

t
dAs

)2


+ 4E

 sup
t≤r≤T

(ˆ T

r

ˆ
R
φs(z)µ(ds, dz)

)2


B Applying elementary and Doob’s inequality (E sup0≤t≤T |Mt |p ≤
(

p
p−1

)p
E|MT |p),

E

 sup
t≤r≤T

(ˆ T

r

ˆ
R
φs(z)µ(ds, dz)

)2
 ≤ 10E

(ˆ T

0

ˆ
R
φs(z)µ(ds, dz)

)2

,

B Substituting last we obtain

E[ sup
t≤r≤T

|Yr |2] ≤ 4E

Y 2
T + 4

(ˆ T

t
|gs(λs ,Us , ψs)|ds

)2

+ 4

(ˆ T

t
dAs

)2


+ 40E
[(ˆ T

0

ˆ
R
φ2s (z)Λ(ds, dz)

)]
< +∞,

i.e., Y ∈ SG2 . ?



Theorem 5. Solution for simple RBSDE with time change & lower barrier

Let driver gs ∈ HG2 be independent of processes of state and control, and let barrier process
ξ is RCLL from SG2 . Then, simple RBSDE with time change & lower barrier has a unique
G-solution (Yt , φt(·),At)t∈[0,T ] ∈ SG2 × IG × SG2 , and for each T1 ∈ T0,

YT1 = ess supτ∈TT1E
[
YT +

ˆ τ

T1

gt(λt)dt
∣∣∣GT1

]
a.s. .

Line of the proof. Existence. Let us define

Ỹ (T1) := ess supτ∈TT1E
[
Yτ +

ˆ τ

T1

gt(λt)dt
∣∣∣GT1

]
.

B By classical results of optimal control (Dellacherie, É. Lenglart 1981), there exists RCLL
adapted process Ỹt such that for every T1 ∈ T0

Ỹ (T1) = ỸT1 a.s. ,

B It follows that process Ỹt +
´ t
0 gs(λs)ds is a supermartingale, see Snell envelope.

B From Theorem 2 and Theorem 3, it follows that for t ∈ [0,T ] there exist φt(·),At ,
∈ IG × SG2 , such that (Ỹt , φt(·),At)t∈[0,T ] is a solution of the equation

Yt = YT +

ˆ T

t
gs(λs)ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dAs .



Uniqueness.
B Uniqueness of processes φt(·) and At follows from the uniqueness decomposition theorem.
B Let (Yt , φt(·),At)t∈[0,T ] be another solution. Since Yt ≥ ξt , t ∈ [0,T ] it follows that for
every T1 ∈ T0 and τ ∈ T1 we have

YT1 ≥ E
[
Yτ +

ˆ τ

T1

gs(λs)ds
∣∣∣GT1

]
≥ E

[
ξτ +

ˆ τ

T1

gs(λs)ds
∣∣∣GT1

]
a.s.

Applying supreme over τ ∈ TT1 on last expression, we obtain

YT1 ≥ Ỹ (T1) a.s. .

B If we now define for ε > 0 and T1 ∈ T0 stopping time τεT1
:= inft≥T1 {Yt ≤ ξt + ε} .

Direct consequence of this definition is that for every t ∈ [T1, τ
ε
T1[ following holds:

Yt > ξt + ε a.s. , Ac is a constant, as well as that Ad is constant a.s. Also,

Y(τεT1
)− > ξ(τεT1

)− + ε⇒ ∆Ad
τεT1

= 0 a.s.

⇒ Yt +
´ t
0 gs(λs)ds is martingale on [T1, τ

ε
T1

[.
B By right continuity of process ξt and Yt it follows

YT1 = E
[
YτεT1

+

ˆ τε

T1

gs(λs)ds
∣∣∣GT1

]
≤ Ỹ (T1) + ε a.s.

As last holds for every ε > 0, it follows

YT1 ≤ Ỹ (T1) a.s. ?



Theorem 6. Solution for general RBSDE with time change & lower barrier

General RBSDEs with a lower barrier and associated triple (YT , gt , ξt)Gt∈[0,T ]
, where driver

g satisfies hypothesis (H1), has a unique G-solution.

Line of the proof. Let us introduce mapping Θ : SG2 × IG −→ SG2 × IG in following way

(Y , φ) := Θ(U, ψ),

such that (Y , φ) is a solution of eq.

Yt := YT +

ˆ T

t
gs(λs ,Us , ψs)ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dAs .

B From Lemma 2. and Theorem 3. it follows that mapping Θ is well defined. Let us prove
that it is a contraction.
Let (Y ′, φ′) be another pair or process form SG2 × IG such that (Y ′, φ′) = Θ(U ′, ψ‘) and it
is a solution of general RBSDE associated with a driver gs(λs ,U ′, ψ

′
). We will keep the

notation

Ũ := U − U ′, ψ̃ := ψ − ψ′ ,
Ỹ := Y − Y ′, φ̃ := φ− φ′ ,
g̃ := g(·,U, ψ)− g(·,U ′, ψ′ ).



Ito formula for semimartingales on eβt Ỹ 2
t ,

eβt Ỹ 2
t = −β

ˆ T

t
eβs Ỹ 2

s ds + 2
ˆ T

t
eβs Ỹs−dAs,1

+ 2
ˆ T

t
eβs Ỹs [gs,1(λs ,Ys,1, φs,1(z))− gs,2(λs ,Ys,2, φs,2(z))]ds

− 2
ˆ T

t
eβs Ỹs φ̃s(0)dBs − 2

ˆ T

t

ˆ
R0

eβs Ỹs φ̃s(z)H̃(ds, dz)

− 2
ˆ T

t
eβs Ỹs−dAs,2 −

∑
t≤s≤T

eβs(∆Ỹs)2 −
ˆ T

t
eβs φ̃2s (0)λBs ds. (6)

B Since the processes Ai , i = 1, 2 jumps only at predictable stopping times and µ(·, dz)
jumps only at totally inaccessible stopping times, it follows that

ˆ T

t

ˆ
R0

eβs φ̃2s (z)ν(dz)λHs ds −
∑

t≤s≤T
eβs(∆Ỹs)2

=

ˆ T

t

ˆ
R0

eβs φ̃2s (z)ν(dz)λHs ds −
ˆ T

t

ˆ
R0

eβs φ̃2s (z)H(ds, dz) −
∑

t≤s≤T
eβs(∆As,1 −∆As,2)2

= −
ˆ T

t

ˆ
R0

eβs φ̃2s (z)H̃(ds, dz)−
∑

t≤s≤T
eβs(∆As,1 −∆As,2)2.



B If we substitute last in (7), it follows

eβt Ỹ 2
t + β

ˆ T

t
eβs Ỹ 2

s ds+

ˆ T

t
eβs φ̃2s (0)λBs ds+

ˆ T

t

ˆ
R0

eβs φ̃2s (z)ν(dz)λHs ds+
∑

t≤s≤T
eβs(∆As,1 −∆As,2)2

≤ 2
ˆ T

t
eβs Ỹs [gs,1(λs ,Ys,1, φs,1(z))− gs,2(λs ,Ys,2, φs,2(z))]︸ ︷︷ ︸

≤ Lg
(
|Ỹs |+ |φ̃s (0)|

√
λB +

√´
R0
|φ̃s (z)|2ν(dz)λH

)
+ |g̃s |

ds

− 2
ˆ T

t
eβs Ỹs φ̃s(0)dBs − 2

ˆ T

t

ˆ
R0

eβs(2Ỹs φ̃s(z) + φ̃2s (z))H̃(ds, dz)

+ 2
ˆ T

t
eβs Ỹs−dAs,1︸ ︷︷ ︸
≤ 0

− 2
ˆ T

t
eβs Ỹs−dAs,2︸ ︷︷ ︸
≥ 0

B Apply conditional expectation with respect to Gt and elementary inequalities, it follows

eβt Ỹ 2
t + E

β ˆ T

t
eβs Ỹ 2

s ds +

ˆ T

t
eβs φ̃2s (0)λBs ds +

ˆ T

t

ˆ
R0

eβs φ̃2s (z)ν(dz)λHs ds

∣∣∣Gt


≤E

(2Lg +
1
ε2

) ˆ T

t
eβs Ỹ 2

s ds +3ε2L2g

 ˆ T

t
eβs |φ̃s(0)|2λBds +

ˆ T

t

ˆ
R0

|φ̃s(z)|2ν(dz)λHs ds

∣∣∣Gt


+ 3ε2E
[ˆ T

t
eβs |g̃s(λs)|2ds

∣∣∣Gt] . (F)



B If we denote η := 3ε2, β > 2Lg + 3
η
, (for ε small enough 3ε2L2g < 1), taking expectation

of sup over t, it follows

⇒||Ỹs ||2SG2 ≤ ηe
βTE

(ˆ T

0
|g̃s(λs)|2ds

)
= ηeβT ||g̃s ||2HG2 .

B From (F) applying expectation of supt∈[0,T ], we obtain

||φ̃s(z)||2IG = E
[ˆ T

0
|φ̃s(0)|2λBs ds +

ˆ T

0

ˆ
R0

|φ̃s(z)|2ν(dz)λHs ds

]
≤ ...

≤ ηL2geβTE sup
t∈[0,T ]

[ˆ T

t
φ̃2s (0)λBs ds+

ˆ T

t

ˆ
R0

φ̃2s (z)ν(dz)λHs ds

]
+ηeβTE

[ˆ T

t
g̃2s (λs)ds

∣∣∣Gt] .
B From last, if η < 1

L2g
, then

⇒||φ̃s(z)||2IG ≤
ηeβT

1− ηL2geβT
||g̃s ||2HG2 ,



B Using result from Lemma 1 - estimate for the driver,

⇒||Ỹs ||2SG2 + ||φ̃s(z)||2IG ≤ 3L2g max{T 2, 1}ηeβT (||Ỹs ||2SG2 + ||φ̃s(z)||2IG ).

B As η < 1
3L2g max{T2,1} , if we now take η < min

{
1

2L2g
, 1
3L2g max{T2,1}

}
, it follows from last

that Θ is a contraction on SG2 × IG . ?



Existence and uniqueness of the F-solution
B For T > 0 let RBSDE driven by time-change Lévy noises and lower barrier under F be
rewritten in following form

Yt = YT +

ˆ T

t
gs(λs ,Ys , φs(z))ds−

ˆ T

t
φs(0)dBs−

ˆ T

t

ˆ
R0

φs(z)H̃(ds, dz)+

ˆ T

t
dMs +

ˆ T

t
dAs ,

which is equivalent to equation

Yt = YT +

ˆ T

t
gs(λs ,Ys , φs(z))ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dMs +

ˆ T

t
dAs ,

where ||M||
MF2

β

:=
´ T
t eβsd [M̃]s < +∞, β > 0 and (standard assumptions under F are)

YT ∈ L2(Ω,F ,P) (final value-reaching point of state process of BSDE).

Function g is a drift coefficient, ie driver which satisfies:
· g(λ,Y , φ, ·) is F-adapted for all λ ∈ L,Y ∈ SF2 , φ ∈ IF ,
· g(λ, 0, 0, ·) ∈ HF2 , for all λ ∈ L.

Obstacle/barrier process ξ is RCLL from SF2 .



Definition
Quartet (Yt , φt(·),Mt ,At)t∈[0,T ] is a F-solution of RBSDE associated with triple
(YT , gt , ξt)Ft∈[0,T ]

(YT is final condition, obstacle ξ is RCLL from SF2 , and driver g with
introduced properties), if:

1 (Yt , φt(·),Mt ,At) ∈ SF2 × IF ×MF2
β × SF2 ,

2 satisfies equation

Yt = YT +

ˆ T

t
gs(λs ,Ys , φs(z))ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dMs +

ˆ T

t
dAs ,

with YT the terminal condition, YT = ξT ,

3 Yt ≥ ξt for every t ∈ [0,T ] a.s., where ξt ∈ S2 is a càdlàg Ft − adapted
process,

4 A is a nondecreasing RCLL (right-continuous with left limits) predictable
process with A0 = 0, such that

(i) ˆ T

0
(Yt − ξt)dAc

t = 0 a.s.,

(ii) ∆Ad
t = −∆Yt1{Yt−=ξt−} a.s.,

where Ac denotes the continuous part of A and Ad its discontinuous part.



Remark 1. Instead of saying that (Yt , φt(·),Mt ,At)t∈[0,T ] progressively measurable processes
is a solution of RBSDE, we can say that triple of progressively measurable processes
(Yt , φt(·),Mt)t∈[0,T ] is a solution of RBSDE where:

– processes Yt , φt(·),Mt are from SG2 × IG ×MF2
β – process Yt satisfies property 3. from

the definition of the solution;
– process At , t ∈ [0,T ] has nonegative values and it is defined with

At = A0 − Yt −
ˆ t

0
gs(λs ,Ys , φs(z))ds −

ˆ t

0

ˆ
R
φs(z)µ(ds, dz)−

ˆ T

t
dMs ,

In this sense we can prove that there exist unique pair of progressively measurable processes
(Yt , φt(·))t∈[0,T ] which solves equation.

B “Simple” RBSDE with time change & lower barrier

Yt = YT +

ˆ T

t
gs(λs)ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dMs +

ˆ T

t
dAs .



Theorem 7. Solution for simple RBSDE with time change & lower barrier

Let driver gs ∈ HF2 be independent of processes of state and control, and let barrier process
ξ is RCLL from SF2 . Then, simple RBSDE with time change & lower barrier has a unique
F-solution (Yt , φt(·),Mt ,At)t∈[0,T ] ∈ SF2 × IF ×MF2

β × SF2 , and for each T1 ∈ T0,

YT1 = ess supτ∈TT1E
[
YT +

ˆ τ

T1

gt(λt)dt
∣∣∣FT1

]
a.s. .

Line of the proof.
B As in the framework under G, let us define

Ỹ (T1) := ess supτ∈TT1E
[
Yτ +

ˆ τ

T1

gt(λt)dt
∣∣∣FT1

]
.

B As before, there exists RCLL adapted process Ỹt such that for every T1 ∈ T0

Ỹ (T1) = ỸT1 a.s. ,
such that Ỹt +

´ t
0 gs(λs)ds is a supermartingale, see Snell envelope.

B From Theorem 4 - Doob Meyer’s decomposition under F, it follows that for t ∈ [0,T ]

there exist φt(·),Mt ,At , ∈ IF ×MF2
β × SF2 , such that (Ỹt , φt(·),Mt ,At)t∈[0,T ] is a solution

of the equation

Yt = YT +

ˆ T

t
gs(λs)ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dMs +

ˆ T

t
dAs . ?



Theorem 8. Solution for general RBSDE with time change & lower barrier

General RBSDEs with a lower barrier and associated triple (YT , gt , ξt)Ft∈[0,T ]
, where driver

g satisfies hypothesis (H1), has a unique F-solution.

Line of the proof.
Itô formula for semimartingales eβt Ỹ 2

t , we obtain

eβt Ỹ 2
t + β

ˆ T

t
eβs Ỹ 2

s ds +

ˆ T

t
eβs φ̃2s (0)λBs ds +

ˆ T

t
eβsd〈M̃s〉

≤ 2
ˆ T

t
eβs Ỹs [gs,1(λs ,Ys,1, φs,1(z))− gs,2(λs ,Ys,2, φs,2(z))]ds

− 2
ˆ T

t
eβs Ỹs φ̃s(0)dBs − 2

ˆ T

t

ˆ
R0

eβs Ỹsφs(z)H̃(ds, dz)− 2
ˆ T

t
eβs ỸsdM̃s

+ 2
ˆ T

t
eβs Ỹs−dAs,1 − 2

ˆ T

t
eβs Ỹs−dAs,2 −

∑
t≤s≤T

eβs(∆Ỹs)2. (4)

B Since the processes Ai , i = 1, 2 jumps only at predictable stopping times, while µ(·, dz)
and M(·) jump only at totally inaccessible stopping times, it follows that



ˆ T

t

ˆ
R0

eβs φ̃2s (z)ν(dz)λHs ds −
∑

t≤s≤T
eβs(∆Ỹs)2

=

ˆ T

t

ˆ
R0

eβs φ̃2s (z)ν(dz)λHs ds −
ˆ T

t

ˆ
R0

eβs φ̃2s (z)H(ds, dz) −
∑

t≤s≤T
eβs(∆As,1 −∆As,2)2

−
∑

0≤s<T
eβs(∆M̃s)2

= −
ˆ T

t

ˆ
R0

eβs φ̃2s (z)H̃(ds, dz)−
∑

t≤s≤T
eβs(∆As,1 −∆As,2)2 −

∑
0≤s<T

eβs(∆M̃s)2.

B From (4), it follows

eβt Ỹ 2
t + β

ˆ T

t
eβs Ỹ 2

s ds +

ˆ T

t
eβs φ̃2s (0)λBs ds +

ˆ T

t

ˆ
R0

eβs φ̃2s (z)ν(dz)λHs ds

+

ˆ T

t
eβsd [M̃]s +

∑
t≤s≤T

eβs(∆As,1 −∆As,2)2

≤ 2
ˆ T

t
eβs Ỹs [gs,1(λs ,Ys,1, φs,1(z))− gs,2(λs ,Ys,2, φs,2(z))]ds

− 2
ˆ T

t
eβs Ỹs φ̃s(0)dBs − 2

ˆ T

t

ˆ
R0

eβs Ỹsφs(z)H̃(ds, dz)− 2
ˆ T

t
eβs ỸsdM̃s

+ 2
ˆ T

t
eβs Ỹs−dAs,1 − 2

ˆ T

t
eβs Ỹs−dAs,2. (7)



B Using similar arguments as in Theorem 6, applying conditional expectation with respect to
Ft , for the appropriate choice of constants, it follows that

⇒||Ỹs ||2SF2 + ||φ̃s(z)||2IF + ||M̃s ||MF21
≤ ηeβT ||g̃s ||2HF2 .

B Let us introduce mapping Θ : SF2 × IF ×MF2
1 −→ SF2 × IF ×MF2

1 in following way

(Y , φ,V ) := θ(U, ψ,W ),

such that (Y , φ,V ) is a solution of simple RBSDE associated with a driver
gs,1 := gs(λs ,Us , ψs) and ortogonale martingale part W . From Theorem 7 it follows that
mapping Θ is well defined.

B If we choose that η < min

{
1

2L2g
, 1
3L2g max{T2,1}

}
,

⇒||Ỹs ||2SF2 + ||φ̃s(z)||2IF + ||M̃s ||MF2
β

≤ ηeβT ||g̃s ||2HF2

≤ 3L2g max{T 2, 1}ηeβT (||Ỹs ||2SF2 + ||φ̃s(z)||2IF ).

it follows that for a certain η it follows that Θ is a contraction on SF2 ×IF ×MF2
β . ?



Characterization of the value function as the solution of an RBSDE with

time change

B Goal is to connect the state process Y of the solution of RBSDE with time change
(solution of this RBSDE is triple (Yt , φt(·),At)t∈[0,T ]) characterized with (YT , gt , ξt)t∈[0,T ],
i.e.

Yt = YT +

ˆ T

t
gs(λs ,Ys , φs(z))ds −

ˆ T

t

ˆ
R
φs(z)µ(ds, dz) +

ˆ T

t
dAs

(
+

ˆ T

t
dMs

)
,

B with the state process X of the solution of BSDE with time changed Lévy (solution of this
BSDE is a pair (Xt , ψt(·))t∈[0,T ] characterized with (XT , gt)t∈[0,T ] , i.e.

Xt(XT ,T ) = XT +

ˆ T

t
gs(λs ,Xs , ψs(z))ds −

ˆ T

t

ˆ
R
ψs(z)µ(ds, dz)

(
+

ˆ T

t
dMs

)
.



Verification result for time changed Lévy under filtration G

Proposition 1. (Di Nunno, Sjursen, 2014) Comparison for BSDE with time change

Let
(
g(1),X (1)

T

)
and

(
g(2),X (2)

T

)
be two sets of standard parameters for the BSDEs with

solutions
(
X (1), ψ(1)

)
,
(
X (2), ψ(2)

)
∈ SG2 × IG . Let us introduce following assumption.

(A1)

1 g(2)
t (λ, x , ψ, ω) = ft

(
x , ψ(0)κt(0)

√
λB ,
´
R0
ψ(z)κt(z)v(dz)

√
λH , ω

)
where

κ ∈ IG satisfies following condition

(c) there exists KE > 0 such that 0 ≤ κt(z) < KE z for z ∈ R0, and
|κt(0)| < KE dt × dP− a.e.

2 f is a function f : [0,T ]×R×R× R×Ω→ R which satisfies, for some Kf > 0,∣∣ft(x , b, h)− ft
(
x ′, b′, h′

)∣∣ ≤ Kf
(∣∣x − x ′

∣∣+
∣∣b − b′

∣∣+
∣∣h − h′

∣∣)
dt × dP a.e. and E

[´ T
0 |ft(0, 0, 0)|2 dt

]
<∞.

(A2) X (1)
T ≤ X (2)

T P-a.s. and g(1)
s

(
λs ,X

(1)
s , ψ

(1)
s

)
≤ g(2)

s

(
λs ,X

(1)
s , ψ

(1)
s

)
dt × dP-a.e.,

then
X (1)
t ≤ X (2)

t dt × dP− a.e.



Theorem 9. Verification result under G.

Let T > 0 be the terminal time. Let (ξt , 0 ≤ t ≤ T ) be an RCLL process in SG2 and let g is
a Lipschitz driver satisfying (H1) with a constant Lg , such that it also satisfies assumptions
from Proposition 1. Suppose that (Yt , φt(·),At)t∈[0,T ] is the solution of the RBSDE with
time change. Then for each stopping time S ∈ T0, it follows that

YS = ess supτ∈TSXS (ξτ , τ) a.s. ,

where τ ∈ TS , X (ξτ , τ) is the state process of the solution for the BSDE with time changed
Lévy associated with terminal time τ ,terminal condition ξτ , and driver g.

Line of the proof. “≥”
As As is nondecreasing process it follows that

g(λs , y , φs) + dAs ≥ g(λs , y , φs).

For τ ∈ TS , Yτ ≥ ξτ a.s.

⇒ YS ≥ ess supτ∈TSXs(ξτ , τ) a.s



“≤”
Step I Let ε > 0. By definition of τεS and by right-continuity property of processes Yt and
ξt , it follows that YτεS ≤ ξτεS + ε a.s., so

YS = XS (ξτεS
, τεS ) ≤ XS (ξτεS

+ ε, τεS ) a.s.

Step II Lemma 3. Let T > 0, ξi ∈ SG2 , i = 1, 2 and let gs,i , i = 1, 2 drivers, such that gs,1 is
a Lipschitz driver satisfying (H1) with a constant Lg , and β, η are such that β > 2Lg + 3

η

and η < 1
L2g
, then for each t ∈ [0,T ] we have that a.s.

eβt |Xt,1−Xt,2|2 ≤ E
[
eβT |ξ1 − ξ2|2

∣∣∣Gt]+ηE[ˆ T

t
eβs |gs,1(λs ,Xs,1, ψs,1)− gs,2(λs ,Xs,2, ψs,2)|2ds

∣∣∣Gt] a.s.

Ie
⇒ |XS (ξτεS

+ ε, τεS )− XS (ξτεS
, τεS )|2 ≤ eβ(T−S)ε2 a.s.

Step III From Step I and II

YS ≤ XS (ξτεS
+ ε, τεS ) ≤ XS (ξτεS

, τεS ) + eβ(T−S)ε2 ≤ ess supτ∈TSXS (ξτ , τ) + eβ(T−S)ε2 a.s.

So for every ε > 0 it follows that

YS ≤ ess supτ∈TSXS (ξτ , τ) a.s. ?



Comparison result under G

Theorem 10. Comparison theorem under G

Let ξi , i = 1, 2 be two RCLL obstacle processes in SG2 . Let gi , i = 1, 2 be such that they
satisfy assumption (H1) and let assumptions of Proposition 1 be satisfied. Furthermore,
suppose that for t ∈ [0,T ] following assumption holds:

(A3) ξt,1 ≤ ξt,2, t ∈ [0,T ] a.s., and gt,1(λ, y , φ) ≤ gt,2(λ, y , φ) for all λ ∈ [0,∞)2, y ∈ R,
φ ∈ IG , dt × dP-a.s. .

Let (Y i
t , φ

i
t(·),Ai

t)t∈[0,T ] be a G-solution of RBSDE associated with triple
(Y i

T , g
i
t , ξ

i
t)

G
t∈[0,T ]

, i = 1, 2. Then we have that

Y 1
t ≤ Y 2

t , t ∈ [0,T ] a.s.

Line of the proof. From comparison theorem for BSDE with time change Levy and
verification theorem

X 1
t (ξ1τ , τ) ≤ X 2

t (ξ2τ , τ)⇒ Y 1
t = ess supτ∈TtX

1
t (ξ1τ , τ) ≤ ess supτ∈TtX

2
t (ξ2τ , τ) = Y 2

t a.s. ?
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