

UiO **Department of Mathematics** University of Oslo

Jasmina Đorđević

REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH TIME-CHANGE LÉVY NOISES

joint work with Giulia di Nunno

The 9th International Colloquium on BSDEs and Mean Field Systems, 27th of June - 1st of July in Annecy

STORM — **Stochastics for Time-Space Risk Models** Funded by the Research Council of Norway, project no. 274410, and the University of Oslo UiO **Department of Mathematics** University of Oslo

Overview

* Time change;

▷ Di Nunno, Sjursen, BSDEs driven by time-changed Lévy noises and optimal control, Stochastic Processes and their Applications 124, 2014, 1679-1709.

- G. Di Nunno, S. Sjursen, On chaos representation and orthogonal polynomials for the doubly stochastic Poisson process, Robert C. Dalang, Marco Dozzi, Francesco Russo (Eds.), Seminar on Stochastic Analysis, Random Fields and Applications VII, in: Progress in Probability 67, Springer, Basel, 2013, 23–54.
 - Existence & uniqueness of the solution of RBSDEs with time change and lower barrier;
- M. C. Quenez, A. Sulem, Reflected BSDEs and robust optimal stopping for dynamic risk measures with jumps, Stochastic Processes and their Applications 5, 124, 2014, 3031–3054.
 - ★ Verification theorem;
 - * Comparison theorem.

Time-change process

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space and $X := [0, T] \times \mathbb{R}$, we will consider $X = ([0, T] \cup \{0\}) \cup ([0, T] \times \mathbb{R}_0)$, where $\mathbb{R}_0 = \mathbb{R} \setminus \{0\}$ and T > 0.
- Denote \mathcal{B}_X the Borel σ -algebra on X. Throughout this presentation $\Delta \subset X$ denotes an element Δ in \mathcal{B}_X .
- Let λ := (λ^β, λ^H) be a two dimensional stochastic process such that each component λ', I = B, H, satisfies
 (i) λ'_t ≥ 0 P-a.s. for all t ∈ [0, T],
 (ii) lim_{h→0} P (|λ'_{t+h} λ'_t| ≥ ε) = 0 for all ε > 0 and almost all t ∈ [0, T],
 (iii) E [∫₀^T λ'_tdt] < ∞.
- The space of all processes $\lambda := (\lambda^B, \lambda^H)$ satisfying (i)-(iii) above is denoted by \mathcal{L} , and it is supplied with the random measure Λ on X,

$$\Lambda(\Delta) := \int_0^T \mathbf{1}_{\{(t,0)\in\Delta\}}(t)\underline{\lambda}_t^{\underline{\beta}}dt + \int_0^T \int_{\mathbb{R}_0} \mathbf{1}_{\Delta}(t,z)\nu(dz)\underline{\lambda}_t^{\underline{H}}dt,$$
(1)

as the mixture of measures on disjoint sets. Here ν is a deterministic, σ -finite measure on the Borel sets of \mathbb{R}_0 satisfying $\int_{\mathbb{R}_0} z^2 \nu(dz) < \infty$.

- We define the σ -algebra generated by the values of Λ as \mathcal{F}^{Λ} , while Λ^{H} denotes the restriction of Λ to $[0, T] \times \mathbb{R}_{0}$ and Λ^{B} the restriction of Λ to $[0, T] \times \{0\}$.
- Hence for $\Delta \subseteq X$

$$\Lambda(\Delta) = \Lambda^{\mathcal{B}}(\Delta \cap [0, T] \times \{0\}) + \Lambda^{\mathcal{H}}(\Delta \cap [0, T] \times \mathbb{R}_0).$$

■ For ∧ It follow from (1) that

$$\begin{split} \Lambda(ds, \{0\}) &= \lambda_s^B ds, \\ \Lambda(ds, dz) &= \lambda_s^H ds, \ z \in \mathbb{R}_0. \end{split}$$

Definition (Di Nunno, Sjursen, 2014)

(A1)
$$\mathbb{P}(B(\Delta) \le x \mid \mathcal{F}^{\Lambda}) = \mathbb{P}(B(\Delta) \le x \mid \Lambda^{B}(\Delta)) = \Phi\left(\frac{x}{\sqrt{\Lambda^{B}(\Delta)}}\right),$$

 $x \in \mathbb{R}, \Delta \subseteq [0, T] \times \{0\},$

(A2) $B(\Delta_1)$ and $B(\Delta_2)$ are conditionally independent given \mathcal{F}^{\wedge} whenever Δ_1 and Δ_2 are disjoint sets.

(A3) $\mathbb{P}(H(\Delta) = k \mid \mathcal{F}^{\Lambda}) = \mathbb{P}(H(\Delta) = k \mid \Lambda^{H}(\Delta)) = \frac{\Lambda^{H}(\Delta)^{k}}{k!} e^{-\Lambda^{H}(\Delta)}, k \in \mathbb{N}, \Delta \subseteq, [0, T] \times \mathbb{R}_{0}.$ (A4) $H(\Delta_{1})$ and $H(\Delta_{2})$ are conditionally independent given \mathcal{F}^{Λ} whenever Δ_{1} and Δ_{2} are disjoint sets.

(A5) B and H are conditionally independent given \mathcal{F}^{Λ} .

Definition (Di Nunno, Sjursen, 2014)

The random measure μ on the Borel subsets of X is defined by

 $\mu(\Delta) := B(\Delta \cap [0, T] \times \{0\}) + \widetilde{H}(\Delta \cap [0, T] \times \mathbb{R}_0), \quad \Delta \subseteq X,$

(2)

where $\tilde{H} := H - \Lambda^{H}$ be the signed random measure given by

 $ilde{H}(\Delta) = H(\Delta) - \Lambda^H(\Delta), \quad \Delta \subset [0, T] imes \mathbb{R}_0.$

Properties:

 $(A1) \Rightarrow \mathbb{E} \begin{bmatrix} B(\Delta) \mid \mathcal{F}^{\Lambda} \end{bmatrix} = 0$ $(A3) \Rightarrow \mathbb{E} \begin{bmatrix} H(\Delta) \mid \mathcal{F}^{\Lambda} \end{bmatrix} = \Lambda^{H}(\Delta) \iff \mathbb{E} \begin{bmatrix} \tilde{H}(\Delta) \mid \mathcal{F}^{\Lambda} \end{bmatrix} = 0$ $(A2), (A5) \Rightarrow \mathbb{E} \begin{bmatrix} B(\Delta)^{2} \mid \mathcal{F}^{\Lambda} \end{bmatrix} = \Lambda^{B}(\Delta)$ $(M2), (A5) \Rightarrow \mathbb{E} \begin{bmatrix} B(\Delta)^{2} \mid \mathcal{F}^{\Lambda} \end{bmatrix} = \Lambda^{B}(\Delta)$ $(M2), (A5) \Rightarrow \mathbb{E} \begin{bmatrix} B(\Delta)^{2} \mid \mathcal{F}^{\Lambda} \end{bmatrix} = \Lambda^{B}(\Delta)$

$$(A4), (A5) \Rightarrow \mathbb{E}\left[\tilde{H}(\Delta)^2 \mid \mathcal{F}^{\Lambda}\right] = \Lambda^H(\Delta)$$

$$\Rightarrow \begin{cases} \mathbb{E}\left[\mu(\Delta_1) \mid \mu(\Delta_2) \mid \mathcal{F}^{\Lambda}\right] = 0 \\ \mathbb{E}\left[\mu(\Delta_1) \mid \mu(\Delta_2) \mid \mathcal{F}^{\Lambda}\right] = 0 \end{cases}$$

The random measures B and H are related to a specific form of time-change for Brownian motion and pure jump Lévy process. More specifically define

$$B_t := B([0, t] \times \{0\}), \qquad \Lambda_t^B := \int_0^t \lambda_s^B ds,$$
$$\eta_t := \int_0^t \int_{\mathbb{R}_0} z \tilde{H}(ds, dz), \qquad \hat{\Lambda}_t^H := \int_0^t \lambda_s^H ds, t \in [0, T].$$

Theorem 1. (Richard F. Serfozo, 1972, Bronius Grigelionis, 1972)

Let W_t , $t \in [0, T]$ be a Brownian motion and N_t , $t \in [0, T]$ be a centered pure jump Lévy process with Lévy measure ν . Assume that both W and N are independent of Λ . Then

B satisfies (A1) and (A2) if and only if, for any $t \ge 0$

$$B_t \stackrel{d}{=} W_{\Lambda^B_t},$$

n satisfies (A3) and (A4) if and only *if*, for any $t \ge 0$

$$\eta_t \stackrel{d}{=} N_{\hat{\Lambda}_t^H}.$$

Filtrations

Let us define $\mathbb{F}^{\mu} = \{\mathcal{F}^{\mu}_{t}, t \in [0, T]\}$ as the smallest filtration generated by $\mu(\Delta), \Delta \subset [0, t] \times \mathbb{R}$. From the definition it follows that for any $t \in [0, T]$

$$\mathcal{F}^{\mu}_t := \mathcal{F}^{\mathcal{B}}_t \vee \mathcal{F}^{\mathcal{H}}_t \vee \mathcal{F}^{\boldsymbol{\Lambda}}_t,$$

where

- \mathcal{F}_t^B is generated by $B(\Delta \cap [0, T] \times \{0\})$, \mathcal{F}_t^H is generated by $H(\Delta \cap [0, T] \times \mathbb{R}_0)$,
- $\cdot \mathcal{F}_t^{\Lambda}$ is generated by $\Lambda(\Delta), \Delta \in [0, t] \times \mathbb{R}$.

This follows from the application of the results from Winkel, 2001 & Di Nunno, Sjursen, 2013.

• Let us set $\mathbb{F} = \{\mathcal{F}_t, t \in [0, T]\}$ where

$$\mathcal{F}_t = \bigcap_{r>t} \mathcal{F}_r^{\mu}.$$

Furthermore, we set $\mathbb{G} = \{\mathcal{G}_t, t \in [0, T]\}$ where

$$\mathcal{G}_t = \mathcal{F}_t^{\mu} \vee \mathcal{F}^{\Lambda}.$$

Remark that $\mathcal{G}_{\mathcal{T}} = \mathcal{F}_{\mathcal{T}}, \ \mathcal{G}_0 = \mathcal{F}^{\Lambda}$, while \mathcal{F}_0^{μ} is trivial.

(In the sequel notation $\mathcal{F} = \mathcal{F}_T$ will be used.)

- Reference filtration \mathbb{F} is the smallest right-continuous filtration to which μ is adapted.
- The filtration G is right-continuous.
- The random field μ is a martingale random field with respect to \mathbb{F} (different representations hold under lack of informations) and \mathbb{G} , since:
 - 1 μ has a σ -finite variance measure;
 - 2 It is additive;
 - 3 Adapted;
 - 4 It has the martingale property;
 - 5 μ It has conditionally orthogonal values.

Representation results

G Denote $\mathcal{I}^{\mathcal{G}}$ as the subspace of $L^2([0, T] \times \mathbb{R} \times \Omega, \mathcal{B}_X \times \mathbb{P}, \Lambda \times \mathbb{P})$ of the random fields admitting a G-predictable modification, in particular

$$\|\phi\|_{\mathcal{I}^{\mathcal{G}}} := \left(\mathbb{E}\left[\int_{0}^{T} \phi_{\mathfrak{s}}(0)^{2} \lambda_{\mathfrak{s}}^{B} d\mathfrak{s} + \int_{0}^{T} \int_{\mathbb{R}_{0}} \phi_{\mathfrak{s}}(z)^{2} \nu(dz) \lambda_{\mathfrak{s}}^{H} d\mathfrak{s}\right]\right)^{\frac{1}{2}} < \infty.$$

Theorem 2. (Di Nunno, Sjursen, 2014) Martingale representation under \mathbb{G} .

Assume M_t , $t \in [0, T]$, is a G-martingale. Then there exists a unique $\phi \in \mathcal{I}^{\mathcal{G}}$ such that

$$M_t = \mathbb{E}\left[M_T \mid \mathcal{F}^{\Lambda}\right] + \int_0^t \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz), \quad t \in [0, T],$$

Theorem 3. Version of Doob–Meyer decomposition under filtration G.

Let S_t , $t \in [0, T]$, is square integrable G-supermartingale. There exists a unique squareintegrable martingal M_t , and a nondecreasing RCLL (right continuous with left limits) predictable process A, for which $E(A_T^2) < \infty$ and $A_0 = 0$, such that for every $t \in [0, T]$

$$S_t = M_t + A_t,$$

$$\mathbb{F}$$

Denote $\mathcal{I}^\mathcal{F}$ a set of random fields for which

$$\mathcal{I}^{\mathcal{F}} := \Big\{ \varphi \in L^{2}(\Omega, \mathcal{F}, P), \mathbb{F} - \text{predictable} : \left(E\left[\int_{0}^{T} \varphi_{s}^{2} d\Lambda_{s} \right] \right)^{\frac{1}{2}} < \infty \Big\}.$$

Corollary 1. (Di Nunno, Sjursen, 2014) Martingale representation under F.

Assume M_t , $t \in [0, T]$, is a \mathbb{F} -martingale from $L^2(\Omega, \mathcal{F}, \mathbb{P})$. Then there exists a unique $\phi \in \mathcal{I}^{\mathcal{F}}$, and \mathcal{F} -martingale N_t which are orthogonal to μ , such that

$$M_t = N_t + \int_0^t \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz), \quad t \in [0, T].$$

Theorem 4. Version of Doob–Meyer decomposition under filtration \mathbb{F} .

Assume $S_t^{\mathcal{F}}, t \in [0, T]$, is square integrable \mathbb{F} -supermartingale. Then there exist orthogonal martingale components N_t and $\phi^{\mathcal{F}}$, a nondecreasing RCLL (right continuous with left limits) predictable process $A^{\mathcal{F}}$, for which $E[(A_T^{\mathcal{F}})^2] < \infty$ and $A_0^{\mathcal{F}} = 0$, such that for every $t \in [0, T]$

$$S_t^{\mathcal{F}} = N_t^{\mathcal{F}} + \int_0^t \int_{\mathbb{R}} \phi_s^{\mathcal{F}}(z) \mu(ds, dz) + A_t^{\mathcal{F}}.$$

Reflected backward stochastic differential equations with time-change

Lévy noises and lower barrier

For $\mathfrak{F} := \mathcal{G}, \mathcal{F}$ let us denote:

- $L^{p}(\mathfrak{F})$ is the set of random variables ξ which are \mathfrak{F} -measurable and p-integrable, p > 1;
- $S^{\mathfrak{F}_2}$ be the space of real-valued RCLL \mathfrak{F} -adapted stochastic processes $Y_t, t \in [0, T], \omega \in \Omega$, such that

$$\|Y\|_{\mathcal{S}^{\widetilde{\mathfrak{S}}_{2}}}:=\sqrt{\mathbb{E}\left[\sup_{0\leq t\leq T}|Y_{t}|^{2}\right]}<\infty;$$

■ $\mathcal{H}^{\mathcal{G}_2}$ is the space of \mathfrak{F} -predictable stochastic processes $f_t, t \in [0, T], \omega \in \Omega$, such that

$$\|f_s\|_{\mathcal{H}^{\mathfrak{F}_{2}}} := \mathbb{E}\left[\int_0^{\mathcal{T}} f_s^2 ds\right] < \infty;$$

• \mathcal{T}_0 be the set of stopping times $au \in [0, T]$ a.s. .

For S in \mathcal{T}_0 , let \mathcal{T}_S be the set of stopping times τ such that $\tau \in [S, T]$ a.s. .

Existence and uniqueness of the G-solution

 \rhd For T>0 let RBSDE driven by time-change Lévy noises and lower barrier under \mathbb{G} be rewritten in following form

$$Y_t = Y_T + \int_t^T g_s(\lambda_s, Y_s, \phi_s(z)) ds - \int_t^T \phi_s(0) dB_s - \int_t^T \int_{\mathbb{R}_0} \phi_s(z) \tilde{H}(ds, dz) + \int_t^T dA_s,$$

which is equivalent to equation

$$Y_t = Y_T + \int_t^T g_s(\lambda_s, Y_s, \phi_s(z)) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dA_s,$$

where (standard assumptions under \mathbb{G} are)

- $Y_T \in L^2(\Omega, \mathcal{G}, \mathbb{P})$ (final value-reaching point of state process of BSDE).
- Function *g* is a drift coefficient, ie *driver* which satisfies:
 - $\begin{array}{ll} \cdot \ g(\lambda, \, Y, \, \phi, \cdot) \text{ is } \mathbb{G}\text{-adapted} & \text{ for all } \lambda \in \mathcal{L}, \, Y \in \mathcal{S}^{\mathcal{G}_2}, \, \phi \in \mathcal{I}^{\mathcal{G}}, \\ \cdot \ g(\lambda, \, 0, \, 0, \, \cdot) \in \mathcal{H}^{\mathcal{G}_2}, & \text{ for all } \lambda \in \mathcal{L}. \end{array}$
- **Obstacle/barrier process** ξ is RCLL from $S^{\mathcal{G}_2}$.

Definition

Triple $(Y_t, \phi_t(\cdot), A_t)_{t \in [0, T]}$ is a G-solution of RBSDE associated with triple $(Y_T, g_t, \xi_t)_{t \in [0, T]}^{\mathbb{G}}$ $(Y_T$ is final condition, obstacle ξ is RCLL from $S^{\mathcal{G}_2}$, and driver g with introduced properties), if:

- $1 \quad (Y_t, \phi_t(\cdot), A_t)_{t \in [0, T]} \in S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}} \times S^{\mathcal{G}_2},$
- 2 triple satisfies equation

(i)

$$Y_t = Y_T + \int_t^T g_s(\lambda_s, Y_s, \phi_s(z)) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dA_s, \quad (3)$$

with Y_T the terminal condition, $Y_T = \xi_T$,

- 3 $Y_t \ge \xi_t$ for every $t \in [0, T]$ a.s., where $\xi_t \in S_2$ is a càdlàg \mathcal{G}_t adapted process,
- 4 A is a nondecreasing RCLL (right-continuous with left limits) predictable process with $A_0 = 0$, such that

$$\int_{0}^{T} (Y_t - \xi_t) dA_t^c = 0 \quad a.s.,$$
 (4)

(ii) $\Delta A_t^d = -\Delta Y_t \mathbf{1}_{\{Y_{t-}=\xi_{t-}\}}$ a.s., where A^c denotes the continuous part of A and A^d its discontinuous part. **Remark 1.** Instead of saying that $(Y_t, \phi_t(\cdot), A_t)_{t \in [0, T]}$ progressively measurable processes is a solution of RBSDE, we can say that pair of progressively measurable processes $(Y_t, \phi_t(\cdot))_{t \in [0, T]}$ is a solution of RBSDE where:

- processes Y_t , $\phi_t(\cdot)$ are from $S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}}$;
- process Y_t satisfies property 3. from the definition of the solution;
- process A_t , $t \in [0, T]$ has nonegative values and it is defined with

$$A_t = A_0 - Y_t - \int_0^t g_s(\lambda_s, Y_s, \phi_s(z)) ds - \int_0^t \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz),$$

In this sense we can prove that there exist unique pair of progressively measurable processes $(Y_t, \phi_t(\cdot))_{t \in [0, T]}$ which solves equation.

 \triangleright We introduce Lipschitz driver".

(H1) If function $g: [0, T] \times [0, \infty)^2 \times \mathbb{R} \times \Phi \times \Omega \to \mathbb{R}$ satisfies (for some $L_g > 0$)

$$\begin{aligned} & \left| g_t \left(\left(\lambda^B, \lambda^H \right), y_1, \phi^{(1)} \right) - g_t \left(\left(\lambda^B, \lambda^H \right), y_2, \phi^{(2)} \right) \right| \le L_g \left(\left| |y_1 - y_2| \right| \\ & + \left| \phi^{(1)}(0) - \phi^{(2)}(0) \right| \sqrt{\lambda^B} + \sqrt{\int_{\mathbb{R}_0} \left| \phi^{(1)}(z) - \phi^{(2)}(z) \right|^2 \nu(dz)} \sqrt{\lambda^H} \right), \end{aligned}$$

for all $(\lambda^B, \lambda^H) \in [0, \infty)^2$, $y_1, y_2 \in \mathbb{R}$, and $\phi^{(1)}, \phi^{(2)} \in \Phi$, $dt \times d\mathbb{P}$ a.e.

▷ "Simple" RBSDE with time change & lower barrier

$$Y_t = Y_T + \int_t^T g_s(\lambda_s) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dA_s.$$

Lemma 1. (Di Nunno, Sjursen, 2014)] Estimate for the driver.

Let $(Y, \phi), (U, \psi) \in S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}}$, and $g: [0, T] \times [0, \infty)^2 \times \mathbb{R} \times \Phi \times \Omega \to \mathbb{R}$, $g(\lambda, 0, 0, \cdot) \in \mathcal{H}^{\mathcal{G}_2}$, for all $\lambda \in \mathcal{L}$, satisfy (H1). Then, for any $t \in [0, T]$,

$$\mathbb{E}\left[\left(\int_{t}^{T} g_{s}\left(\lambda_{s}, Y_{s}, \phi_{s}\right) - g_{s}\left(\lambda_{s}, U_{s}, \psi_{s}\right) ds\right)^{2}\right] \leq 3L_{g}^{2}(T - t)$$
$$\mathbb{E}\left[\left(T - t\right) \sup_{t \leq r \leq T} |Y_{r} - U_{r}|^{2} + \int_{t}^{T} \int_{\mathbb{R}} |\phi_{s}(z) - \psi_{s}(z)|^{2} \Lambda(ds, dz)\right]$$

and

$$\mathbb{E}\left[\left(\int_{t}^{T} |g_{s}(\lambda_{s}, U_{s}, \psi_{s})| ds\right)^{2}\right] \leq (T - t)\mathbb{E}\left[2\int_{t}^{T} |g_{s}(\lambda_{s}, 0, 0)|^{2} ds +6L_{g}^{2}\left((T - t)\sup_{t \leq r \leq T} |U_{r}|^{2} + \int_{t}^{T} \int_{\mathbb{R}} |\psi_{s}(z)|^{2} \Lambda(ds, dz)\right)\right]$$

Lemma 2. Estimate for the state process.

Let $U \in S^{\mathcal{G}_2}$ and $\phi, \psi \in \mathcal{I}^{\mathcal{G}}$ and let (Y_T, g_s, ξ_t) be standard parameters of RBSDEs with a lower barrier. We define stochastic process Y_t for $t \in [0, T]$ in following way

$$\mathbf{Y}_t := \mathbf{Y}_T + \int_t^T g_s(\lambda_s, U_s, \psi_s) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dA_s.$$
(5)

Then $Y \in \mathcal{S}^{\mathcal{G}_2}$ and

$$\mathbb{E}[\sup_{t\leq r\leq T}|Y_r|^2] \leq \mathbb{E}\left[4Y_T^2 + 4\left(\int_t^T |g_s(\lambda_s, U_s, \phi_s)|ds\right)^2 + 4A_T^2 + 40\int_0^T\!\!\int_{\mathbb{R}}\phi_s^2(z)\Lambda(ds, dz)\right]$$

Line of the proof. It follows

$$\mathbb{E}\left[\sup_{t\leq r\leq T}|Y_{r}|^{2}\right] \leq 4\mathbb{E}\left[Y_{T}^{2}+4\left(\int_{t}^{T}|g_{s}(\lambda_{s},U_{s},\psi_{s})|ds\right)^{2}+4\left(\int_{t}^{T}dA_{s}\right)^{2}\right]$$
$$+4\mathbb{E}\left[\sup_{t\leq r\leq T}\left(\int_{r}^{T}\int_{\mathbb{R}}\phi_{s}(z)\mu(ds,dz)\right)^{2}\right]$$

 \triangleright Applying elementary and Doob's inequality $(\mathbb{E}\sup_{0 \le t \le T} |M_t|^p \le \left(\frac{p}{p-1}\right)^p \mathbb{E}|M_T|^p)$,

$$\mathbb{E}\left[\sup_{t\leq r\leq T}\left(\int_{r}^{T}\int_{\mathbb{R}}\phi_{s}(z)\mu(ds,dz)\right)^{2}\right]\leq 10\mathbb{E}\left(\int_{0}^{T}\int_{\mathbb{R}}\phi_{s}(z)\mu(ds,dz)\right)^{2},$$

▷ Substituting last we obtain

$$\mathbb{E}[\sup_{t \leq r \leq T} |\mathbf{Y}_{r}|^{2}] \leq 4\mathbb{E}\left[\mathbf{Y}_{T}^{2} + 4\left(\int_{t}^{T} |g_{s}(\lambda_{s}, U_{s}, \psi_{s})| ds\right)^{2} + 4\left(\int_{t}^{T} dA_{s}\right)^{2}\right] + 40\mathbb{E}\left[\left(\int_{0}^{T} \int_{\mathbb{R}} \phi_{s}^{2}(z) \Lambda(ds, dz)\right)\right] < +\infty,$$

i.e., $Y \in S^{\mathcal{G}_2}$.

Theorem 5. Solution for simple RBSDE with time change & lower barrier

Let driver $g_s \in \mathcal{H}^{\mathcal{G}_2}$ be independent of processes of state and control, and let barrier process ξ is RCLL from $S^{\mathcal{G}_2}$. Then, simple RBSDE with time change & lower barrier has a unique G-solution $(Y_t, \phi_t(\cdot), A_t)_{t \in [0, T]} \in S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}} \times S^{\mathcal{G}_2}$, and for each $\mathcal{T}_1 \in \mathcal{T}_0$,

$$Y_{\mathcal{T}_1} = \operatorname{ess\,sup}_{\tau \in \mathcal{T}_{\mathcal{T}_1}} \mathbb{E}\left[Y_{\mathcal{T}} + \int_{\mathcal{T}_1}^{\tau} g_t(\lambda_t) dt \Big| \mathcal{G}_{\mathcal{T}_1}\right] \ a.s.$$

Line of the proof. Existence. Let us define

$$ilde{Y}(\mathcal{T}_1) := \mathrm{ess\,sup}_{ au \in \mathcal{T}_{\mathcal{T}_1}} \mathbb{E}\left[Y_{ au} + \int_{\mathcal{T}_1}^{ au} g_t(\lambda_t) dt \Big| \mathcal{G}_{\mathcal{T}_1}\right].$$

 \triangleright By classical results of optimal control (Dellacherie, É. Lenglart 1981), there exists RCLL adapted process \tilde{Y}_t such that for every $T_1 \in T_0$

$$ilde{Y}(au_1) = ilde{Y}_{ au_1}$$
 a.s.,

▷ It follows that process $\tilde{Y}_t + \int_0^t g_s(\lambda_s) ds$ is a supermartingale, see Snell envelope. ▷ From Theorem 2 and Theorem 3, it follows that for $t \in [0, T]$ there exist $\phi_t(\cdot), A_t$, $\in \mathcal{I}^{\mathcal{G}} \times S^{\mathcal{G}_2}$, such that $(\tilde{Y}_t, \phi_t(\cdot), A_t)_{t \in [0, T]}$ is a solution of the equation

$$Y_t = Y_T + \int_t^T g_s(\lambda_s) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dA_s$$

Uniqueness.

▷ Uniqueness of processes $\phi_t(\cdot)$ and A_t follows from the uniqueness decomposition theorem. ▷ Let $(Y_t, \phi_t(\cdot), A_t)_{t \in [0, T]}$ be another solution. Since $Y_t \ge \xi_t, t \in [0, T]$ it follows that for every $T_1 \in \mathcal{T}_0$ and $\tau \in \mathcal{T}_1$ we have

$$Y_{\mathcal{T}_1} \geq \mathbb{E}\left[Y_{\tau} + \int_{\mathcal{T}_1}^{\tau} g_s(\lambda_s) ds \Big| \mathcal{G}_{\mathcal{T}_1}\right] \geq \mathbb{E}\left[\xi_{\tau} + \int_{\mathcal{T}_1}^{\tau} g_s(\lambda_s) ds \Big| \mathcal{G}_{\mathcal{T}_1}\right] \quad a.s.$$

Applying supreme over $au \in \mathcal{T}_{\mathcal{T}_1}$ on last expression, we obtain

 $Y_{\mathcal{T}_1} \geq \tilde{Y}(\mathcal{T}_1)$ a.s. .

 \triangleright If we now define for $\varepsilon > 0$ and $T_1 \in \mathcal{T}_0$ stopping time $\tau_{T_1}^{\varepsilon} := \inf_{t \ge T_1} \{Y_t \le \xi_t + \varepsilon\}$. Direct consequence of this definition is that for every $t \in [T_1, \tau_{T_1}^{\varepsilon}]$ following holds: $Y_t > \xi_t + \varepsilon$ a.s., A^c is a constant, as well as that A^d is constant a.s. Also,

$$Y_{(au^{arepsilon}_{T_1})^-} > \xi_{(au^{arepsilon}_{T_1})^-} + arepsilon \Rightarrow \Delta A^d_{ au^{arepsilon}_{T_1}} = 0 \ a.s.$$

 $\Rightarrow Y_t + \int_0^t g_s(\lambda_s) ds \text{ is martingale on } [T_1, \tau_{T_1}^{\varepsilon}].$ $\triangleright \text{ By right continuity of process } \xi_t \text{ and } Y_t \text{ it follows}$

$$\mathsf{Y}_{\mathcal{T}_1} = \mathbb{E}\left[\mathsf{Y}_{ au_{\mathcal{T}_1}^{arepsilon}} + \int_{\mathcal{T}_1}^{ au^{arepsilon}} g_{\mathsf{s}}(\lambda_s) ds \Big| \mathcal{G}_{\mathcal{T}_1}
ight] \leq ilde{Y}(\mathcal{T}_1) + arepsilon \qquad a.s.$$

As last holds for every $\varepsilon > 0$, it follows

$$Y_{\mathcal{T}_1} \leq \tilde{Y}(\mathcal{T}_1)$$
 a.s. \star

Theorem 6. Solution for general RBSDE with time change & lower barrier

General RBSDEs with a lower barrier and associated triple $(Y_T, g_t, \xi_t)_{t \in [0, T]}^{\mathbb{G}}$, where driver g satisfies hypothesis (H1), has a unique G-solution.

Line of the proof. Let us introduce mapping $\Theta : S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}} \longrightarrow S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}}$ in following way $(Y, \phi) := \Theta(U, \psi),$

such that (Y, ϕ) is a solution of eq.

$$Y_t := Y_T + \int_t^T g_s(\lambda_s, U_s, \psi_s) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dA_s.$$

 \triangleright From Lemma 2. and Theorem 3. it follows that mapping Θ is well defined. Let us prove that it is a contraction.

Let (Y', ϕ') be another pair or process form $S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}}$ such that $(Y', \phi') = \Theta(U', \psi')$ and it is a solution of general RBSDE associated with a driver $g_s(\lambda_s, U', \psi')$. We will keep the notation

$$\begin{split} \tilde{U} &:= U - U', \qquad \tilde{\Psi} := \psi - \psi', \\ \tilde{Y} &:= Y - Y', \qquad \tilde{\phi} := \phi - \phi', \\ \tilde{g} &:= g(\cdot, U, \psi) - g(\cdot, U', \psi'). \end{split}$$

Ito formula for semimartingales on $e^{\beta t} \tilde{Y}_t^2$,

$$e^{\beta t} \tilde{Y}_{t}^{2} = -\beta \int_{t}^{T} e^{\beta s} \tilde{Y}_{s}^{2} ds + 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s-} dA_{s,1} + 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s} [g_{s,1}(\lambda_{s}, Y_{s,1}, \phi_{s,1}(z)) - g_{s,2}(\lambda_{s}, Y_{s,2}, \phi_{s,2}(z))] ds - 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s} \tilde{\phi}_{s}(0) dB_{s} - 2 \int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{Y}_{s} \tilde{\phi}_{s}(z) \tilde{H}(ds, dz) - 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s-} dA_{s,2} - \sum_{t < s < T} e^{\beta s} (\Delta \tilde{Y}_{s})^{2} - \int_{t}^{T} e^{\beta s} \tilde{\phi}_{s}^{2}(0) \lambda_{s}^{B} ds.$$
(6)

 \triangleright Since the processes A_i , i = 1, 2 jumps only at predictable stopping times and $\mu(\cdot, dz)$ jumps only at totally inaccessible stopping times, it follows that

$$\int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z)\nu(dz)\lambda_{s}^{H}ds - \sum_{t \leq s \leq T} e^{\beta s} (\Delta \tilde{Y}_{s})^{2}$$

$$= \underbrace{\int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z)\nu(dz)\lambda_{s}^{H}ds - \int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z)H(ds, dz)}_{t \leq s \leq T} - \sum_{t \leq s \leq T} e^{\beta s} (\Delta A_{s,1} - \Delta A_{s,2})^{2}$$

$$= -\int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z)\tilde{H}(ds, dz) - \sum_{t \leq s \leq T} e^{\beta s} (\Delta A_{s,1} - \Delta A_{s,2})^{2}.$$

 \triangleright If we substitute last in (7), it follows

$$e^{\beta t} \tilde{Y}_{t}^{2} + \beta \int_{t}^{T} e^{\beta s} \tilde{Y}_{s}^{2} ds + \int_{t}^{T} e^{\beta s} \tilde{\phi}_{s}^{2}(0) \lambda_{s}^{B} ds + \int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z) \nu(dz) \lambda_{s}^{H} ds + \sum_{t \leq s \leq T} e^{\beta s} (\Delta A_{s,1} - \Delta A_{s,2})^{2} ds \\ \leq 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s} \underbrace{[g_{s,1}(\lambda_{s}, Y_{s,1}, \phi_{s,1}(z)) - g_{s,2}(\lambda_{s}, Y_{s,2}, \phi_{s,2}(z))]}_{\leq L_{g} \left(|\tilde{Y}_{s}| + |\tilde{\phi}_{s}(0)| \sqrt{\lambda^{B}} + \sqrt{\int_{\mathbb{R}_{0}} |\tilde{\phi}_{s}(z)|^{2} \nu(dz) \lambda^{H}} \right) + |\tilde{g}_{s}|} \\ - 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s} \tilde{\phi}_{s}(0) dB_{s} - 2 \int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} (2 \tilde{Y}_{s} \tilde{\phi}_{s}(z) + \tilde{\phi}_{s}^{2}(z)) \tilde{H}(ds, dz) \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\geq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\geq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\geq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\geq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\geq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\geq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\geq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\geq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\leq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\leq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\leq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\leq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}}_{\leq 0} - 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,2}}_{\leq 0} ds \\ + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d} A_{s,1}} + 2 \underbrace{\int_{t}^{T} e^{\beta s} \tilde{Y}_{s-d}$$

 \triangleright Apply conditional expectation with respect to \mathcal{G}_t and elementary inequalities, it follows

$$e^{\beta t} \tilde{Y}_{t}^{2} + E\left[\left(\beta \int_{t}^{T} e^{\beta s} \tilde{Y}_{s}^{2} ds\right) + \int_{t}^{T} e^{\beta s} \tilde{\phi}_{s}^{2}(0) \lambda_{s}^{B} ds + \int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z) \nu(dz) \lambda_{s}^{H} ds\right) |\mathcal{G}_{t}\right]$$

$$\leq \mathbb{E}\left[\left(2L_{g} + \frac{1}{\epsilon^{2}}\right) \int_{t}^{T} e^{\beta s} \tilde{Y}_{s}^{2} ds\right] + 3\epsilon^{2} L_{g}^{2} \left(\int_{t}^{T} e^{\beta s} |\tilde{\phi}_{s}(0)|^{2} \lambda^{B} ds + \int_{t}^{T} \int_{\mathbb{R}_{0}} |\tilde{\phi}_{s}(z)|^{2} \nu(dz) \lambda_{s}^{H} ds\right) |\mathcal{G}_{t}\right]$$

$$+ 3\epsilon^{2} \mathbb{E}\left[\int_{t}^{T} e^{\beta s} |\tilde{g}_{s}(\lambda_{s})|^{2} ds |\mathcal{G}_{t}\right]. \qquad (\bigstar)$$

 \triangleright If we denote $\eta := 3\varepsilon^2$, $\beta > 2L_g + \frac{3}{\eta}$, (for ε small enough $3\varepsilon^2 L_g^2 < 1$), taking expectation of sup over t, it follows

$$\Rightarrow ||\tilde{Y}_{s}||_{\mathcal{S}^{\mathcal{G}_{2}}}^{2} \leq \eta e^{\beta T} \mathbb{E}\left(\int_{0}^{T} |\tilde{g}_{s}(\lambda_{s})|^{2} ds\right) = \eta e^{\beta T} ||\tilde{g}_{s}||_{\mathcal{H}^{\mathcal{G}_{2}}}^{2}.$$

 \triangleright From (\bigstar) applying expectation of sup_{t \in [0, T]}, we obtain

$$\begin{split} \|\tilde{\phi}_{s}(z)\|_{\mathcal{I}^{\mathcal{G}}}^{2} &= \mathbb{E}\left[\int_{0}^{T} |\tilde{\phi}_{s}(0)|^{2}\lambda_{s}^{B}ds + \int_{0}^{T}\int_{\mathbb{R}_{0}} |\tilde{\phi}_{s}(z)|^{2}\nu(dz)\lambda_{s}^{H}ds\right] \\ &\leq \dots \\ &\leq \eta L_{g}^{2}e^{\beta T}\mathbb{E}\sup_{t\in[0,T]}\left[\int_{t}^{T}\tilde{\phi}_{s}^{2}(0)\lambda_{s}^{B}ds + \int_{t}^{T}\int_{\mathbb{R}_{0}}\tilde{\phi}_{s}^{2}(z)\nu(dz)\lambda_{s}^{H}ds\right] + \eta e^{\beta T}\mathbb{E}\left[\int_{t}^{T}\tilde{g}_{s}^{2}(\lambda_{s})ds\Big|\mathcal{G}_{t}\right] \end{split}$$

 \triangleright From last, if $\eta < rac{1}{L_g^2}$, then

$$\Rightarrow ||\tilde{\phi}_s(z)||_{\mathcal{I}^{\mathcal{G}}}^2 \leq \frac{\eta e^{\beta T}}{1 - \eta L_g^2 e^{\beta T}} ||\tilde{g}_s||_{\mathcal{H}^{\mathcal{G}_2}}^2,$$

 \triangleright Using result from Lemma 1 - estimate for the driver,

 $\Rightarrow ||\tilde{Y}_s||_{\mathcal{S}^{\mathcal{G}_2}}^2 + ||\tilde{\phi}_s(z)||_{\mathcal{I}^{\mathcal{G}}}^2 \leq 3L_g^2 \max\{\mathcal{T}^2, 1\}\eta e^{\beta\mathcal{T}}(||\tilde{Y}_s||_{\mathcal{S}^{\mathcal{G}_2}}^2 + ||\tilde{\phi}_s(z)||_{\mathcal{I}^{\mathcal{G}}}^2).$

 $\triangleright \text{ As } \eta < \frac{1}{3L_g^2 \max\{\mathcal{T}^2, 1\}}, \text{ if we now take } \eta < \min\left\{\frac{1}{2L_g^2}, \frac{1}{3L_g^2 \max\{\mathcal{T}^2, 1\}}\right\}, \text{ it follows from last that } \Theta \text{ is a contraction on } S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}}.$

Existence and uniqueness of the F-solution

 \rhd For T>0 let RBSDE driven by time-change Lévy noises and lower barrier under $\mathbb F$ be rewritten in following form

$$Y_t = Y_T + \int_t^T g_s(\lambda_s, Y_s, \phi_s(z)) ds - \int_t^T \phi_s(0) dB_s - \int_t^T \int_{\mathbb{R}_0} \phi_s(z) \tilde{H}(ds, dz) + \int_t^T dM_s + \int_t^T dA_s ds ds ds$$

which is equivalent to equation

$$Y_t = Y_T + \int_t^T g_s(\lambda_s, Y_s, \phi_s(z)) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dM_s + \int_t^T dA_s,$$

where $||M||_{\mathcal{M}_{\beta}^{\mathcal{F}_2}} := \int_t^T e^{\beta s} d[\tilde{M}]_s < +\infty, \beta > 0$ and (standard assumptions under \mathbb{F} are)

- $Y_T \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ (final value-reaching point of state process of BSDE).
- Function *g* is a drift coefficient, ie *driver* which satisfies: $(\lambda, Y, \phi, \cdot)$ is \mathbb{F} -adapted for all $\lambda \in \mathcal{L}, Y \in S^{\mathcal{F}_2}$. $\phi \in \mathcal{I}^{\mathcal{F}}$.
 - $g(\lambda, r, \phi, \cdot) \in \mathbb{H}^{\mathcal{F}_2}$, for all $\lambda \in \mathcal{L}$, $r \in \mathcal{S}^{*2}$, $\phi \in \mathcal{L}^*$ $g(\lambda, 0, 0, \cdot) \in \mathcal{H}^{\mathcal{F}_2}$, for all $\lambda \in \mathcal{L}$.
- Obstacle/barrier process ξ is RCLL from $S^{\mathcal{F}_2}$.

Definition

Quartet $(Y_t, \phi_t(\cdot), M_t, A_t)_{t \in [0, T]}$ is a **F**-solution of RBSDE associated with triple $(Y_T, g_t, \xi_t)_{t \in [0, T]}^{\mathbb{F}}$ (Y_T is final condition, obstacle ξ is RCLL from $\mathcal{S}^{\mathcal{F}_2}$, and driver g with introduced properties), if:

- 2 satisfies equation

(i)

$$Y_t = Y_T + \int_t^T g_s(\lambda_s, Y_s, \phi_s(z)) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dM_s + \int_t^T dA_s,$$

with Y_T the terminal condition, $Y_T = \xi_T$,

- 3 $Y_t \ge \xi_t$ for every $t \in [0, T]$ a.s., where $\xi_t \in S_2$ is a càdlàg \mathcal{F}_t adapted process,
- 4 A is a nondecreasing RCLL (right-continuous with left limits) predictable process with $A_0 = 0$, such that

$$\int_0^T (Y_t - \xi_t) dA_t^c = 0 \quad a.s.,$$

(ii)
$$\Delta A_t^d = -\Delta Y_t \mathbb{1}_{\{Y_{t-}=\xi_{t-}\}}$$
 a.s.,

where A^c denotes the continuous part of A and A^d its discontinuous part.

Remark 1. Instead of saying that $(Y_t, \phi_t(\cdot), M_t, A_t)_{t \in [0, T]}$ progressively measurable processes is a solution of RBSDE, we can say that triple of progressively measurable processes $(Y_t, \phi_t(\cdot), M_t)_{t \in [0, T]}$ is a solution of RBSDE where:

– processes $Y_t, \phi_t(\cdot), M_t$ are from $S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}} \times \mathcal{M}_{\beta}^{\mathcal{F}_2}$ – process Y_t satisfies property 3. from the definition of the solution;

- process $A_t, t \in [0, T]$ has nonegative values and it is defined with

$$A_t = A_0 - Y_t - \int_0^t g_s(\lambda_s, Y_s, \phi_s(z)) ds - \int_0^t \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) - \int_t^T dM_s,$$

In this sense we can prove that there exist unique pair of progressively measurable processes $(Y_t, \phi_t(\cdot))_{t \in [0, T]}$ which solves equation.

▷ "Simple" RBSDE with time change & lower barrier

$$Y_t = Y_T + \int_t^T g_s(\lambda_s) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dM_s + \int_t^T dA_s.$$

Theorem 7. Solution for simple RBSDE with time change & lower barrier

Let driver $g_s \in \mathcal{H}^{\mathcal{F}_2}$ be independent of processes of state and control, and let barrier process ξ is RCLL from $S^{\mathcal{F}_2}$. Then, simple RBSDE with time change & lower barrier has a unique \mathbb{F} -solution $(Y_t, \phi_t(\cdot), M_t, A_t)_{t \in [0, T]} \in S^{\mathcal{F}_2} \times \mathcal{I}^{\mathcal{F}} \times \mathcal{M}_{\beta}^{\mathcal{F}_2} \times S^{\mathcal{F}_2}$, and for each $T_1 \in \mathcal{T}_0$,

$$Y_{\mathcal{T}_1} = \operatorname{ess\,sup}_{\tau \in \mathcal{T}_{\mathcal{T}_1}} \mathbb{E}\left[Y_{\mathcal{T}} + \int_{\mathcal{T}_1}^{\tau} g_t(\lambda_t) dt \Big| \mathcal{F}_{\mathcal{T}_1}\right] \ a.s.$$

Line of the proof.

 \vartriangleright As in the framework under $\mathbb{G},$ let us define

$$\tilde{Y}(\mathcal{T}_1) := \mathrm{ess\,sup}_{\tau \in \mathcal{T}_{\mathcal{T}_1}} \mathbb{E}\left[Y_{\tau} + \int_{\mathcal{T}_1}^{\tau} g_t(\lambda_t) dt \Big| \mathcal{F}_{\mathcal{T}_1}\right]$$

 \triangleright As before, there exists RCLL adapted process \tilde{Y}_t such that for every $T_1 \in \mathcal{T}_0$

$$ilde{Y}(au_1) = ilde{Y}_{ au_1}$$
 a.s.,

such that $\tilde{Y}_t + \int_0^t g_s(\lambda_s) ds$ is a supermartingale, see Snell envelope. \triangleright From Theorem 4 - Doob Meyer's decomposition under \mathbb{F} , it follows that for $t \in [0, T]$ there exist $\phi_t(\cdot), M_t, A_t, \in \mathcal{I}^{\mathcal{F}} \times \mathcal{M}_{\beta}^{\mathcal{F}_2} \times S^{\mathcal{F}_2}$, such that $(\tilde{Y}_t, \phi_t(\cdot), M_t, A_t)_{t \in [0, T]}$ is a solution of the equation

$$Y_t = Y_T + \int_t^T g_s(\lambda_s) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dM_s + \int_t^T dA_s. \quad \star$$

Theorem 8. Solution for general RBSDE with time change & lower barrier

General RBSDEs with a lower barrier and associated triple $(Y_T, g_t, \xi_t)_{t \in [0, T]}^{\mathbb{F}}$, where driver g satisfies hypothesis (H1), has a unique **F**-solution.

Line of the proof.

Itô formula for semimartingales $e^{\beta t} \tilde{Y}_t^2$, we obtain

$$\begin{split} e^{\beta t} \tilde{Y}_{t}^{2} + \beta \int_{t}^{T} e^{\beta s} \tilde{Y}_{s}^{2} ds + \int_{t}^{T} e^{\beta s} \tilde{\phi}_{s}^{2}(0) \lambda_{s}^{B} ds + \int_{t}^{T} e^{\beta s} d\langle \tilde{M}_{s} \rangle \\ &\leq 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s} [g_{s,1}(\lambda_{s}, Y_{s,1}, \phi_{s,1}(z)) - g_{s,2}(\lambda_{s}, Y_{s,2}, \phi_{s,2}(z))] ds \\ &- 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s} \tilde{\phi}_{s}(0) dB_{s} - 2 \int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{Y}_{s} \phi_{s}(z) \tilde{H}(ds, dz) - 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s} d\tilde{M}_{s} \\ &+ 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s-} dA_{s,1} - 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s-} dA_{s,2} - \sum_{t < s < T} e^{\beta s} (\Delta \tilde{Y}_{s})^{2}. \end{split}$$

 \triangleright Since the processes A_i , i = 1, 2 jumps only at predictable stopping times, while $\mu(\cdot, dz)$ and $M(\cdot)$ jump only at totally inaccessible stopping times, it follows that

$$\int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z)\nu(dz)\lambda_{s}^{H}ds - \sum_{t \leq s \leq T} e^{\beta s} (\Delta \tilde{Y}_{s})^{2}$$

$$= \underbrace{\int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z)\nu(dz)\lambda_{s}^{H}ds - \int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z)H(ds, dz)}_{0 \leq s < T} - \sum_{t \leq s \leq T} e^{\beta s} (\Delta \tilde{M}_{s})^{2}$$

$$= -\int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z)\tilde{H}(ds, dz) - \sum_{t \leq s \leq T} e^{\beta s} (\Delta A_{s,1} - \Delta A_{s,2})^{2} - \sum_{0 \leq s < T} e^{\beta s} (\Delta \tilde{M}_{s})^{2}.$$

 \triangleright From (\triangle), it follows

-

$$e^{\beta t} \tilde{Y}_{t}^{2} + \beta \int_{t}^{T} e^{\beta s} \tilde{Y}_{s}^{2} ds + \int_{t}^{T} e^{\beta s} \tilde{\phi}_{s}^{2}(0) \lambda_{s}^{B} ds + \int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{\phi}_{s}^{2}(z) \nu(dz) \lambda_{s}^{H} ds$$

$$+ \int_{t}^{T} e^{\beta s} d[\tilde{M}]_{s} + \sum_{t \leq s \leq T} e^{\beta s} (\Delta A_{s,1} - \Delta A_{s,2})^{2}$$

$$\leq 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s}[g_{s,1}(\lambda_{s}, Y_{s,1}, \phi_{s,1}(z)) - g_{s,2}(\lambda_{s}, Y_{s,2}, \phi_{s,2}(z))] ds$$

$$- 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s} \tilde{\phi}_{s}(0) dB_{s} - 2 \int_{t}^{T} \int_{\mathbb{R}_{0}} e^{\beta s} \tilde{Y}_{s} \phi_{s}(z) \tilde{H}(ds, dz) - 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s} d\tilde{M}_{s}$$

$$+ 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s-} dA_{s,1} - 2 \int_{t}^{T} e^{\beta s} \tilde{Y}_{s-} dA_{s,2}. \tag{7}$$

 \triangleright Using similar arguments as in Theorem 6, applying conditional expectation with respect to \mathcal{F}_t , for the appropriate choice of constants, it follows that

$$\Rightarrow ||\tilde{Y}_{s}||_{\mathcal{S}^{\mathcal{F}_{2}}}^{2} + ||\tilde{\phi}_{s}(z)||_{\mathcal{I}^{\mathcal{F}}}^{2} + ||\tilde{M}_{s}||_{\mathcal{M}^{\mathcal{F}_{2}}}^{2} \leq \eta e^{\beta T} ||\tilde{g}_{s}||_{\mathcal{H}^{\mathcal{F}_{2}}}^{2}.$$

 $\vartriangleright \text{ Let us introduce mapping } \Theta: S^{\mathcal{F}_2} \times \mathcal{I}^{\mathcal{F}} \times \mathcal{M}_1^{\mathcal{F}_2} \longrightarrow S^{\mathcal{F}_2} \times \mathcal{I}^{\mathcal{F}} \times \mathcal{M}_1^{\mathcal{F}_2} \text{ in following way}$

$$(Y, \phi, V) := \theta(U, \psi, W),$$

such that (Y, ϕ, V) is a solution of simple RBSDE associated with a driver $g_{s,1} := g_s(\lambda_s, U_s, \psi_s)$ and ortogonale martingale part W. From Theorem 7 it follows that mapping Θ is well defined.

 $\rhd \text{ If we choose that } \eta < \min\left\{ \frac{1}{2L_g^2}, \frac{1}{3L_g^2 \max\{T^2, 1\}} \right\},$

$$\Rightarrow ||\tilde{Y}_{s}||_{\mathcal{S}^{\mathcal{F}_{2}}}^{2} + ||\tilde{\phi}_{s}(z)||_{\mathcal{I}^{\mathcal{F}}}^{2} + ||\tilde{M}_{s}||_{\mathcal{M}_{\beta}^{\mathcal{F}_{2}}} \leq \eta e^{\beta T} ||\tilde{g}_{s}||_{\mathcal{H}^{\mathcal{F}_{2}}}^{2} \\ \leq 3L_{g}^{2} \max\{T^{2}, 1\} \eta e^{\beta T} (||\tilde{Y}_{s}||_{\mathcal{S}^{\mathcal{F}_{2}}}^{2} + ||\tilde{\phi}_{s}(z)||_{\mathcal{I}^{\mathcal{F}}}^{2}).$$

it follows that for a certain η it follows that Θ is a contraction on $S^{\mathcal{F}_2} \times \mathcal{I}^{\mathcal{F}} \times \mathcal{M}_{\mathcal{B}}^{\mathcal{F}_2}$.

Characterization of the value function as the solution of an RBSDE with time change

▷ Goal is to connect the state process Y of the solution of RBSDE with time change (solution of this RBSDE is triple $(Y_t, \phi_t(\cdot), A_t)_{t \in [0, T]}$) characterized with $(Y_T, g_t, \xi_t)_{t \in [0, T]}$, i.e.

$$Y_t = Y_T + \int_t^T g_s(\lambda_s, Y_s, \phi_s(z)) ds - \int_t^T \int_{\mathbb{R}} \phi_s(z) \mu(ds, dz) + \int_t^T dA_s\left(+ \int_t^T dM_s \right),$$

 \triangleright with the state process X of the solution of BSDE with time changed Lévy (solution of this BSDE is a pair $(X_t, \psi_t(\cdot))_{t \in [0,T]}$ characterized with $(X_T, g_t)_{t \in [0,T]}$, i.e.

$$X_t(X_T, T) = X_T + \int_t^T g_s(\lambda_s, X_s, \psi_s(z)) ds - \int_t^T \int_{\mathbb{R}} \psi_s(z) \mu(ds, dz) \left(+ \int_t^T dM_s \right).$$

Verification result for time changed Lévy under filtration G

Proposition 1. (Di Nunno, Sjursen, 2014) Comparison for BSDE with time change

Let $(g^{(1)}, X_T^{(1)})$ and $(g^{(2)}, X_T^{(2)})$ be two sets of standard parameters for the BSDEs with solutions $(X^{(1)}, \psi^{(1)}), (X^{(2)}, \psi^{(2)}) \in S^{\mathcal{G}_2} \times \mathcal{I}^{\mathcal{G}}$. Let us introduce following assumption. (A1)

 $g_t^{(2)}(\lambda, x, \psi, \omega) = f_t\left(x, \psi(0)\kappa_t(0)\sqrt{\lambda^B}, \int_{\mathbb{R}_0} \psi(z)\kappa_t(z)v(dz)\sqrt{\lambda^H}, \omega\right) \text{ where } \\ \kappa \in \mathcal{I}^{\mathcal{G}} \text{ satisfies following condition} \\ (c) \text{ there exists } K_E > 0 \text{ such that } 0 \le \kappa_t(z) < K_E z \text{ for } z \in \mathbb{R}_0, \text{ and } \\ |\kappa_t(0)| < K_E \ dt \times d\mathbb{P} - a.e.$

2 *f* is a function $f : [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \Omega \to \mathbb{R}$ which satisfies, for some $K_f > 0$,

Theorem 9. Verification result under G.

Let T > 0 be the terminal time. Let $(\xi_t, 0 \le t \le T)$ be an RCLL process in $S^{\mathcal{G}_2}$ and let g is a Lipschitz driver satisfying (H1) with a constant L_g , such that it also satisfies assumptions from Proposition 1. Suppose that $(Y_t, \phi_t(\cdot), A_t)_{t \in [0, T]}$ is the solution of the RBSDE with time change. Then for each stopping time $S \in \mathcal{T}_0$, it follows that

$Y_S = \mathrm{ess} \sup_{ au \in \mathcal{T}_S} X_S(\xi_{ au}, au) \; a.s.$,

where $\tau \in \mathcal{T}_S$, $X(\xi_{\tau}, \tau)$ is the state process of the solution for the BSDE with time changed Lévy associated with terminal time τ , terminal condition ξ_{τ} , and driver g.

Line of the proof. " \geq "

As A_s is nondecreasing process it follows that

 $g(\lambda_s, y, \phi_s) + dAs \geq g(\lambda_s, y, \phi_s).$

• For $\tau \in \mathcal{T}_S$, $Y_\tau \ge \xi_\tau \ a.s.$

 $\Rightarrow \qquad Y_S \geq \mathrm{ess}\, \mathrm{sup}_{\tau\in\mathcal{T}_S} X_s(\xi_\tau,\tau) \ a.s$

"≤"

<u>Step 1</u> Let $\varepsilon > 0$. By definition of τ_{ξ}^{ε} and by right-continuity property of processes Y_t and $\overline{\xi_t}$, it follows that $Y_{\tau\xi} \leq \xi_{\tau\xi} + \varepsilon$ a.s., so

$$Y_S = X_S(\xi_{\tau_S^{\varepsilon}}, \tau_S^{\varepsilon}) \le X_S(\xi_{\tau_S^{\varepsilon}} + \varepsilon, \tau_S^{\varepsilon}) \text{ a.s.}$$

<u>Step II</u> Lemma 3. Let T > 0, $\xi_i \in S^{\mathcal{G}_2}$, i = 1, 2 and let $g_{s,i}$, i = 1, 2 drivers, such that $g_{s,1}$ is a Lipschitz driver satisfying (H1) with a constant L_g , and β , η are such that $\beta > 2L_g + \frac{3}{\eta}$ and $\eta < \frac{1}{L_g^2}$, then for each $t \in [0, T]$ we have that a.s.

$$e^{\beta t}|X_{t,1}-X_{t,2}|^{2} \leq \mathbb{E}\left[e^{\beta T}|\xi_{1}-\xi_{2}|^{2}|\mathcal{G}_{t}\right] + \eta \mathbb{E}\left[\int_{t}^{T} e^{\beta s}|g_{s,1}(\lambda_{s},X_{s,1},\psi_{s,1}) - g_{s,2}(\lambda_{s},X_{s,2},\psi_{s,2})|^{2}ds\Big|\mathcal{G}_{t}\right]$$

le

$$\Rightarrow |X_S(\xi_{\tau_S^{\varepsilon}} + \varepsilon, \tau_S^{\varepsilon}) - X_S(\xi_{\tau_S^{\varepsilon}}, \tau_S^{\varepsilon})|^2 \le e^{\beta(T-S)}\varepsilon^2 \ a.s.$$

Step III From Step I and II

 $Y_{S} \leq X_{S}(\xi_{\tau_{S}^{\varepsilon}} + \varepsilon, \tau_{S}^{\varepsilon}) \leq X_{S}(\xi_{\tau_{S}^{\varepsilon}}, \tau_{S}^{\varepsilon}) + e^{\beta(T-S)}\varepsilon^{2} \leq \mathrm{ess} \sup_{\tau \in \mathcal{T}_{S}} X_{S}(\xi_{\tau}, \tau) + e^{\beta(T-S)}\varepsilon^{2} \ a.s.$

So for every $\varepsilon > 0$ it follows that

$$Y_{S} \leq \operatorname{ess\,sup}_{\tau \in \mathcal{T}_{S}} X_{S}(\xi_{\tau}, \tau) \ a.s. \quad \star$$

Comparison result under G

Theorem 10. Comparison theorem under G

Let ξ_i , i = 1, 2 be two RCLL obstacle processes in $S^{\mathcal{G}_2}$. Let g_i , i = 1, 2 be such that they satisfy assumption (*H*1) and let assumptions of Proposition 1 be satisfied. Furthermore, suppose that for $t \in [0, T]$ following assumption holds:

(A3) $\xi_{t,1} \leq \xi_{t,2}, t \in [0, T]$ a.s., and $g_{t,1}(\lambda, y, \phi) \leq g_{t,2}(\lambda, y, \phi)$ for all $\lambda \in [0, \infty)^2, y \in \mathbb{R}$, $\phi \in \mathcal{I}^{\mathcal{G}}, dt \times dP$ -a.s..

Let $(Y_t^i, \phi_t^i(\cdot), A_t^i)_{t \in [0, T]}$ be a \mathbb{G} -solution of RBSDE associated with triple $(Y_T^i, g_t^i, \xi_t^i)_{t \in [0, T]}^{\mathbb{G}}$, i = 1, 2. Then we have that

 $Y_t^1 \le Y_t^2, \quad t \in [0, T] \quad a.s.$

Line of the proof. From comparison theorem for BSDE with time change Levy and verification theorem

 $X_t^1(\xi_\tau^1,\tau) \le X_t^2(\xi_\tau^2,\tau) \Rightarrow Y_t^1 = \operatorname{ess\,sup}_{\tau \in \mathcal{T}_t} X_t^1(\xi_\tau^1,\tau) \le \operatorname{ess\,sup}_{\tau \in \mathcal{T}_t} X_t^2(\xi_\tau^2,\tau) = Y_t^2 \ a.s.$

References

- Pierre Brémaud, Point Processes and Queues Martingale Dynamics, Springer 1981.
- R. Carbonea, B. Ferrarioa, M. Santacroce, Backward stochastic differential equations driven by cádlág martingale, Theory of Probability and Its Applications 52(2),
- S. Cohen, R. Elliotte C. Pearce, A general comparison theorem for backward stochastic differential equations, Adv. Appl. Prob. 42, 878–898, 2010. 2008, 304–314.
- S. Cohen, R. Elliotte, Stochastic Calculus and Applications, 2nd edition, Springer Science+Business Media LLC New York, 2015.
- C. Dellacherie and P.-A. Meyer, Probabilités et potentiel. Chapitres V à VIII, revised edition, Actualités Scientifiques et Industrielles, 1385, Hermann, Paris, 1980. MR0566768 (82b:60001).
- G. Di Nunno, Stochastic integral representations, stochastic derivatives and minimal variance hedging, Stochastics and Stochastic Reports, Vol. 73, Issue 1-2, 2002, 181–198.
- G. Di Nunno, I. Baadshaug Eide, Minimal-Variance Hedging in Large Financial Markets: Random Fields Approach, Stochastic Analysis and Applications, 28:1, 2010, 54–85.
- G. Di Nunno, S. Sjursen, On chaos representation and orthogonal polynomials for the doubly stochastic Poisson process, Robert C. Dalang, Marco Dozzi, Francesco Russo (Eds.), Seminar on Stochastic Analysis, Random Fields and Applications VII, in: Progress in Probability 67, Springer, Basel, 2013, 23–54.
- G. Di Nunno, S. Sjursen, BSDEs driven by time-changed Lévy noises and optimal control, Stochastic Processes and their Applications 124, 2014, 1679-1709.
- S. Cohen, R. Elliotte, Stochastic Calculus and Applications, 2nd edition, Springer Science+Business Media LLC New York, 2015.

References

- B. Grigelionis, Characterization of stochastic processes with conditionally independent increments, Lith. Math. J. 15 (4) (1975) 562–567.
- N. El Karoui, L. Mazliak, Backward Stochastic Differential Equations, Chapman and Hall/CRC; 1st edition (January 17, 1997).
- H.Kunita, S.Watanabe, On Square-Integrable Martingales, Nagoya Math. J. Volume 30, (1967), 209–245.
- R. Sh. Liptser, A. N. Shiryayev, Theory of Martingales, (Math. and its App., 49) 1989, Springer.
- Protter, P.E. Stochastic Integration and Differential Equations, Springer, 2003.
- M. C. Quenez, A. Sulem, BSDEs with jumps, optimization and applications to dynamic risk measures, Stochastic Processes and their Applications 123 (2013) 3328–3357.
- M. C. Quenez, A. Sulem, Reflected BSDEs and robust optimal stopping for dynamic risk measures with jumps, Stochastic Processes and their Applications 5, 124, 2014, 3031–3054.
- Protter, P.E. Stochastic Integration and Differential Equations, Springer, 2003.
- M. Winkel, The recovery problem for time-changed Lévy processes, Research Report MaPhySto 37, 2001.
- Øksendal, B., A. Sulem, Singular stochastic control and optimal stopping with partial information of Ito-Levy processes, SIAM J. control optim. 50, 2012, 2254–2287.

 $\star {\rm Thank}$ you for your attention. \star