Newton method for stochastic control problems

Emmanuel GOBET -Maxime GRANGEREAU

CMAP, Ecole polytechnique and Osiris, EDF R&D

To appear in SIAM Control and Optimization

BSDE 2022 at Annecy
June 27-July 1 2022

Emmanuel GOBET -Maxime GRANGEREAU Newton method for stochastic control problems



Introduction: goals

@ Newton method:

o lterative method.

o Linearized critical point equation yields a new search direction (Newton
step)

o Globalization: choose appropriate step length (line-search).

o Expected to converge faster than naive iterative method.

@ Our purpose:

o design this principle for solving stochastic control.
o Establish global convergence and quick local convergence.

o Practical implementation.
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@ Recall on Newton method for optimization in R?

© Stochastic control: framework and Newton step computation

© Theoretical convergence properties

@ Numerical implementation and results
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Recall on Newton method for optimization in RY

Newton method in RY: principle for f € C?(R9 R)

@ Second-order iterative method for optimization problems

in f(x).
i, 700

e First order optimality condition (sufficient if f is convex)

VF(x*) = 0.
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Recall on Newton method for optimization in RY

Newton method in RY: principle for f € C?(R9 R)

@ Second-order iterative method for optimization problems
min f(x).
x€ERI ( )

e First order optimality condition (sufficient if f is convex)

VF(x*) = 0.

@ Successive linear approximations of the critical point equation

Vi(x¥) + v2F(xK) A, = 0.

o New iterate
xUHD) = 5 (k) L AL
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Recall on Newton method for optimization in RY

Newton method in R?: convergence properties

If f has a unique minimizer x* and is:
o twice differentiable with .

Sa > 0¥(x,y), Fy) > F(x) + V() - (v =)+ Sy = [

Then (x()),en converges quadratically locally to x* [3]
2
xO € V = vk e N, C||x(+D — x*|| < (C||x(k) - x*||) .

Newton method converges in 1 iteration if f is quadratic
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Recall on Newton method for optimization in RY

[llustration of local convergence of Newton method

Strongly convex function f with Lipschitz second-order derivative:
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Figure: Distance of current iterate x* to minimizer x* = 0

Observe 2 convergence regimes.
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Recall on Newton method for optimization in RY

Newton method may not converge globally (in R?)

Strongly convex function f with Lipschitz second-order derivative:

Xj-i-%, if [x| > 4,
if 1< |x| <4,
C+i if x| <L

"1 : / - [
:

s - o / \
. /

. ) /

H ° g \

2 i / 030

(a) Graph of f (b) Graph of f (c) Graph of f”

Flo)

If [x©)| € (1,4), then x(kT1) = x(k) — f,,((x )) —x().

No convergence, need to choose a stepsize.
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Recall on Newton method for optimization in RY

Newton method with backtracking line-search (in R9)

o Take step oA, instead of full Newton step A,...
e ... with o largest value in {1, 3, 3%, 33...} such that

f(xW 4 0A,) < F(xW) +40VF(xH) A,.
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Recall on Newton method for optimization in RY

Newton method with backtracking line-search (in R9)

o Take step oA, instead of full Newton step A,...
e ... with o largest value in {1, 3, 3%, 33...} such that

fF(x9) +oA,) < F(xR) + 1o VF(xH) A

There is a k* s.t.

o Until k*: arithmetic convergence

I >0,Vk < k*,  [|xFD — x| < [Ix) — x*|| — 7.

e After k*: quadratic convergence
2
3C >0,k > k*,  Cllx+D) — x*|| < (C||x(k) - x*||) .
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Stochastic control: framework and Newton step computation

Mathematical formulation

@ u: control variable (prog. mes. square integrable process)
@ X!: state of system (ODE controlled by u)

@ Unconstrained convex problem: random linear dynamic (parameter
), random convex running cost function / and terminal cost function

v,
T
min J(1) == E / I (£, 0, X¥) dt + W(XY)
u 0
t
s.t. X/ = XoJr/ asusds.
Jo

@ We focus on one-dimensional control/state processes.

@ Usual regularity and growth conditions on / and W.
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Stochastic control: framework and Newton step computation

Stochastic Pontryagine principle

Under . for any u € H?, define Y" € H>*+? by:

:
YU — B, |0 (X¥) + / (s, us, X")ds .
t

Besides, J is Fréchet-differentiable with gradient at u denoted
VJ(u) € H? given by:
(Vj(u))t = /L/l(t7 uvatu) + ath”7
VI (u) = T(V)llee < Cllu — v||ge.
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Stochastic control: framework and Newton step computation

Stochastic Pontryagine principle

Under . for any u € H?, define Y" € H>*+? by:

:
YU — B, |0 (X¥) + / (s, us, X")ds .
t

Besides, J is Fréchet-differentiable with gradient at u denoted
VJ(u) € H? given by:
(Vj(u))t = /L/l(t7 uvatu) + ath”7
VI (u) = T(V)llee < Cllu — v||ge.

Under , VJ(u) = 0 characterizes the
(unique) optimal control.
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Stochastic control: framework and Newton step computation

Characterization of Newton step

Theorem

> The mapping ®y : u € H? — Y'Y € H>? s Gateaux-differentiable,
and its Gateaux derivative at u in direction v is given by
D®y (u)(v) = Y™V, solution of the (linear) BSDE:

T
Ytu’v = Ef "U;/X(X'lll')x"l/' + / (/>/<Iu(57 uSvau)VS + /;;(57 u57Xsu)Xv) dS °
t

5

Besides, we have || Y"" ||goe2 < C||v/|p.
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Stochastic control: framework and Newton step computation

Characterization of Newton step

Theorem

> The mapping ®y : u € H? — Y'Y € H>? s Gateaux-differentiable,
and its Gateaux derivative at u in direction v is given by
D®y (u)(v) = Y™V, solution of the (linear) BSDE:

.
VoY = E, | W7 (X)X + / (/;'u(s, g, XU)vs + (s, us,xs“)x;) ds|.
t

Besides, we have || Y"" ||goe2 < C||v/|p.
> J is twice Gateaux-differentiable and V27 : H? — L(H?) is:

(sz(u)(v))t = Illllu(tv Ut7Xtu)Vt + /le(tv uﬁXtu)Xtv + at\'/tu,v'

Besides, V27 (u) : H? — H? is a continuous endomorphism

(V2T ()W)l < Cllvllez)

Emmanuel GOBET -Maxime GRANGEREAU Newton method for stochastic control problems



Stochastic control: framework and Newton step computation

Newton step. We aim at computing Au

V2T (u)(Au) = —V T (u).
Crucial interpretation in terms of LQ stochastic control problem
(explicitly tractable using Riccati equations and LBSDE [14, 2]).

Theorem

Let (u,w) € H? x H?. Consider min,cge J*@“%(v) s.t. X, = [ asveds,
where JL@:4w(v) is defined by:

.
E [/ { 10 (t, ug, X2) vE /” (, ue, XE) X2+ 17 (¢, ug, XE') Xeve — tht}dt-i- —v (XT)xﬂ.
0

T — T — T —
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Stochastic control: framework and Newton step computation

Newton step. We aim at computing Au

V2T (u)(Au) = —V T (u).
Crucial interpretation in terms of LQ stochastic control problem
(explicitly tractable using Riccati equations and LBSDE [14, 2]).

Theorem

Let (u,w) € H? x H?. Consider min,cge J*@“%(v) s.t. X, = [ asveds,
where JL@:4w(v) is defined by:

.
E [/ { 10 (t, ug, X2) vE /” (, ue, XE) X2+ 17 (¢, ug, XE') Xeve — tht}dt-i- —v (XT)xﬂ.
0
Then JLQU" has a unique minimizer “* € H? characterized by:
X = [ asid”d

e =B [wy (X;)x“ Y fT (/” s, s, XM + 1 (s, us, XE)XE™ ) ds],
IL// (t Ut,XU)~uw+llll;(f, Ut,Xtu)Xt7W+Oéth’ = Wt.

T — T — T —
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Stochastic control: framework and Newton step computation

Newton step. We aim at computing Au

V2T (u)(Au) = —V T (u).
Crucial interpretation in terms of LQ stochastic control problem
(explicitly tractable using Riccati equations and LBSDE [14, 2]).

Theorem

Let (u,w) € H? x H?. Consider min,cge J*@“%(v) s.t. X, = [ asveds,
where JL@:4w(v) is defined by:

.
E [/ { 10 (t, ug, X2) vE /” (, ue, XE) X2+ 17 (¢, ug, XE') Xeve — tht}dt-i- —w (XY
0

Then JLQU" has a unique minimizer “* € H? characterized by:
Ko = [fasit™d
e =B [wy (X;)x“ Y fT (/” s, s, XM + 1 (s, us, XE)XE™ ) ds],
IL// (t th,Xu)~u W + llll;(t, th,Xtu)X:’ w + Oéth M = Wt.
Besides, for any u € H?, V27 (u) € L(H?) is invertible and
—il -
(VQJ(U)) (w) = a“v.

%3]
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Theoretical convergence properties

Insufficient regularity properties in H?

Problem:
min J (u)

u€H?

V27 Lipschitz-continuous = local quadratic convergence.
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Theoretical convergence properties

Insufficient regularity properties in H?

Problem:

min J (u)

u€H?

V27 Lipschitz-continuous = local quadratic convergence.

H?: set of square integrable processes, ||ul[m = 4/E {fOT u?dt]

e J :H? — R is twice differentiable.
o VJ :H?— H2
o V27 :H2? s L(H?).

But V2J : H2 + L(H?) not Lipschitz-continuous.
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Theoretical convergence properties

Counter-example

Consider J given by:
1
Vue HX([0,1] x Q,R),  J(u):=E [/ /(ut)dt}, st XY =0,vte[0,1],
0
where [ is such [”(x) = min(1 + |x|, 2); //(0) = 0; /(0) = 0.

J is twice continuously differentiable, with second order-derivative V27
given by (V27 (u)(v)): = I"(ut)vs, for u,v € H2.
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Theoretical convergence properties

Counter-example

Example

Consider J given by:
1
Yu € H2([0,1] x Q,R), J(u) :=E [/ /(ut)dt:|, s.t. X{ =0,vte|0,1],
0

where [ is such /”(x) = min(1 + |x|,2); //(0) = 0; /(0) = 0.

J is twice continuously differentiable, with second order-derivative V27
given by (V27 (u)(v)): = I"(ut)vs, for u,v € H2.

However, let us define u(") € H? the constant process with value 1 with
probability 1/n and 0 else:

V2T (uM) - v27(0 2 70,My(uM) _ v2 (n)
Il (') Ol £ @2y > V27 (™) (™) — V27T (0)(u)||z2 CJh — oo
[lu(m) — 0[5 [ |52 [ g2 n——r+oo

In particular V27 : H? — L(H?) is not Lipschitz-continuous.
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Theoretical convergence properties

Restriction to the space of essentially bounded processes

As a difference with R?, non-equivalence of norms in our setting =

Replace H? by H> endowed with ||u||g~ = SUP.e[o, 7] €SSUP| Ut .

Prove stability under restriction to H®:

VJMH>®) CcH* ; V2J(H™)C L(H>®).

e J : H*® — R has bounded and Lipschitz second-order derivative
if data regular.

@ Has an impact on the backtracking line search algorithm.
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Theoretical convergence properties

Theorem (Stability of H*°)

Under houn , for all

u,v,w € H®, X4 Y VT (u), X", Y V2T (u)(v) and

(V2T (u))~Y(w) are in H*> and:

X lmee + 1Y llu + IVT ()]l < C(1 + [Jullae-),

X = XYl + 1Y = Ylae + [VI(u) = VI(V)lla= < Cllu = vllae
IX¥ [l + 1Y e + V2T () (W)l < Cllvlm=,

Y4 = ¥l + V2T (u)(w) = V2T ()W)l < Cllu = vi[m[[w]
(V2T () (W)l < Cllwla=.

=]

=

o V27 defines a Lipschitz-continuous operator from H> s L(H>).

o V27 (u) and (V27 (u))~! are bounded linear operators, uniformly in
u.

@ The Newton direction A, at the point u € H*> s in H*.
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Theoretical convergence properties

Backtracking line search

Alg. 1: Standard Backtracking line search

1: Inputs: Current point u € H*, Current search direction A, € H*°,
B €(0,1), v€(0,1).

o=1.

: while J(u+0A,) > J(u) +vo (VI (u), Ay do

o+ fo.

: end while

s return u+oA,.

oG s W

The global convergence of the method is not guaranteed in our setting.
Open problem
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Theoretical convergence properties

Alg 2: Gradient Backtracking line search

1:

SN

Inputs: Current point u € H*, Current search direction A, € H*>,
B €(0,1), v €(0,1).
o=1.
while |[VJ(u+ cA)) ||l > (1 —v0)[|VT(u)||g~ do
o+ fo.
end while
return v+ ol,.
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Theoretical convergence properties

Alg 2: Gradient Backtracking line search

1:

Theorem (global convergence and locally quadratic)

> Alg. 2 terminates in finitely many iterations.
> If Alg. 2 returns o = 1, then the new point u+ A, satisfies:

> If Alg. 2 returns o < 1, then the new iterate u + oA, satisfies:

C is a constant depending on data.

Inputs: Current point u € H*, Current search direction A, € H*>,
Be(0,1),ve(0,1).

2: c=1.

3: while VT (u+0A,)|[la= > (1 —70)[VI(v)]la= do
4:
5
6

o+ fo.

: end while
creturn u+ oA,

VI (u+ Al < min(1 -7, CIIVI () laee) IV T (u)l[fre -

IV (u+ o8l < VT (@)l — 27EZD).
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Numerical implementation and results
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Numerical implementation and results

Numerical example: Set of heterogeneous consumers, with
different flexibility - Supply-demand balance

@ Common noise
(weather...)

1 ssep) Josn

@ Independent individual
noise (agent
consumption...)

Centralized
generation

o General filtration (not
necessarily Brownian) to
allow jumps in exogenous
factors

Z sse|d Jasn

W sse|D Jasn
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Numerical implementation and results

Control /dynamics: multi-category with common noise

@ M € N: number of agent categories, indexed by k or /

e Each category k € {1,..., M} (with same characteristics) has N
agents indexed by / or j
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Numerical implementation and results

Control /dynamics: multi-category with common noise

@ M € N: number of agent categories, indexed by k or /

Each category k € {1, ..., M} (with same characteristics) has Ny
agents indexed by / or j

Dynamics for storage i in category k
X\ Xék,/) + / (“gk)uﬁk,,) 4 Bl XUk ,\/ék,/)(w)> ds,
Jo

Controls : (u(k”'))1§k§,\/;_,1§,-§,\,k power consumptions
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Numerical implementation and results

Control /dynamics: multi-category with common noise

@ M € N: number of agent categories, indexed by k or /

e Each category k € {1,..., M} (with same characteristics) has N
agents indexed by i or j
@ Dynamics for storage /i in category k
Xt(k,/) _ Xék,/) + / (“gk)uﬁk,,) 4 Bl XUk ,\/ék,/)(w)> ds,
Jo
e Controls : (u(k”'))1§k§,\/;_,1§,-§,\,k power consumptions
@ Examples of storage:

o Battery state of charge: X; = xo + [ £y dS-

o Temperature thermal storage:
X = x0 + fot(aus — B(Xs — Tout(s)) + s )ds.
@ Processes impacting individual consumers (consumption, solar
production...) are independent given G (weather noise. . .)

Emmanuel GOBET -Maxime GRANGEREAU Newton method for stochastic control problems



Numerical implementation and results

Objective function (to be minimised): a cooperative
approach

M N T
1 . . . . .
(ki) (4 (k) selkoi) (k) (e (ko)
E N;l;l{.o Q (t,ut X )dt+\U (XT )}

management cost for storage i of category k

T 1 M N . .
+E /0 E(t,NZ (ugl’)+p1°ad=(/sl))_P§rod)dt7

instantaneous overall imbalance

/[Ek) uief.(k,i) ng) Xref,(k.l')

t
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Numerical implementation and results

The control problem

(I L (ki) )
mlnENZ. {/0 QY (t, ,Xt’>dt+\lf’ (XT’)}
k=1 i=1
T 1 M N .
+E / L t,NZZ( 4 proad(l)y _pered | g4 ||
0 I=1 j=1

st XD = kD +/ (ag“ + BRI XD qgk-')) ds, Vk,i.
0

@ Semi Linear-Quadratic (£(t,.) not necessarily quadratic) and strongly
convex stochastic control problem...

@ ... in high dimension (N := Zyzl Ny) with coupling.
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Numerical implementation and results

Approximation for the aggregator and consumers

From
https://hal.archives-ouvertes.fr/hal-03108611
@ Theorem: the N-dimensional control problem is approximately equiv-
alent to a leader-follower control problem:

e 1 control problem for the aggregator in dimension M (number of
categories)
o for each consumer, a 1-dimensional control problem

Aggregator gives a coordination signal, to be used by all consumers
in parallel = Solves the privacy preserving issue
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Numerical implementation and results

Approximation for the aggregator and consumers

From
https://hal.archives-ouvertes.fr/hal-03108611
@ Theorem: the N-dimensional control problem is approximately equiv-
alent to a leader-follower control problem:

e 1 control problem for the aggregator in dimension M (number of
categories)
o for each consumer, a 1-dimensional control problem

Aggregator gives a coordination signal, to be used by all consumers
in parallel = Solves the privacy preserving issue

@ Theorem: error bounds

for control, in Ly
° for functional cost
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Numerical implementation and results

The aggregator control problem

min

Sl [ @ (o xae w0 () |
k=1 0

T M
+E / L (t, > a4 preea) _ ppred > de|,
0 =1
:=v(N) | coordination signal

ot
st X =g [ (a4 0N 45 s, ik,
0

1 —ref, 2 =ref, 2
= (‘u(tk) ( - f,(k,N)) + ng) (X _ g f,(k,N)) ) :

Pk (x) = p(k) <x — )?f,-’(k’N)>2 /2.

QUM (t,u,x) ==

Can be solved in the G-filtration. Depends on statistics of consumers.
Reduced-size problem.
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Numerical implementation and results

Solving the aggregator problem

Description of Newton iteration:
@ Each iteration requires solving one ODE and three BSDEs.

@ Numerical solution of BSDEs. Many conditional expectations ~
Empirical Least-Squares Regression [8].

Yt:E

"
/ F(5. Xe, Yo)ds + G(X7)IFe| = de(X),

2

¢¢(.) =arg min E (/ f(s,Xs, Ys)ds + G(X7) — h(Xt)>

h meas.

o Solve backwards in t (after time discretization ~ Euler).

o Choose h in finite-dimensional functional vector space V or non
linear space (e.g. NN).

o Expectation ~ empirical mean over the simulations

o H° norm computed over the simulations
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Numerical implementation and results

Numerical performance

(C) ”vJ(U(k))HHoo along

(b) Number of step size
iterations

(a) Computation time (in
reductions

seconds)

k) - min Jup + epsiton

(f) Suboptimality gap

K -
(d) VT (™) along (e) Cost J(u¥)y along F(u®)—min; F(u) 4109
iterations k
(log scale)

iterations

Figure: Performance of Newton method with the two line search methods along

iterations
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Numerical implementation and results

Conclusion and perspectives

Design of Newton algorithm for stochastic control

Careful choice of norms

Proof of convergence (global, and locally quadratic). A few
iterations are sufficient.

@ lterative method made of simple BSDEs, fast to solve.

@ On-going works:
o extension to more general control problems
o analysis of numerical errors
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Numerical implementation and results

References |

B

) &) & =Y

C. BENDER, J. ZHANG, ET AL., Time discretization and Markovian iteration for
coupled FBSDEs, The Annals of Applied Probability, 18 (2008), pp. 143-177.

J.-M. BismuT, Linear quadratic optimal stochastic control with random
coefficients, SIAM Journal on Control and Optimization, 14 (1976), pp. 419-444.

S. BoyD AND L. VANDENBERGHE, Convex optimization, Cambridge university
press, 2004.

H. BRrEzIS, Functional analysis, Sobolev spaces and partial differential equations,
Springer Science+Business Media, 2010.

F. CHERNOUSKO AND A. LYUBUSHIN, Method of successive approximations for
solution of optimal control problems, Optimal Control Applications and Methods,
3 (1982), pp. 101-114.

E. GOBET AND M. GRANGEREAU, Extended McKean-Vlasov optimal stochastic

control applied to smart grid management, to appear in ESAIM: Control,
Optimisation and Calculus of Variations, (2021).

Emmanuel GOBET -

axime GRANGEREAU Newton method for stochastic control problems



Numerical implementation and results
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Numerical implementation and results
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