American options in a non-linear incomplete market model

Miryana Grigorova

University of Leeds

Based on joint works with Marie-Claire Quenez (Paris), Agnès Sulem (Paris)

9th Colloquium BSDEs and Mean Field Systems Session on BSDEs in Credit and Default Risk 28 June 2022

▲ロト ▲御 → ▲ 唐 → ▲ 唐 → ○ ▲ ○ ◇ ◇ ◇

Features of the market

- The risky asset is subject to default (or an exogenous credit event).
- The market is incomplete : not every European contingent claim is replicable.
- The market is non-linear : the dynamics of the wealth process have a non-linear (possibly non-convex) driver.
 The non-linearity of the driver can encode a number of market imperfections : different lending and borrowing interest rates, repo rates, impact of a large investor ...

Goal

Study the superhedging of American options in such non-linear incomplete market models.

The case where the pay-off process of the American option is **not** necessarily **right-continuous** is beyond this talk.

We will present :

- a duality result for the seller of the option in terms of a non-linear stochastic problem of control and stopping
- infinitesimal characterization in terms of a non-linear constrained reflected BSDE under the initial probability *P*.

The proofs are not based on convex duality.

A motivating example : Non-linear incomplete market with default

- Let T > 0 be a fixed terminal horizon.
- Let $(\Omega, \mathcal{G}, \mathbf{P})$ be a complete probability space.
- Let W be a one-dimensional Brownian motion.
- ϑ is a random variable which models a default time (or the time of a credit event).
- Let *N* be the process defined by $N_t := \mathbf{1}_{\vartheta \le t}$ for all $t \in [0, T]$
- Let G = {G_t, t ≥ 0} be the (augmented) filtration generated by W and N.
- Let *M* be the compensated martingale defined by

$$M_t := N_t - \int_0^t \lambda_s ds, \quad t \ge 0,$$

where $\lambda_s \ge 0$ is the intensity process.

- Let T > 0 be a fixed terminal horizon.
- Let $(\Omega, \mathcal{G}, \mathbf{P})$ be a complete probability space.
- Let W be a one-dimensional Brownian motion.
- ϑ is a random variable which models a default time (or the time of a credit event).
- Let *N* be the process defined by $N_t := \mathbf{1}_{\vartheta \le t}$ for all $t \in [0, T]$
- Let G = {G_t, t ≥ 0} be the (augmented) filtration generated by W and N.
- Let *M* be the compensated martingale defined by

$$M_t := N_t - \int_0^t \lambda_s ds, \quad t \ge 0,$$

where $\lambda_s \ge 0$ is the intensity process.

• We assume that *W* is a G-Brownian motion (immersion property).

We consider a market with :

 a risky asset S = (S_t)_{0≤t≤T} with (exogenously) modelled price process

$$dS_t = S_{t^-}(\mu_t dt + \sigma_t dW_t + \beta_t dM_t)$$
 with $S_0 > 0$.

The processes σ , μ , and β are predictable bounded with $\sigma_t > 0$ and $\beta_{\vartheta} > -1$.

• At least one riskless asset.

- An investor, endowed with an initial wealth $x \in \mathbb{R}$.
- At each time *t*, the investor chooses the amount φ_t of wealth invested in the risky asset (where φ ∈ ℍ²).
- The wealth process V_t^{x, φ} (or simply V_t) satisfies the following forward dynamics :

$$-dV_t = f(t, V_t, \varphi_t \sigma_t) dt - \varphi_t \sigma_t dW_t - \varphi_t \beta_t dM_t; \quad V_0 = x;$$

where *f* is a nonlinear (possibly non-convex) Lipschitz driver.

Example of non-linear incomplete market model

Black and Scholes-type market model with a (possible) default on the risky asset (incompleteness) and different rates for borrowing R_t and lending r_t (non-linearity)

• risk-free assets (B_t^1) and (B_t^2) with

$$dB_t^1 = B_t^1 r_t dt \qquad dB_t^2 = B_t^2 R_t dt$$

a risky asset (S_t) with

$$dS_t = S_t \mu_t dt + S_t \sigma_t dW_t + S_{t-} \beta_t dM_t$$

And the constraints : the riskless asset (B¹_t) can only be bought, and the riskless asset (B²_t) can only be sold.

The self-financing condition :

$$-dV_t = -\left((V_t - \varphi_t)^+ r_t - (V_t - \varphi_t)^- R_t + \mu_t \varphi_t\right) dt - \varphi_t \sigma_t dW_t - \varphi_t \beta_t dM_t$$

We see that the driver is non-linear.

Examples (continued) :

• linear driver

$$f(t, V_t, \varphi_t \sigma_t) = -r_t V_t - (\mu_t - r_t) \varphi_t = -r_t V_t - \theta_t \varphi_t \sigma_t,$$

where r_t is the risk-free interest rate, and $\theta_t = (\mu_t - r_t)\sigma_t^{-1}$.

イロト イポト イヨト イヨト

Examples (continued) :

• linear driver

$$f(t, V_t, \varphi_t \sigma_t) = -r_t V_t - (\mu_t - r_t)\varphi_t = -r_t V_t - \theta_t \varphi_t \sigma_t,$$

where r_t is the risk-free interest rate, and $\theta_t = (\mu_t - r_t)\sigma_t^{-1}$.

• different borrowing and lending interest rates R_t and r_t with $R_t \ge r_t$:

$$f(t, V_t, \varphi_t \sigma_t) = -r_t V_t - \varphi_t(\mu_t - r_t) + (R_t - r_t)(V_t - \varphi_t)^-.$$

- taxes on the profits
- literature on counterparty risk $f(t, V_t, \varphi_t \sigma_t) = -r_t (V_t - \varphi_t)^+ + R_t (V_t - \varphi_t)^- - l_t \varphi_t^- + b_t \varphi_t^+ - \varphi_t \mu_t$
- the effect of a large seller on the default intensity; ...

Whatever the form of the driver *f*, this non-linear market is incomplete.

Let $\eta \in L^2(G_T)$ be the terminal pay-off of a European option. It might not be possible to find (x, φ) in $\mathbb{R} \times \mathbb{H}^2$ such that

- $V^{x,\phi}$ satisfies the self-financing condition and
- $V_T^{x,\phi} = \eta$ (terminal condition)

Whatever the form of the driver *f*, this non-linear market is incomplete.

Let $\eta \in L^2(G_T)$ be the terminal pay-off of a European option. It might not be possible to find (x, φ) in $\mathbb{R} \times \mathbb{H}^2$ such that

- $V^{x,\phi}$ satisfies the self-financing condition and
- $V_T^{x,\phi} = \eta$ (terminal condition)

Indeed, the pricing Backward SDE

$$-dV_t = f(t, V_t, Z_t)dt - Z_t dW_t - Z_t \sigma_t^{-1} \beta_t dM_t; \quad V_T = \eta,$$

might not be well-defined.

(Here, we have set as usual $Z_t := \varphi_t \sigma_t$.)

Models of financial markets : Vocabulary

linear complete	linear incomplete
non-linear complete	non-linear incomplete

• 3 >

< □ > < @ > < ≥ >

Models of financial markets : Vocabulary

linear complete	linear incomplete
non-linear complete	non-linear incomplete

• 3 >

< □ > < @ > < ≥ >

Superhedging price of American options

-

< ∃ >

Let \mathcal{T} be the set of all stopping times (a.s. in [0, T]).

Let $\xi \in S^2$ be a given RCLL adapted pay-off process.

Seller's superhedging price at time 0 $u_0 := \inf\{x \in \mathbb{R} : \exists \phi \in \mathbb{H}^2 \text{ with } V^{x,\phi}_{\tau} \ge \xi_{\tau}, \forall \tau \in \mathcal{T}\}.$

Miryana Grigorova (Leeds)

Non-linear incomplete markets

Annecy, 28 June 2022

Dual characterization of the seller's price

Under a suitable integrability assumption on the pay-off process (ξ_t) and a suitable assumption on *f* ensuring that $\mathscr{E}^f(\cdot)$ is monotone, we have

Theorem (Pricing-hedging duality for the seller)

The superhedging price u_0 for the seller of the American option satisfies

$$u_0 = \sup_{Q \in \mathscr{Q}} \sup_{ au \in \mathscr{T}} \mathscr{E}^f_{Q,0, au}(\xi_{ au}).$$

Main objects of the duality formula

Linear case	Non-linear case (f non-linear)
Linear operator $E_R(\cdot)$	Non-linear operator \mathscr{E}_{Q}^{f}
Martingale (with respect to $E_R(\cdot)$)	Martingale (with respect to \mathscr{E}_Q^f)
Set of martingale measures ${\mathscr R}$	Set of measures \mathcal{Q}

イロト イポト イヨト イヨト

Linear case	Non-linear case (f non-linear)
Linear operator $E_R(\cdot)$	Non-linear operator \mathscr{E}_{Q}^{f}
Martingale (with respect to $E_R(\cdot)$)	Martingale (with respect to \mathscr{E}_{Q}^{f})
Set of martingale measures ${\mathscr R}$	Set of measures \mathscr{Q}

(日)(四)(日)(日)(日)(日)(日)

Non-linear *f*-evaluation under *Q*

Let Q be a probability measure equivalent to P.

By the predictable representation property ¹, its density process (ζ_t) satisfies

$$d\zeta_t = \zeta_{t^-}(\alpha_t dW_t + \nu_t dM_t); \zeta_0 = 1,$$

where (α_t) and (ν_t) are predictable processes with $\nu_{\vartheta \wedge T} > -1$ a.s.

By Girsanov's theorem,

W^Q_t := *W*_t − ∫^t₀ α_sds is a Brownian motion under *Q*, and
 M^Q_t := *M*_t − ∫^t₀ ν_sλ_sds is a martingale under *Q*.

1. cf. Kusuoka (1999), Jeanblanc and Song (2015)

Miryana Grigorova (Leeds)

Non-linear incomplete markets

イロト イポト イヨト イヨト

- Let $\eta \in L^2_Q(\mathcal{G}_T)$
- Consider the pricing BSDE (under *Q*)

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t^Q - K_t dM_t^Q; \quad X_T = \eta.$$

- Let $\eta \in L^2_Q(\mathcal{G}_T)$
- Consider the pricing BSDE (under *Q*)

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t^Q - K_t dM_t^Q; \quad X_T = \eta.$$

• Let (X, Z, K) be the unique solution² of the BSDE (under *Q*).

- Let $\eta \in L^2_Q(\mathcal{G}_T)$
- Consider the pricing BSDE (under *Q*)

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t^Q - K_t dM_t^Q; \quad X_T = \eta.$$

• Let (X, Z, K) be the unique solution² of the BSDE (under *Q*).

f-evaluation under *Q*

For $t \in [0, T]$, we call *f*-evaluation under *Q* (at time *t*), denoted by $\mathscr{E}_{Q,t,T}^{f}$, the operator defined by :

$$\mathscr{E}^{f}_{Q,t,T}(\eta) := X_t.$$

- Let $\eta \in L^2_Q(\mathcal{G}_T)$
- Consider the BSDE (under Q)

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t^Q - K_t dM_t^Q; \quad X_T = \eta.$$

• Let (X, Z, K) be the unique solution of the BSDE (under *Q*).

f-evaluation under Q

For $t \in [0, T]$, we call *f*-evaluation under *Q* (at time *t*), denoted by $\mathscr{E}_{Q,t,T}^{f}$, the operator defined by :

$$\mathscr{E}^{f}_{Q,t,T}(\eta) := X_t.$$

Remark : Note that Shige Peng's *g*-expectation is a particular case (applications in risk measures).

Miryana Grigorova (Leeds)

Annecy, 28 June 2022

Linear case	Non-linear case (f non-linear)
Linear operator $E_R(\cdot)$	Non-linear operator \mathscr{E}_{Q}^{f}
Martingale (with respect to $E_R(\cdot)$)	Martingale (with respect to \mathscr{E}_Q^f)
Set of martingale measures ${\mathscr R}$	Set of measures \mathscr{Q}

イロト イヨト イヨト イヨト

Definition (Martingale with respect to \mathscr{E}_{O}^{t})

Let $(Y_t) \in \mathbb{S}^2_Q$. The process (Y_t) is called a (strong) \mathscr{E}^f_Q -martingale, denoted also (f, Q)-martingale, if

$$\mathscr{E}^{f}_{\mathcal{Q},\sigma,\tau}(Y_{\tau}) = Y_{\sigma}$$
 a.s. for all stopping times σ, τ such that $\sigma \leq \tau$.

> < 三 > < 三 >

Definition (Martingale with respect to \mathscr{E}_{O}^{t})

Let $(Y_t) \in \mathbb{S}^2_Q$. The process (Y_t) is called a (strong) \mathscr{E}^f_Q -martingale, denoted also (f, Q)-martingale, if

 $\mathscr{E}^{f}_{Q,\sigma,\tau}(Y_{\tau}) = Y_{\sigma}$ a.s. for all stopping times σ, τ such that $\sigma \leq \tau$.

The notion of strong \mathscr{E}_Q^f -supermartingale is defined in a similar manner.

イロト イポト イヨト イヨト

Linear case	Non-linear case (f non-linear)
Linear operator $E_R(\cdot)$	Non-linear operator \mathscr{E}_{Q}^{f}
Martingale (with respect to $E_R(\cdot)$)	Martingale (with respect to \mathscr{E}_{Q}^{f})
Set of martingale measures ${\mathscr R}$	Set of measures \mathscr{Q}

イロト イヨト イヨト イヨト

Definition (The set \mathcal{Q})

An equivalent probability measure Q is in \mathscr{Q} if : for all $x \in \mathbb{R}$, for all $\varphi \in \mathbb{H}^2 \cap \mathbb{H}^2_Q$, the wealth process $V^{x,\varphi}$ is a (strong) \mathscr{E}^f_Q -martingale.

Definition (The set \mathcal{Q})

An equivalent probability measure Q is in \mathscr{Q} if : for all $x \in \mathbb{R}$, for all $\varphi \in \mathbb{H}^2 \cap \mathbb{H}^2_Q$, the wealth process $V^{x,\varphi}$ is a (strong) \mathscr{E}^f_Q -martingale.

Remarks :

- The set \mathcal{Q} does not depend on the driver *f*.
- There is a one-to-one correspondence between the set *Q* and the set *R*.

Under a suitable integrability assumption on (ξ_t) , and an additional assumption on *f* to ensure the monotonicity of $\mathscr{E}^f(\cdot)$, we have

Theorem (Pricing-hedging duality for the seller)

$$u_0 = \sup_{Q \in \mathscr{Q}} \sup_{\tau \in \mathscr{T}} \mathscr{E}^f_{Q,0,\tau}(\xi_{\tau}).$$

Intermediary results in the proof of the duality for the seller

The dual value problem

 \longrightarrow Passes through the study of the dual value problem.

Let X(S) be the value at a given stopping time time S of the dual problem, that is,

$$X(S) := ess \sup_{Q \in \mathscr{Q}} ess \sup_{\tau \in \mathcal{T}_S} \mathscr{E}^f_{Q,S,\tau}(\xi_{\tau}) \text{ a.s.}$$

The dual value problem

 \longrightarrow Passes through the study of the dual value problem.

Let X(S) be the value at a given stopping time time S of the dual problem, that is,

$$X(S) := \mathop{ess\, \sup}_{Q \in \mathscr{Q}} \mathop{ess\, \sup}_{\tau \in \mathcal{T}_S} \mathscr{E}^f_{Q,S,\tau}(\xi_{\tau}) ext{ a.s.}$$

This is a non-linear mixed control/stopping problem.

Main steps

- Aggregation step
- Minimality characterization
- Non-linear optional decomposition
- Pricing-hedging duality

Study the dual problem

$$X(S) := ess \sup_{Q \in \mathscr{Q}} ess \sup_{\tau \in \mathcal{T}_S} \mathscr{E}^f_{Q,S,\tau}(\xi_{\tau}) = X_S$$
 a.s.

- Aggregation step
- Minimality characterization
- Non-linear optional decomposition
- Pricing-hedging duality

Study the dual problem

$$X(S) := ess \sup_{Q \in \mathscr{Q}} ess \sup_{\tau \in \mathcal{T}_S} \mathscr{E}^f_{Q,S,\tau}(\xi_{\tau}) = X_S$$
 a.s.

- Aggregation step
- Minimality characterization
- Non-linear optional decomposition
- Pricing-hedging duality

Theorem (Minimality characterization)

• The dual value process (X_t) is the smallest non-linear \mathscr{E}_Q^f -supermartingale for all $Q \in \mathscr{Q}$, dominating the pay-off process (ξ_t) .

$$X(S) := \mathop{ess\,\, sup}_{Q \in \mathscr{Q}} \mathop{ess\,\, sup}_{\tau \in \mathcal{T}_S} \mathscr{E}^f_{Q,S,\tau}(\xi_\tau) = X_S \quad \text{a.s.}$$

- Aggregation step
- 2 Minimality characterization
- Non-linear optional decomposition
 - \rightarrow Structure of the processes which are non-linear supermartingales (simultaneously) in all the auxiliary models
- Pricing-hedging duality

Theorem (Non-linear optional decomposition)

Let (χ_t) be an RCLL non-linear optional \mathscr{E}_Q^f -supermartingale for all $Q \in \mathscr{Q}$.

Then, there exist :

- a unique adapted process $Z \in \mathbb{H}^2$,
- a unique nondecreasing optional RCLL process h with $h_0 = 0$, such that

$$-d\chi_t = \underbrace{f(t,\chi_t,Z_t)dt}_{-} \underbrace{Z_t \sigma_t^{-1}(\sigma_t dW_t + \beta_t dM_t)}_{+} + \frac{dh_t}{-}.$$

non-linear part

martingale part

Theorem (Non-linear optional decomposition)

Let (χ_t) be an RCLL non-linear optional \mathscr{E}_Q^f -supermartingale for all $Q \in \mathscr{Q}$.

Then, there exist :

- a unique adapted process $Z \in \mathbb{H}^2$,
- a unique nondecreasing optional RCLL process h with $h_0 = 0$, such that

$$-d\chi_t = \underbrace{f(t,\chi_t,Z_t)dt}_{\text{non-linear part}} - \underbrace{Z_t \sigma_t^{-1}(\sigma_t dW_t + \beta_t dM_t)}_{\text{martingale part}} + dh_t.$$

Moreover, the converse statement holds.

Theorem (Non-linear optional decomposition)

Let (χ_t) be an RCLL non-linear optional \mathscr{E}_Q^f -supermartingale for all $Q \in \mathscr{Q}$.

Then, there exist :

- a unique adapted process $Z \in \mathbb{H}^2$,
- a unique nondecreasing optional RCLL process h with $h_0 = 0$, such that

$$-d\chi_t = \underbrace{f(t,\chi_t,Z_t)dt}_{\text{non-linear part}} - \underbrace{Z_t \sigma_t^{-1}(\sigma_t dW_t + \beta_t dM_t)}_{\text{martingale part}} + \frac{dh_t}{dH_t}.$$

Moreover, the converse statement holds.

Literature : (linear case) El Karoui and Quenez (1995); Kramkov (1996); Föllmer and Kabanov (1998).

(non-linear case) Bouchard, Possamaï, and Tan (2016); Possamaï, Tan, Zhou (2018): M.G. Ouenez, Sulem (2020) Mirvana Griogrova (Leeds) Annecy, 28 June 2022

$$X(S) := \mathop{ess\,\, sup}_{Q \in \mathscr{Q}} \mathop{ess\,\, sup}_{ au \in \mathcal{T}_S} \mathop{\mathcal{E}_{Q,S, au}^f}_{\mathcal{L}(\xi_ au)} = X_S$$
 a.s.

- Aggregation step
- 2 Minimality characterization
- Non-linear optional decomposition
- Pricing-hedging duality and a first infinitesimal characterization

1st infinitesimal characterization

< D > < B

Image: A matrix and a matrix

Supersolution of a Reflected BSDE with optional non-decreasing process

A process $Y \in S^2$ is said to be a supersolution of the optional Reflected BSDE with driver *f* and obstacle (ξ_t) if

- there exists $Z \in \mathbb{H}^2$ and
- there exists a nondecreasing optional RCLL process *h*, with *h*₀ = 0 and *E*[(*h*_T)²] < ∞

such that

$$-dY_t = f(t, Y_t, Z_t)dt - \sigma_s^{-1}Z_s(\sigma_s dW_s + \beta_s dM_s) + dh_t; \text{a.s.}$$
$$Y_T = \xi_T \text{ and } Y_t \ge \xi_t \text{ for all } t \text{ a.s.}$$

Theorem (1st infinitesimal characterization)

The dual value process (X_t) is the minimal supersolution of the Reflected BSDE with optional non-decreasing process.

Miryana Grigorova (Leeds)

Non-linear incomplete markets

2nd infinitesimal characterization

< D > < B

Image: A matrix and a matrix

The 2nd infinitesimal characterization is due to the following result :

A process (χ_t) is an f, Q-supermartingale for all $Q \in \mathscr{Q}$

iff

 (χ_t) admits a non-linear optional decomposition

iff

 (χ_t) admits a non-linear predictable decomposition with constraints.

Reflected BSDE with constraints

- It is possible to characterize the seller's superhedging price as the minimal supersolution of a non-linear Reflected BSDE with constraints.
- This provides a connection to earlier literature on BSDE with jump constraints (Ma, Zhang, ...)

Supersolution of a constrained Reflected BSDE

Let $\xi \in S^2$. A process $Y \in S^2$ is said to be a *supersolution* of the *constrained reflected BSDE* with driver *f* and obstacle ξ if there exists a predictable process $(Z, K, A) \in \mathbb{H}^2 \times \mathbb{H}^2_{\lambda} \times \mathcal{A}^2$ such that

$$-dY_{t} = f(t, Y_{t}, Z_{t})dt - Z_{t}dW_{t} - K_{t}dM_{t} + dA_{t};$$

$$Y_{T} = \xi_{T} \text{ a.s. } \text{ and } Y_{t} \geq \xi_{t} \text{ for all } t \in [0, T] \text{ a.s.};$$

$$A_{t} + \int_{0}^{\cdot} (K_{s} - \beta_{s}\sigma_{s}^{-1}Z_{s})\lambda_{s}ds \text{ is non-decreasing, and,}$$

$$(K_{t} - \beta_{t}\sigma_{t}^{-1}Z_{t})\lambda_{t} \leq 0, t \in [0, T], dP \otimes dt \text{-a.e.}$$

Theorem (2nd infinitesimal characterization)

The seller's price u_0 is equal to the minimal supersolution Y_0 at time 0 of the constrained Reflected BSDE.

Duality for the buyer

< D > < B

→ 4 ∃ →

-

Buyer's superhedging price at time 0

$$ilde{u}_0:=\sup\{z\in\mathbb{R}:\;\exists(au,\phi)\in\mathcal{T} imes\mathbb{H}^2 ext{ with }\xi_ au\geq-V_ au^{-z,\phi}\}.$$

-

< ∃ >

Buyer's superhedging price at time 0

$$ilde{u}_0:= \sup\{z\in\mathbb{R}: \ \exists (au,\phi)\in\mathcal{T} imes\mathbb{H}^2 ext{ with } \xi_ au\geq -V_ au^{-z,\phi}\}$$

Theorem (Pricing-hedging duality for the buyer)

If (ξ_t) is l.u.s.c., the superhedging price \tilde{u}_0 for the buyer of the American option satisfies

$$\tilde{u}_{0} = \inf_{Q \in \mathscr{Q}} \sup_{\tau \in \mathscr{T}} - \mathscr{E}^{f}_{Q,0,\tau}(-\xi_{\tau}) = \sup_{\tau \in \mathscr{T}} \inf_{Q \in \mathscr{Q}} - \mathscr{E}^{f}_{Q,0,\tau}(-\xi_{\tau}).$$

- G.M., Quenez M.-C., and A. Sulem : European options in a non-linear incomplete market model with default, SIAM Journal on Financial Mathematics, 2020.
 - G.M., Quenez M.-C., and A. Sulem : American options in a non-linear incomplete market with default, Stochastic Processes and their Applications, December 2021.