American options
 in a non-linear incomplete market model

Miryana Grigorova

University of Leeds

Based on joint works
with Marie-Claire Quenez (Paris), Agnès Sulem (Paris)
9th Colloquium BSDEs and Mean Field Systems
Session on BSDEs in Credit and Default Risk
28 June 2022

Features of the market

- The risky asset is subject to default (or an exogenous credit event).
- The market is incomplete : not every European contingent claim is replicable.
- The market is non-linear : the dynamics of the wealth process have a non-linear (possibly non-convex) driver.
The non-linearity of the driver can encode a number of market imperfections : different lending and borrowing interest rates, repo rates, impact of a large investor ...

Goal

Study the superhedging of American options in such non-linear incomplete market models.

The case where the pay-off process of the American option is not necessarily right-continuous is beyond this talk.
We will present :

- a duality result for the seller of the option in terms of a non-linear stochastic problem of control and stopping
- infinitesimal characterization in terms of a non-linear constrained reflected BSDE under the initial probability P.

The proofs are not based on convex duality.

A motivating example :
 Non-linear incomplete market with default

- Let $T>0$ be a fixed terminal horizon.
- Let (Ω, \mathcal{G}, P) be a complete probability space.
- Let W be a one-dimensional Brownian motion.
- ϑ is a random variable which models a default time (or the time of a credit event).
- Let N be the process defined by $N_{t}:=\mathbf{1}_{\vartheta \leq t}$ for all $t \in[0, T]$
- Let $\mathbb{G}=\left\{\mathcal{G}_{t}, t \geq 0\right\}$ be the (augmented) filtration generated by W and N.
- Let M be the compensated martingale defined by

$$
M_{t}:=N_{t}-\int_{0}^{t} \lambda_{s} d s, \quad t \geq 0
$$

where $\lambda_{s} \geq 0$ is the intensity process.

- Let $T>0$ be a fixed terminal horizon.
- Let (Ω, \mathcal{G}, P) be a complete probability space.
- Let W be a one-dimensional Brownian motion.
- ϑ is a random variable which models a default time (or the time of a credit event).
- Let N be the process defined by $N_{t}:=\mathbf{1}_{\vartheta \leq t}$ for all $t \in[0, T]$
- Let $\mathbb{G}=\left\{\mathcal{G}_{t}, t \geq 0\right\}$ be the (augmented) filtration generated by W and N.
- Let M be the compensated martingale defined by

$$
M_{t}:=N_{t}-\int_{0}^{t} \lambda_{s} d s, \quad t \geq 0
$$

where $\lambda_{s} \geq 0$ is the intensity process.

- We assume that W is a \mathbb{G}-Brownian motion (immersion property).

We consider a market with :

- a risky asset $S=\left(S_{t}\right)_{0 \leq t \leq T}$ with (exogenously) modelled price process

$$
d S_{t}=S_{t^{-}}\left(\mu_{t} d t+\sigma_{t} d W_{t}+\beta_{t} d M_{t}\right) \text { with } S_{0}>0
$$

The processes σ, μ, and β are predictable bounded with $\sigma_{t}>0$ and $\beta_{\vartheta}>-1$.

- At least one riskless asset.
- An investor, endowed with an initial wealth $x \in \mathbb{R}$.
- At each time t, the investor chooses the amount φ_{t} of wealth invested in the risky asset (where $\varphi \in \mathbb{H}^{2}$).
- The wealth process $V_{t}^{x, \varphi}$ (or simply V_{t}) satisfies the following forward dynamics :

$$
-d V_{t}=f\left(t, V_{t}, \varphi_{t} \sigma_{t}\right) d t-\varphi_{t} \sigma_{t} d W_{t}-\varphi_{t} \beta_{t} d M_{t} ; \quad V_{0}=x
$$

where f is a nonlinear (possibly non-convex) Lipschitz driver.

Example of non-linear incomplete market model
Black and Scholes-type market model with a (possible) default on the risky asset (incompleteness) and different rates for borrowing R_{t} and lending r_{t} (non-linearity)

- risk-free assets $\left(B_{t}^{1}\right)$ and $\left(B_{t}^{2}\right)$ with

$$
d B_{t}^{1}=B_{t}^{1} r_{t} d t \quad d B_{t}^{2}=B_{t}^{2} R_{t} d t
$$

- a risky asset $\left(S_{t}\right)$ with

$$
d S_{t}=S_{t} \mu_{t} d t+S_{t} \sigma_{t} d W_{t}+S_{t-} \beta_{t} d M_{t}
$$

- And the constraints : the riskless asset (B_{t}^{1}) can only be bought, and the riskless asset (B_{t}^{2}) can only be sold.

The self-financing condition :

$$
-d V_{t}=-\left(\left(V_{t}-\varphi_{t}\right)^{+} r_{t}-\left(V_{t}-\varphi_{t}\right)^{-} R_{t}+\mu_{t} \varphi_{t}\right) d t-\varphi_{t} \sigma_{t} d W_{t}-\varphi_{t} \beta_{t} d M_{t}
$$

We see that the driver is non-linear.

Examples (continued) :

- linear driver

$$
f\left(t, V_{t}, \varphi_{t} \sigma_{t}\right)=-r_{t} V_{t}-\left(\mu_{t}-r_{t}\right) \varphi_{t}=-r_{t} V_{t}-\theta_{t} \varphi_{t} \sigma_{t},
$$

where r_{t} is the risk-free interest rate, and $\theta_{t}=\left(\mu_{t}-r_{t}\right) \sigma_{t}^{-1}$.

Examples (continued) :

- linear driver

$$
f\left(t, V_{t}, \varphi_{t} \sigma_{t}\right)=-r_{t} V_{t}-\left(\mu_{t}-r_{t}\right) \varphi_{t}=-r_{t} V_{t}-\theta_{t} \varphi_{t} \sigma_{t}
$$

where r_{t} is the risk-free interest rate, and $\theta_{t}=\left(\mu_{t}-r_{t}\right) \sigma_{t}^{-1}$.

- different borrowing and lending interest rates R_{t} and r_{t} with $R_{t} \geq r_{t}$:
$f\left(t, V_{t}, \varphi_{t} \sigma_{t}\right)=-r_{t} V_{t}-\varphi_{t}\left(\mu_{t}-r_{t}\right)+\left(R_{t}-r_{t}\right)\left(V_{t}-\varphi_{t}\right)^{-}$.
- taxes on the profits
- literature on counterparty risk

$$
f\left(t, V_{t}, \varphi_{t} \sigma_{t}\right)=-r_{t}\left(V_{t}-\varphi_{t}\right)^{+}+R_{t}\left(V_{t}-\varphi_{t}\right)^{-}-l_{t} \varphi_{t}^{-}+b_{t} \varphi_{t}^{+}-\varphi_{t} \mu_{t}
$$

- the effect of a large seller on the default intensity; ...

Whatever the form of the driver f, this non-linear market is incomplete.
Let $\eta \in L^{2}\left(G_{T}\right)$ be the terminal pay-off of a European option.
It might not be possible to find (x, φ) in $\mathbb{R} \times \mathbb{H}^{2}$ such that

- $V^{x, \varphi}$ satisfies the self-financing condition and
- $V_{T}^{X, \varphi}=\eta$ (terminal condition)

Whatever the form of the driver f, this non-linear market is incomplete.
Let $\eta \in L^{2}\left(G_{T}\right)$ be the terminal pay-off of a European option.
It might not be possible to find (x, φ) in $\mathbb{R} \times \mathbb{H}^{2}$ such that

- $V^{x, \varphi}$ satisfies the self-financing condition and
- $V_{T}^{X, \varphi}=\eta$ (terminal condition)

Indeed, the pricing Backward SDE

$$
-d V_{t}=f\left(t, V_{t}, Z_{t}\right) d t-Z_{t} d W_{t}-Z_{t} \sigma_{t}^{-1} \beta_{t} d M_{t} ; \quad V_{T}=\eta
$$

might not be well-defined.
(Here, we have set as usual $Z_{t}:=\varphi_{t} \sigma_{t}$.)

Models of financial markets : Vocabulary

linear complete	linear incomplete
non-linear complete	non-linear incomplete

Models of financial markets : Vocabulary

linear complete	linear incomplete
non-linear complete	non-linear incomplete

Superhedging price of American options

Let \mathcal{T} be the set of all stopping times (a.s. in $[0, T]$).

Let $\xi \in S^{2}$ be a given RCLL adapted pay-off process.

Seller's superhedging price at time 0

$$
u_{0}:=\inf \left\{x \in \mathbb{R}: \exists \varphi \in \mathbb{H}^{2} \text { with } V_{\tau}^{x, \varphi} \geq \xi_{\tau}, \forall \tau \in \mathcal{T}\right\} .
$$

Dual characterization of the seller's price

Under a suitable integrability assumption on the pay-off process $\left(\xi_{t}\right)$ and a suitable assumption on f ensuring that $\mathscr{E}^{f}(\cdot)$ is monotone, we have

Theorem (Pricing-hedging duality for the seller)

The superhedging price u_{0} for the seller of the American option satisfies

$$
u_{0}=\sup _{Q \in \mathcal{Q} \tau \in \mathcal{T}} \sup _{\mathscr{E}_{Q, 0, \tau}}^{f}\left(\xi_{\tau}\right) .
$$

Main objects of the duality formula

Linear case	Non-linear case (f non-linear)
Linear operator $E_{R}(\cdot)$	Non-linear operator \mathscr{E}_{Q}^{f}
Martingale (with respect to $\left.E_{R}(\cdot)\right)$	Martingale (with respect to \mathscr{E}_{Q})
Set of martingale measures \mathscr{R}	Set of measures \mathscr{Q}

Linear case	Non-linear case (f non-linear)
Linear operator $E_{R}(\cdot)$	Non-linear operator \mathscr{E}_{Q}
Martingale (with respect to $\left.E_{R}(\cdot)\right)$	Martingale (with respect to \mathscr{E}_{Q})
Set of martingale measures \mathscr{R}	Set of measures \mathscr{Q}

Non-linear f-evaluation under Q

Let Q be a probability measure equivalent to P.
By the predictable representation property ${ }^{1}$, its density process $\left(\zeta_{t}\right)$ satisfies

$$
d \zeta_{t}=\zeta_{t^{-}}\left(\alpha_{t} d W_{t}+v_{t} d M_{t}\right) ; \zeta_{0}=1
$$

where $\left(\alpha_{t}\right)$ and $\left(v_{t}\right)$ are predictable processes with $v_{\vartheta \wedge T}>-1$ a.s.
By Girsanov's theorem,

- $W_{t}^{Q}:=W_{t}-\int_{0}^{t} \alpha_{s} d s$ is a Brownian motion under Q, and
- $M_{t}^{Q}:=M_{t}-\int_{0}^{t} v_{s} \lambda_{s} d s$ is a martingale under Q.

1. cf. Kusuoka (1999), Jeanblanc and Song (2015)

Let Q be a probability measure equivalent to P.

- Let $\eta \in L_{Q}^{2}\left(\mathcal{G}_{T}\right)$
- Consider the pricing BSDE (under Q)

$$
-d X_{t}=f\left(t, X_{t}, Z_{t}\right) d t-Z_{t} d W_{t}^{Q}-K_{t} d M_{t}^{Q} ; \quad X_{T}=\eta
$$

2. in $S_{Q}^{2} \times \mathbb{H}_{Q}^{2} \times \mathbb{H}_{Q, \lambda}^{2}$

Let Q be a probability measure equivalent to P.

- Let $\eta \in L_{Q}^{2}\left(\mathcal{G}_{T}\right)$
- Consider the pricing BSDE (under Q)

$$
-d X_{t}=f\left(t, X_{t}, Z_{t}\right) d t-Z_{t} d W_{t}^{Q}-K_{t} d M_{t}^{Q} ; \quad X_{T}=\eta
$$

- Let (X, Z, K) be the unique solution ${ }^{2}$ of the BSDE (under Q).

Let Q be a probability measure equivalent to P.

- Let $\eta \in L_{Q}^{2}\left(G_{T}\right)$
- Consider the pricing BSDE (under Q)

$$
-d X_{t}=f\left(t, X_{t}, Z_{t}\right) d t-Z_{t} d W_{t}^{Q}-K_{t} d M_{t}^{Q} ; \quad X_{T}=\eta
$$

- Let (X, Z, K) be the unique solution ${ }^{2}$ of the BSDE (under Q).

f-evaluation under Q

For $t \in[0, T]$, we call f-evaluation under Q (at time t), denoted by $\mathscr{E}_{Q, t, T}$, the operator defined by :

$$
\mathscr{E}_{Q, t, T}^{f}(\eta):=X_{t}
$$

2. in $S_{Q}^{2} \times \mathbb{H}_{Q}^{2} \times \mathbb{H}_{Q, \lambda}^{2}$

Let Q be a probability measure equivalent to P.

- Let $\eta \in L_{Q}^{2}\left(G_{T}\right)$
- Consider the BSDE (under Q)

$$
-d X_{t}=f\left(t, X_{t}, Z_{t}\right) d t-Z_{t} d W_{t}^{Q}-K_{t} d M_{t}^{Q} ; \quad X_{T}=\eta
$$

- Let (X, Z, K) be the unique solution of the BSDE (under Q).

f-evaluation under Q

For $t \in[0, T]$, we call f-evaluation under Q (at time t), denoted by $\mathscr{E}_{Q, t, T}$, the operator defined by :

$$
\mathscr{E}_{Q, t, T}^{f}(\eta):=X_{t}
$$

Remark : Note that Shige Peng's g-expectation is a particular case (applications in risk measures).

Linear case	Non-linear case (f non-linear)
Linear operator $E_{R}(\cdot)$	Non-linear operator \mathscr{E}_{Q}^{f}
Martingale (with respect to $\left.E_{R}(\cdot)\right)$	Martingale (with respect to \mathscr{E}_{Q})
Set of martingale measures \mathscr{R}	Set of measures \mathscr{Q}

Definition (Martingale with respect to $\mathscr{E}_{Q}{ }^{\text {(}}$)

Let $\left(Y_{t}\right) \in \mathbb{S}_{Q}^{2}$.
The process $\left(Y_{t}\right)$ is called a (strong) \mathscr{E}_{Q}^{f}-martingale, denoted also (f, Q)-martingale, if
$\mathscr{E}_{Q, \sigma, \tau}^{f}\left(Y_{\tau}\right)=Y_{\sigma}$ a.s. for all stopping times σ, τ such that $\sigma \leq \tau$.

Definition (Martingale with respect to $\mathscr{E}_{Q} f$)

Let $\left(Y_{t}\right) \in \mathbb{S}_{Q}^{2}$.
The process $\left(Y_{t}\right)$ is called a (strong) \mathscr{E}_{Q}^{f}-martingale, denoted also (f, Q)-martingale, if

$$
\mathscr{E}_{Q, \sigma, \tau}^{f}\left(Y_{\tau}\right)=Y_{\sigma} \text { a.s. for all stopping times } \sigma, \tau \text { such that } \sigma \leq \tau \text {. }
$$

The notion of strong \mathscr{E}_{Q}-supermartingale is defined in a similar manner.

Linear case	Non-linear case (f non-linear)
Linear operator $E_{R}(\cdot)$	Non-linear operator \mathscr{E}_{Q}^{f}
Martingale (with respect to $\left.E_{R}(\cdot)\right)$	Martingale (with respect to \mathscr{E}_{Q})
Set of martingale measures \mathscr{R}	Set of measures \mathscr{Q}

Definition (The set \mathscr{Q})

An equivalent probability measure Q is in \mathscr{Q} if : for all $x \in \mathbb{R}$, for all $\varphi \in \mathbb{H}^{2} \cap \mathbb{H}_{Q}^{2}$, the wealth process $V^{x, \varphi}$ is a (strong) \mathscr{E}_{Q}-martingale.

Definition (The set \mathscr{Q})

An equivalent probability measure Q is in \mathscr{Q} if : for all $x \in \mathbb{R}$, for all $\varphi \in \mathbb{H}^{2} \cap \mathbb{H}_{Q}^{2}$, the wealth process $V^{\chi, \varphi}$ is a (strong) \mathscr{E}_{Q}^{f}-martingale.

Remarks :

- The set \mathscr{Q} does not depend on the driver f.
- There is a one-to-one correspondence between the set \mathscr{Q} and the set \mathscr{R}.

Under a suitable integrability assumption on $\left(\xi_{t}\right)$, and an additional assumption on f to ensure the monotonicity of $\mathscr{E} f(\cdot)$, we have

Theorem (Pricing-hedging duality for the seller)

$$
u_{0}=\sup _{Q \in \mathscr{Q}} \sup _{\tau \in \mathcal{T}} \mathscr{E}_{Q, 0, \tau}^{f}\left(\xi_{\tau}\right)
$$

Intermediary results in the proof of the duality for the seller

The dual value problem

\longrightarrow Passes through the study of the dual value problem.
Let $X(S)$ be the value at a given stopping time time S of the dual problem, that is,

$$
X(S):=e s s \sup _{Q \in \mathscr{Q}} \text { ess } \sup _{\tau \in \mathcal{T}_{S}} \mathscr{E}_{Q, S, \tau}^{f}\left(\xi_{\tau}\right) \text { a.s. }
$$

The dual value problem

\longrightarrow Passes through the study of the dual value problem.
Let $X(S)$ be the value at a given stopping time time S of the dual problem, that is,

$$
X(S):=e s s \sup _{Q \in \mathscr{Q}} \text { ess } \sup _{\tau \in \mathcal{T}_{S}} \mathscr{E}_{Q, S, \tau}^{f}\left(\xi_{\tau}\right) \text { a.s. }
$$

This is a non-linear mixed control/stopping problem.

Main steps

(1) Aggregation step
(2) Minimality characterization
(3) Non-linear optional decomposition
(4) Pricing-hedging duality

Study the dual problem

$$
X(S):=e s s \sup _{Q \in \mathscr{Q}} \text { ess } \sup _{\tau \in \mathcal{T}_{S}} \mathscr{E}_{Q, S, \tau}^{f}\left(\xi_{\tau}\right)=X_{S} \quad \text { a.s. }
$$

(1) Aggregation step
(2) Minimality characterization
(3) Non-linear optional decomposition
(4) Pricing-hedging duality

Study the dual problem

$$
X(S):=e \operatorname{ess} \sup _{Q \in \mathscr{Q}} \text { ess } \sup _{\tau \in \mathcal{T}_{S}} \mathscr{E}_{Q, S, \tau}^{f}\left(\xi_{\tau}\right)=X_{S} \quad \text { a.s. }
$$

(1) Aggregation step
(2) Minimality characterization
(3) Non-linear optional decomposition
(4) Pricing-hedging duality

Theorem (Minimality characterization)

- The dual value process $\left(X_{t}\right)$ is the smallest non-linear \mathscr{E}_{Q}-supermartingale for all $Q \in \mathscr{Q}$, dominating the pay-off process $\left(\xi_{t}\right)$.

$$
X(S):=e \operatorname{ess} \sup _{Q \in \mathscr{Q}} \text { ess } \sup _{\tau \in \mathcal{T}_{S}} \mathscr{E}_{Q, S, \tau}^{f}\left(\xi_{\tau}\right)=X_{S} \quad \text { a.s. }
$$

(1) Aggregation step
(2) Minimality characterization
(3) Non-linear optional decomposition
\rightarrow Structure of the processes which are non-linear
supermartingales (simultaneously) in all the auxiliary models
(4) Pricing-hedging duality

Theorem (Non-linear optional decomposition)

Let $\left(\chi_{t}\right)$ be an RCLL non-linear optional \mathscr{E}_{Q}^{f}-supermartingale for all $Q \in \mathscr{Q}$.
Then, there exist :

- a unique adapted process $Z \in \mathbb{H}^{2}$,
- a unique nondecreasing optional RCLL process h with $h_{0}=0$, such that

$$
-d \chi_{t}=\underbrace{f\left(t, \chi_{t}, Z_{t}\right) d t}_{\text {non-linear part }}-\underbrace{Z_{t} \sigma_{t}^{-1}\left(\sigma_{t} d W_{t}+\beta_{t} d M_{t}\right)}_{\text {martingale part }}+d h_{t} .
$$

Theorem (Non-linear optional decomposition)

Let $\left(\chi_{t}\right)$ be an RCLL non-linear optional $\mathscr{E}_{Q^{f}}$-supermartingale for all $Q \in \mathscr{Q}$.
Then, there exist :

- a unique adapted process $Z \in \mathbb{H}^{2}$,
- a unique nondecreasing optional RCLL process h with $h_{0}=0$, such that

$$
-d \chi_{t}=\underbrace{f\left(t, \chi_{t}, Z_{t}\right) d t}_{\text {non-linear part }}-\underbrace{Z_{t} \sigma_{t}^{-1}\left(\sigma_{t} d W_{t}+\beta_{t} d M_{t}\right)}_{\text {martingale part }}+d h_{t} .
$$

Moreover, the converse statement holds.

Theorem (Non-linear optional decomposition)

Let $\left(\chi_{t}\right)$ be an RCLL non-linear optional $\mathscr{E}_{Q^{f}}$-supermartingale for all $Q \in \mathscr{Q}$.
Then, there exist :

- a unique adapted process $Z \in \mathbb{H}^{2}$,
- a unique nondecreasing optional RCLL process h with $h_{0}=0$, such that

$$
-d \chi_{t}=\underbrace{f\left(t, \chi_{t}, Z_{t}\right) d t}_{\text {non-linear part }}-\underbrace{Z_{t} \sigma_{t}^{-1}\left(\sigma_{t} d W_{t}+\beta_{t} d M_{t}\right)}_{\text {martingale part }}+d h_{t} .
$$

Moreover, the converse statement holds.
Literature : (linear case) El Karoui and Quenez (1995); Kramkov (1996);
Föllmer and Kabanov (1998).
(non-linear case) Bouchard, Possamaï, and Tan (2016); Possamaï, Tan, Zhou
(2018).M G Ouenez Sulem (20>0)

$$
X(S):=e \operatorname{ess} \sup _{Q \in \mathscr{Q}} \text { ess } \sup _{\tau \in \mathcal{T}_{S}} \mathscr{E}_{Q, S, \tau}^{f}\left(\xi_{\tau}\right)=X_{S} \quad \text { a.s. }
$$

(1) Aggregation step
(2) Minimality characterization
(3) Non-linear optional decomposition
(4) Pricing-hedging duality and a first infinitesimal characterization

1st infinitesimal characterization

Supersolution of a Reflected BSDE with optional

 non-decreasing processA process $Y \in S^{2}$ is said to be a supersolution of the optional Reflected BSDE with driver f and obstacle $\left(\xi_{t}\right)$ if

- there exists $Z \in \mathbb{H}^{2}$ and
- there exists a nondecreasing optional RCLL process h, with $h_{0}=0$ and $E\left[\left(h_{T}\right)^{2}\right]<\infty$
such that

$$
\begin{array}{r}
-d Y_{t}=f\left(t, Y_{t}, Z_{t}\right) d t-\sigma_{s}^{-1} Z_{s}\left(\sigma_{s} d W_{s}+\beta_{s} d M_{s}\right)+d h_{t} ; \text { a.s. } \\
Y_{T}=\xi_{T} \text { and } Y_{t} \geq \xi_{t} \text { for all } t \text { a.s. }
\end{array}
$$

Theorem (1st infinitesimal characterization)

The dual value process $\left(X_{t}\right)$ is the minimal supersolution of the Reflected BSDE with optional non-decreasing process.

2nd infinitesimal characterization

The 2nd infinitesimal characterization is due to the following result :
A process $\left(\chi_{t}\right)$ is an f, Q-supermartingale for all $Q \in \mathscr{Q}$

iff

$\left(\chi_{t}\right)$ admits a non-linear optional decomposition
iff
$\left(\chi_{t}\right)$ admits a non-linear predictable decomposition with constraints.

Reflected BSDE with constraints

- It is possible to characterize the seller's superhedging price as the minimal supersolution of a non-linear Reflected BSDE with constraints.
- This provides a connection to earlier literature on BSDE with jump constraints (Ma, Zhang, ...)

Supersolution of a constrained Reflected BSDE

Let $\xi \in S^{2}$. A process $Y \in S^{2}$ is said to be a supersolution of the constrained reflected $B S D E$ with driver f and obstacle ξ if there exists a predictable process $(Z, K, A) \in \mathbb{H}^{2} \times \mathbb{H}_{\lambda}^{2} \times \mathcal{A}^{2}$ such that

$$
\begin{aligned}
& -d Y_{t}=f\left(t, Y_{t}, Z_{t}\right) d t-Z_{t} d W_{t}-K_{t} d M_{t}+d A_{t} \\
& Y_{T}=\xi_{T} \text { a.s. and } Y_{t} \geq \xi_{t} \text { for all } t \in[0, T] \text { a.s. } \\
& A .+\int_{0}^{c}\left(K_{s}-\beta_{s} \sigma_{s}^{-1} Z_{s}\right) \lambda_{s} d s \text { is non-decreasing, and, } \\
& \left(K_{t}-\beta_{t} \sigma_{t}^{-1} Z_{t}\right) \lambda_{t} \leq 0, t \in[0, T], d P \otimes d t \text {-a.e. }
\end{aligned}
$$

Theorem (2nd infinitesimal characterization)

The seller's price u_{0} is equal to the minimal supersolution Y_{0} at time 0 of the constrained Reflected BSDE.

Duality for the buyer

Buyer's superhedging price at time 0

$$
\tilde{u}_{0}:=\sup \left\{z \in \mathbb{R}: \exists(\tau, \varphi) \in \mathcal{T} \times \mathbb{H}^{2} \text { with } \xi_{\tau} \geq-V_{\tau}^{-z, \varphi}\right\} .
$$

Buyer's superhedging price at time 0

$$
\tilde{u}_{0}:=\sup \left\{z \in \mathbb{R}: \exists(\tau, \varphi) \in \mathcal{T} \times \mathbb{H}^{2} \text { with } \xi_{\tau} \geq-V_{\tau}^{-z, \varphi}\right\} .
$$

Theorem (Pricing-hedging duality for the buyer)
If $\left(\xi_{t}\right)$ is I.u.s.c., the superhedging price \tilde{u}_{0} for the buyer of the American option satisfies

$$
\tilde{u}_{0}=\inf _{Q \in \mathscr{Q}} \sup _{\tau \in \mathcal{T}}-\mathscr{E}_{Q, 0, \tau}^{f}\left(-\xi_{\tau}\right)=\sup _{\tau \in \mathcal{T}} \inf _{Q \in \mathscr{Q}}-\mathscr{E}_{Q, 0, \tau}^{f}\left(-\xi_{\tau}\right) .
$$

(i.M., Quenez M.-C., and A. Sulem : European options in a non-linear incomplete market model with default, SIAM Journal on Financial Mathematics, 2020.
G.M., Quenez M.-C., and A. Sulem : American options in a non-linear incomplete market with default, Stochastic Processes and their Applications, December 2021.

