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Introduction

Features of the market
The risky asset is subject to default (or an exogenous credit event).

The market is incomplete : not every European contingent claim is
replicable.

The market is non-linear : the dynamics of the wealth process have
a non-linear (possibly non-convex) driver.
The non-linearity of the driver can encode a number of market
imperfections : different lending and borrowing interest rates, repo
rates, impact of a large investor ...
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Introduction

Goal
Study the superhedging of American options in such non-linear
incomplete market models.

The case where the pay-off process of the American option is
not necessarily right-continuous is beyond this talk.

We will present :

a duality result for the seller of the option in terms of a non-linear
stochastic problem of control and stopping

infinitesimal characterization in terms of a non-linear constrained
reflected BSDE under the initial probability P.

The proofs are not based on convex duality.
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The model

A motivating example :
Non-linear incomplete market with default
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The model

Let T > 0 be a fixed terminal horizon.

Let (Ω,G ,P) be a complete probability space.

Let W be a one-dimensional Brownian motion.

ϑ is a random variable which models a default time
(or the time of a credit event).

Let N be the process defined by Nt := 1ϑ≤t for all t ∈ [0,T ]

Let G = {Gt , t ≥ 0} be the (augmented) filtration generated by W
and N.

Let M be the compensated martingale defined by

Mt := Nt −
∫ t

0
λsds, t ≥ 0,

where λs ≥ 0 is the intensity process.

We assume that W is a G-Brownian motion
(immersion property).
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The model

We consider a market with :

a risky asset S = (St)0≤t≤T with (exogenously) modelled price
process

dSt = St−(µtdt + σtdWt + βtdMt) with S0 > 0.

The processes σ, µ, and β are predictable bounded
with σt > 0 and βϑ >−1.

At least one riskless asset.

Miryana Grigorova (Leeds) Non-linear incomplete markets Annecy, 28 June 2022



The model

An investor, endowed with an initial wealth x ∈ R.

At each time t , the investor chooses the amount ϕt of wealth
invested in the risky asset (where ϕ ∈H2).

The wealth process V x ,ϕ
t (or simply Vt ) satisfies the following

forward dynamics :

−dVt = f (t,Vt ,ϕtσt)dt−ϕtσtdWt −ϕtβtdMt ; V0 = x ;

where f is a nonlinear (possibly non-convex) Lipschitz driver.
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The model

Example of non-linear incomplete market model
Black and Scholes-type market model
with a (possible) default on the risky asset (incompleteness)
and different rates for borrowing Rt and lending rt (non-linearity)

risk-free assets (B1
t ) and (B2

t ) with

dB1
t = B1

t rtdt dB2
t = B2

t Rtdt

a risky asset (St) with

dSt = Stµtdt +StσtdWt +St−βtdMt

And the constraints : the riskless asset (B1
t ) can only be bought, and the

riskless asset (B2
t ) can only be sold.

The self-financing condition :

−dVt =−
(
(Vt −ϕt)

+rt − (Vt −ϕt)
−Rt +µtϕt

)
dt−ϕtσtdWt −ϕtβtdMt

We see that the driver is non-linear.
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The model Examples of drivers

Examples (continued) :

linear driver

f (t,Vt ,ϕtσt) =−rtVt − (µt − rt)ϕt =−rtVt −θtϕtσt ,

where rt is the risk-free interest rate, and θt = (µt − rt)σ
−1
t .

different borrowing and lending interest rates Rt and rt with
Rt ≥ rt :
f (t,Vt ,ϕtσt) =−rtVt −ϕt(µt − rt) + (Rt − rt)(Vt −ϕt)

−.

taxes on the profits

literature on counterparty risk
f (t,Vt ,ϕtσt) =−rt(Vt −ϕt)

+ + Rt(Vt −ϕt)
−− ltϕ

−
t + btϕ

+
t −ϕtµt

the effect of a large seller on the default intensity ; ...
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The model Examples of drivers

Whatever the form of the driver f , this non-linear market is incomplete.

Let η ∈ L2(GT ) be the terminal pay-off of a European option.

It might not be possible to find (x ,ϕ) in R×H2 such that

V x ,ϕ satisfies the self-financing condition and

V x ,ϕ
T = η (terminal condition)

Indeed, the pricing Backward SDE

−dVt = f (t,Vt ,Zt)dt−ZtdWt −Ztσ
−1
t βtdMt ; VT = η,

might not be well-defined.
(Here, we have set as usual Zt := ϕtσt .)
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The model Examples of drivers

Models of financial markets : Vocabulary

linear complete linear incomplete

non-linear complete non-linear incomplete
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The model Examples of drivers

Superhedging price of American options
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Seller’s superhedging price

Let T be the set of all stopping times (a.s. in [0,T ]).

Let ξ ∈ S2 be a given RCLL adapted pay-off process.

Seller’s superhedging price at time 0

u0 := inf{x ∈ R : ∃ϕ ∈H2 with V x ,ϕ
τ ≥ ξτ,∀τ ∈ T }.
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The seller’s price of the American option : pricing-hedging duality

Dual characterization of the seller’s price
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The seller’s price of the American option : pricing-hedging duality

Under a suitable integrability assumption on the pay-off process (ξt)
and a suitable assumption on f ensuring that E f (·) is monotone,
we have

Theorem (Pricing-hedging duality for the seller)
The superhedging price u0 for the seller of the American option satisfies

u0 = sup
Q∈Q

sup
τ∈T

E f
Q,0,τ(ξτ).
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The seller’s price of the American option : pricing-hedging duality

Main objects of the duality formula

Linear case Non-linear case (f non-linear)
Linear operator ER(·) Non-linear operator E f

Q
Martingale (with respect to ER(·)) Martingale (with respect to E f

Q )
Set of martingale measures R Set of measures Q
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The seller’s price of the American option : pricing-hedging duality

Non-linear f -evaluation under Q

Let Q be a probability measure equivalent to P.

By the predictable representation property 1, its density process (ζt)
satisfies

dζt = ζt−(αtdWt + νtdMt);ζ0 = 1,

where (αt) and (νt) are predictable processes with νϑ∧T >−1 a.s.

By Girsanov’s theorem,

W Q
t := Wt −

∫ t
0 αsds is a Brownian motion under Q, and

MQ
t := Mt −

∫ t
0 νsλsds is a martingale under Q.

1. cf. Kusuoka (1999), Jeanblanc and Song (2015)
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The seller’s price of the American option : pricing-hedging duality Auxiliary non-linear complete markets

Let Q be a probability measure equivalent to P.

Let η ∈ L2
Q(GT )

Consider the pricing BSDE (under Q)

−dXt = f (t,Xt ,Zt)dt−ZtdW Q
t −KtdMQ

t ; XT = η.

Let (X ,Z ,K ) be the unique solution 2 of the BSDE (under Q).

f -evaluation under Q
For t ∈ [0,T ], we call f -evaluation under Q (at time t), denoted by
E f

Q,t,T , the operator defined by :

E f
Q,t,T (η) := Xt .

2. in S 2
Q×H2

Q×H2
Q,λ

Miryana Grigorova (Leeds) Non-linear incomplete markets Annecy, 28 June 2022



The seller’s price of the American option : pricing-hedging duality Auxiliary non-linear complete markets

Let Q be a probability measure equivalent to P.

Let η ∈ L2
Q(GT )

Consider the pricing BSDE (under Q)

−dXt = f (t,Xt ,Zt)dt−ZtdW Q
t −KtdMQ

t ; XT = η.

Let (X ,Z ,K ) be the unique solution 2 of the BSDE (under Q).

f -evaluation under Q
For t ∈ [0,T ], we call f -evaluation under Q (at time t), denoted by
E f

Q,t,T , the operator defined by :

E f
Q,t,T (η) := Xt .

2. in S 2
Q×H2

Q×H2
Q,λ

Miryana Grigorova (Leeds) Non-linear incomplete markets Annecy, 28 June 2022



The seller’s price of the American option : pricing-hedging duality Auxiliary non-linear complete markets
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The seller’s price of the American option : pricing-hedging duality Auxiliary non-linear complete markets

Let Q be a probability measure equivalent to P.

Let η ∈ L2
Q(GT )

Consider the BSDE (under Q)

−dXt = f (t,Xt ,Zt)dt−ZtdW Q
t −KtdMQ

t ; XT = η.

Let (X ,Z ,K ) be the unique solution of the BSDE (under Q).

f -evaluation under Q
For t ∈ [0,T ], we call f -evaluation under Q (at time t), denoted by
E f

Q,t,T , the operator defined by :

E f
Q,t,T (η) := Xt .

Remark : Note that Shige Peng’s g-expectation is a particular case
(applications in risk measures).
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The seller’s price of the American option : pricing-hedging duality Auxiliary non-linear complete markets

Linear case Non-linear case (f non-linear)
Linear operator ER(·) Non-linear operator E f

Q
Martingale (with respect to ER(·)) Martingale (with respect to E f

Q )
Set of martingale measures R Set of measures Q
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The seller’s price of the American option : pricing-hedging duality Auxiliary non-linear complete markets

Definition (Martingale with respect to E f
Q)

Let (Yt) ∈ S2
Q.

The process (Yt) is called a (strong) E f
Q-martingale,

denoted also (f ,Q)-martingale, if

E f
Q,σ,τ(Yτ) = Yσ a.s. for all stopping times σ,τ such that σ≤ τ.

The notion of strong E f
Q-supermartingale is defined in a similar manner.
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The seller’s price of the American option : pricing-hedging duality Auxiliary non-linear complete markets
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The seller’s price of the American option : pricing-hedging duality Auxiliary non-linear complete markets

Definition (The set Q)
An equivalent probability measure Q is in Q if :
for all x ∈ R, for all ϕ ∈H2∩H2

Q, the wealth process V x ,ϕ is a (strong)
E f

Q-martingale.

Remarks :

The set Q does not depend on the driver f .

There is a one-to-one correspondence between the set Q and the
set R.
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The seller’s price of the American option : pricing-hedging duality Auxiliary non-linear complete markets

Under a suitable integrability assumption on (ξt), and an additional
assumption on f to ensure the monotonicity of E f (·), we have

Theorem (Pricing-hedging duality for the seller)

u0 = sup
Q∈Q

sup
τ∈T

E f
Q,0,τ(ξτ).
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Intermediary results : The dual value problem

Intermediary results in the proof of the duality
for the seller
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Intermediary results : The dual value problem

The dual value problem

−→ Passes through the study of the dual value problem.

Let X(S) be the value at a given stopping time time S of the dual
problem, that is,

X(S) := ess sup
Q∈Q

ess sup
τ∈TS

E f
Q,S,τ(ξτ) a.s.

This is a non-linear mixed control/stopping problem.

Main steps
1 Aggregation step
2 Minimality characterization
3 Non-linear optional decomposition
4 Pricing-hedging duality
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Intermediary results : The dual value problem

Study the dual problem

X(S) := ess sup
Q∈Q

ess sup
τ∈TS

E f
Q,S,τ(ξτ) = XS a.s.

1 Aggregation step
2 Minimality characterization
3 Non-linear optional decomposition
4 Pricing-hedging duality

Theorem (Minimality characterization)
The dual value process (Xt) is the smallest non-linear
E f

Q-supermartingale for all Q ∈Q, dominating the pay-off process
(ξt).
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Intermediary results : The dual value problem

X(S) := ess sup
Q∈Q

ess sup
τ∈TS

E f
Q,S,τ(ξτ) = XS a.s.

1 Aggregation step
2 Minimality characterization
3 Non-linear optional decomposition
→ Structure of the processes which are non-linear
supermartingales (simultaneously) in all the auxiliary models

4 Pricing-hedging duality
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Intermediary results : The dual value problem

Theorem (Non-linear optional decomposition)
Let (χt) be an RCLL non-linear optional E f

Q-supermartingale for all
Q ∈Q.

Then, there exist :

a unique adapted process Z ∈H2,

a unique nondecreasing optional RCLL process h with h0 = 0,

such that

−dχt = f (t,χt ,Zt)dt︸ ︷︷ ︸
non-linear part

−Ztσ
−1
t (σtdWt + βtdMt)︸ ︷︷ ︸

martingale part

+ dht .

Moreover, the converse statement holds.

Literature : (linear case) El Karoui and Quenez (1995) ; Kramkov (1996) ;
Föllmer and Kabanov (1998).
(non-linear case) Bouchard, Possamaï, and Tan (2016) ; Possamaï,Tan, Zhou
(2018) ; M.G., Quenez, Sulem (2020).
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Intermediary results : The dual value problem

X(S) := ess sup
Q∈Q

ess sup
τ∈TS

E f
Q,S,τ(ξτ) = XS a.s.

1 Aggregation step
2 Minimality characterization
3 Non-linear optional decomposition
4 Pricing-hedging duality and a first infinitesimal characterization
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1st infinitesimal characterization

1st infinitesimal characterization
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1st infinitesimal characterization

Supersolution of a Reflected BSDE with optional
non-decreasing process
A process Y ∈ S2 is said to be a supersolution of the optional Reflected
BSDE with driver f and obstacle (ξt) if

there exists Z ∈H2 and

there exists a nondecreasing optional RCLL process h, with h0 = 0
and E [(hT )2] < ∞

such that

−dYt = f (t,Yt ,Zt)dt−σ
−1
s Zs(σsdWs + βsdMs) + dht ;a.s.

YT = ξT and Yt ≥ ξt for all t a.s.

Theorem (1st infinitesimal characterization)
The dual value process (Xt) is the minimal supersolution of the
Reflected BSDE with optional non-decreasing process.
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2nd infinitesimal characterization

2nd infinitesimal characterization
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2nd infinitesimal characterization

The 2nd infinitesimal characterization is due to the following result :

A process (χt) is an f ,Q-supermartingale for all Q ∈Q

iff

(χt) admits a non-linear optional decomposition

iff

(χt) admits a non-linear predictable decomposition with constraints.
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2nd infinitesimal characterization

Reflected BSDE with constraints

It is possible to characterize the seller’s superhedging price as the
minimal supersolution of a non-linear Reflected BSDE with
constraints.

This provides a connection to earlier literature on BSDE with jump
constraints (Ma, Zhang, ...)
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2nd infinitesimal characterization

Supersolution of a constrained Reflected BSDE

Let ξ ∈ S2. A process Y ∈ S2 is said to be a supersolution of the
constrained reflected BSDE with driver f and obstacle ξ if there exists a
predictable process (Z ,K ,A) ∈H2×H2

λ
×A2 such that

−dYt = f (t,Yt ,Zt)dt−ZtdWt −KtdMt + dAt ;

YT = ξT a.s. andYt ≥ ξt for all t ∈ [0,T ] a.s. ;

A·+
∫ ·

0
(Ks−βsσ

−1
s Zs)λsds is non-decreasing, and,

(Kt −βtσ
−1
t Zt)λt≤ 0, t ∈ [0,T ], dP⊗dt-a.e.

Theorem (2nd infinitesimal characterization)
The seller’s price u0 is equal to the minimal supersolution Y0 at time 0
of the constrained Reflected BSDE.
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Buyer’s pricing-hedging duality

Duality for the buyer
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Buyer’s pricing-hedging duality

Buyer’s superhedging price at time 0

ũ0 := sup{z ∈ R : ∃(τ,ϕ) ∈ T ×H2 with ξτ ≥−V−z,ϕ
τ }.

Theorem (Pricing-hedging duality for the buyer)
If (ξt) is l.u.s.c., the superhedging price ũ0 for the buyer of the American
option satisfies

ũ0 = inf
Q∈Q

sup
τ∈T
−E f

Q,0,τ(−ξτ) = sup
τ∈T

inf
Q∈Q
−E f

Q,0,τ(−ξτ).
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option satisfies
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