Multistage Financing
Milestone Bonuses or Deferred Compensation

Kerry Back Ali Kakhbod Hao Xing

Rice University and Boston University
Motivations

Common features of R&D projects and VC-backed startups:

1. Separation between technical experts and financiers leads to agency friction

2. Complex projects have multiple sequential stages
 - New drug development: lab testing, animal trials, and human trials
 - VC-backed startups have multiple financing rounds

3. Key personnel is important for success
 - Steven Jobs is important for early success of Apple
 - Agent has limited liability protection against outside value
Our setting

We consider a multistage project

► agent controls the intensity of stage completion and probability of success

► project terminates when agent’s continuation value reaches outside value

► Baseline model: At the end of each stage, principal chooses between milestone cash bonus and deferred compensation

► Extensions:

1. Principal observes a signal of agent’s effort and can reward or penalize the agent according to signal observations

2. Principal can learn the type of project by exercising a costly real option
Our results

1. **Pecking order** between cash bonus and deferred compensation:

 principal only pays cash bonus when deferred compensation reaches its maximum value

 Reason: To maintain agent’s skin in the project

 Empirical connection: Ewens, Nanda, and Stanton (2020) show that cash compensation increases significantly for founder after the startup has a “product market fit”
Our results

1. **Pecking order** between cash bonus and deferred compensation:

 principal only pays cash bonus when deferred compensation reaches its maximum value

 Reason: To maintain agent's skin in the project

 Empirical connection: Ewens, Nanda, and Stanton (2020) show that cash compensation increases significantly for founder after the startup has a “product market fit”

2. Agent’s equity stake is smaller in later stages than in early stage

 Reason: Uncertainty resolution increases project value in later stages

 Empirical connection: [Bengtsson and Sensory (2015), Ewens, Nanda, and Stanton (2020)]
3. Monitoring and reward complement each other in the optimal contract

When positive (negative) evidence of the agent’s effort accumulates, the principal increases (decreases) the reward and relax (intensifies) the monitoring

Reason: Reducing reward mitigates inefficient project termination

Empirical connection: Kaplan and Strömberg (2003) show that entrepreneurs have more cash flow rights under good performance and this state-contingencies are greater in the first VC rounds
Literature

Multistage projects and contact:

Monitoring and contact:

Model

Project:
- Project has N stages in sequence
- A lump sum payoff Δ at final success, zero payoff at failure of any stage
- No intermediate cash flow

Agent
- Risk neutral
- If the agent exerts effort $a_t \in [0, \bar{a}]$, the current stage completes with probability $a_t dt$ and it succeeds with probability
 \[p^{(i)} \frac{a_t}{\bar{a}}, \text{ in stage } i. \]
- If the agent exerts a lower effort $a \in [0, \bar{a}]$, he enjoys a private benefit $\lambda(\bar{a} - a)$ per unit of time
- Agent’s outside value is U, project is terminated when continuation value reaches \underline{U}
Contract problem

- Risk neutral principal observes completion and success/failure of each stage
- Cumulative compensation C, nondecreasing
- If stage i is completed at ν

 Success: new contact for the next stage: continuation utility $U_{\nu}^{(i+1)}$
 and/or cash bonus: $R_{\nu}^{(i)}$

 Failure: no reward
Contract problem

- Risk neutral principal observes completion and success/failure of each stage
- Cumulative compensation C, nondecreasing
- If stage i is completed at ν

 Success: new contact for the next stage: continuation utility $U^{(i+1)}_{\nu}$ and/or cash bonus: $R^{(i)}_{\nu}$

 Failure: no reward

Agent’s problem:

$$\sup_{a \in [0,\bar{a}]} \mathbb{E}^a \left[\int_0^{\tau \wedge \nu^{(1)}} e^{-\rho s} \left(dC_s + \lambda (\bar{a} - a_s) ds \right)
+ \mathbb{I}_{\{\nu^{(1)} \leq \tau\}} e^{-\rho \nu^{(1)}} U^{c}_{\nu^{(1)}} + \mathbb{I}_{\{\nu^{(1)} > \tau\}} e^{-\rho \tau} U \right],$$

where $\nu^{(1)}$ is the first stage completion time, τ is the project termination time

$$U^{c}_{\nu^{(1)}} = p^{(1)}(a_\nu) \left(U^{(2)}_{\nu^{(1)}} + R^{(1)}_{\nu^{(1)}} \right)$$

is the expected continuation value right before first stage completion.
Principal’s problem

$$\sup_{U(i), R(i), C} \mathbb{E}^{\bar{\alpha}} \left[\int_{0}^{\tau \wedge \nu^{(1)}} e^{-rs} (-dC_s) + \mathbb{I}_{\{\nu^{(1)} \leq \tau\}} e^{-r\nu^{(1)}} V_{\nu^{(1)}}^c + \mathbb{I}_{\{\tau < \nu^{(1)}\}} e^{-r\tau} L \right],$$

$$V_{\nu^{(1)}}^c = p^{(1)} \left(V_{\nu^{(1)}}^{(2)} - R_{\nu^{(1)}}^{(1)} \right),$$

$V_{\nu^{(1)}}^{(2)}$ is the principal’s value at the beginning of stage 2, subject to

$$\bar{\alpha}$$ is agent’s optimal effort

In the final stage

$$V_{t}^{(N)} = \sup_{R^{(N)}, C} \mathbb{E}^{\bar{\alpha}}_t \left[\int_{t}^{\nu^{(N)}} e^{-r(s-t)} (-dC_s) \right.$$

$$\left. + \mathbb{I}_{\{\nu^{(N)} \leq \tau\}} e^{-r(\nu^{(N)}-t)} p^{(N)} \left(\Delta - R_{\nu^{(N)}}^{(N)} \right) + \mathbb{I}_{\{\tau < \nu^{(N)}\}} e^{-r(\tau-t)} L \right].$$
Agent’s optimal effort

Agent’s problem is transformed into

\[
\mathbb{E}_t^a \left[\int_t^T \mathbb{I}_{\{\nu^{(i)}>s\}} e^{-\rho(s-t)} \left(dC_s + \lambda(\bar{a} - a_s) ds \right) + \int_t^T \mathbb{I}_{\{\nu^{(i)} \in [s,s+ds]\}} e^{-\rho(s-t)} U^c_s ds \right] = \mathbb{E}_t^a \left[\int_t^T e^{-\int_t^s a_u du} e^{-\rho(s-t)} \left(dC_s + \lambda(\bar{a} - a_s) ds + a_s U^c_s ds \right) + \cdots \right],
\]

conditioning on \{\nu^{(i)}>t\} in the first line

Lemma

The agent’s continuation utility \(U\) follows the dynamics

\[
dU_t = \rho U_t dt + \inf_{a_t \in [0,\bar{a}]} \left\{ a_t U_t - \lambda(\bar{a} - a_t) - a_t U^c_t \right\} dt - dC_t,
\]

The agent’s optimal effort is given by

\[
a^*_t = \begin{cases}
\bar{a}, & \text{expected reward} \\
\frac{p^{(i)}(U^{(i+1)}_t + R^{(i)}_t)}{\text{expected reward}} \geq \lambda + U_t, \\
0, & \text{otherwise}.
\end{cases}
\]
Optimal contract: baseline case, single stage

Principal’s HJB equation

\[(r + \bar{a}) V = \sup_{R, c \geq 0} \left\{ \bar{a} \rho (\Delta - R) + ((\rho + \bar{a}) U - \bar{a} \rho R) V' - (1 + V')c \right\}, \]

with the boundary condition \(V(U) = L \)

Define

\[\bar{U} = \inf\{ U \geq U : V' \leq -1 \}. \]

Proposition

0. When \(r = \rho \), \(V \) admits a closed-form expression.

1. \(U \) decreases along path, project is terminated when \(U \) reaches \(\bar{U} \)

2. When the project succeeds, agent receives \(R^* = \frac{1}{\rho} (\lambda + U) \)

3. \(-V' < 1\): marginal benefit of cash compensation is less than the marginal cost \(\Rightarrow \) no intermediate compensation
Optimal contract: baseline case, two stages

In the first stage, agent exerts \bar{a} if and only if

$$p^{(1)}(U_t^{(2)} + R_t^{(1)}) \geq \lambda + U_t.$$

Principal’s HJB equation

$$(r + \bar{a})V^{(1)} = \max_{U^{(2)}, R^{(1)}} \left\{ \bar{a}p^{(1)}\left(V^{(2)}(U^{(2)}) - R^{(1)} \right) \right.$$
$$+ \left((\rho + \bar{a})U - \bar{a}p^{(1)}(U^{(2)} + R^{(1)}) \right)(V^{(1)})' \right\}$$
Optimal contract: baseline case, two stages

In the first stage, agent exerts \bar{a} if and only if

$$p^{(1)}(U_t^{(2)} + R_t^{(1)}) \geq \lambda + U_t.$$

Principal’s HJB equation

$$(r + \bar{a}) V^{(1)} = \max_{U^{(2)}, R^{(1)}} \left\{ \bar{a} p^{(1)} \left(V^{(2)}(U^{(2)}) - R^{(1)} \right)
ight.$$
$$+ \left((\rho + \bar{a}) U - \bar{a} p^{(1)} (U^{(2)} + R^{(1)}) \right) (V^{(1)})' \}$$

First order conditions in $U^{(2)}$ and $R^{(1)}$:

$$(V^{(2)})' (U^{(2)}) - (V^{(1)})' = 0 \quad \text{and} \quad -1 - (V^{(1)})' = 0$$

These two conditions cannot be satisfied simultaneously when $U^{(2)}$ is less than its maximum value, because

$$(V^{(2)})' (U^{(2)}) > -1.$$
Main result

Proposition

(i) Principal pays milestone bonus only when agent’s continuation utility is sufficiently large before completion of the first stage

(ii) When the first stage is successfully completed, the agent’s continuation utility jumps up to start the second stage

(iii) Agent’s equity stake in the first stage is always larger than his equity stake in the second stage

\[
\frac{U}{U + V^{(1)}(U)} > \frac{U}{U + V^{(2)}(U)}
\]

(iii) is due to

\[
P^{(1)} \left(V^{(2)}(U^{(2)}) + U^{(2)} \right) < P^{(2)} \Delta
\]

\[
\text{1st stage expected payoff} < \text{2nd stage expected payoff}
\]
A numeric example

(a) Principal's Values

(b) Agent's Equity Stake

(c) Second Stage Deferral Compensation

(d) Milestone Bonuses
Extension: Monitoring

Principal observes a noisy signal y about the agent’s effort

$$dy_t = a_t dt + \sigma dB_t^a,$$

Lemma

The agent’s continuation utility U follows the dynamics

$$dU_t = \rho U_t dt + \inf_{a_t \in [0, \bar{a}]} \left\{ a_t U_t - \lambda (\bar{a} - a_t) - a_t U_c^t - \varphi_t a_t \right\} dt + \varphi_t dy_t - dC_t,$$

The agent’s optimal effort is given by

$$a_t^* = \begin{cases} \bar{a}, & U_c^t + \varphi_t \geq \lambda + U_t, \\ 0, & \text{otherwise.} \end{cases}$$
As $U \uparrow (y \uparrow)$

- Contract sensitivity $\downarrow 0$
- Milestone bonus $\uparrow \min\{(\lambda + \bar{U})/p, \Delta\}$

For multistage problems, main results for the baseline model still hold
Optimal signal precision

Principal can control $\sigma \in [\sigma_{\text{min}}, \sigma_{\text{max}}]$.

Monitoring cost per unit of time

$$c(\sigma) = \frac{M}{\sigma^2}$$
Optimal signal precision

Principal can control $\sigma \in [\sigma_{\text{min}}, \sigma_{\text{max}}]$

Monitoring cost per unit of time

$$c(\sigma) = \frac{M}{\sigma^2}$$

Proposition

When R^ is interior optimal, the optimal signal volatility is*

$$\sigma^* = \begin{cases}
\sigma_{\text{min}}, & -\frac{\bar{a}^2(1+V')^2}{2V''} > M \\
\sigma_{\text{max}}, & -\frac{\bar{a}^2(1+V')^2}{2V''} \leq M
\end{cases}$$

(1)
An numeric example

(a) Optimal Contract Sensitivity

(b) Optimal Reward

(c) Marginal benefit of signal precision

(d) Optimal signal precision
Conclusion

- A tractable multistage model
- Pecking order between cash bonus and deferred compensation
- Agent’s equity stake is larger in early stage
- Monitoring and reward complement each other

Future work:
- Success depends on past actions
- Optimal design of stages
Conclusion

▶ A tractable multistage model
▶ Pecking order between cash bonus and deferred compensation
▶ Agent’s equity stake is larger in early stage
▶ Monitoring and reward complement each other

Future work:
▶ Success depends on past actions
▶ Optimal design of stages

Thanks for your attention!