# Dynamic Programming Principle for Stochastic Recursive Optimal Control Problem Driven by a *G*-Brownian Motion

Mingshang Hu

Shandong University

Joint work with Shaolin Ji

9th Colloquium on BSDEs and Mean Field Systems
Annecy, July 1, 2022

#### Outline

Basic settings

Formulation of the control problem

• Dynamic Programming Principle

• Hamilton-Jacobi-Bellman equation

# Basic settings: G-expectation space

- $\Omega_T = C_0([0,T];\mathbb{R}^d)$ : all  $\mathbb{R}^d$ -valued continuous functions on [0,T] with  $\omega_0 = 0$ .
- Canonical process  $B_t(\omega) := \omega_t$ , for  $\omega \in \Omega_T$  and  $t \in [0, T]$ ,

$$Lip(\Omega_t) := \{ \varphi(B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_N} - B_{t_{N-1}}) : \\ N \ge 1, t_1 < \dots < t_N \le t, \varphi \in C_{b.Lip}(\mathbb{R}^{d \times N}) \}.$$

ullet  $G:\mathbb{S}_d o \mathbb{R}$  is a monotonic and sublinear function iff

$$G(A) = \frac{1}{2} \sup_{\gamma \in \Sigma} \operatorname{tr}[A\gamma] \text{ for } A \in \mathbb{S}_d,$$

where  $\Sigma \subset \mathbb{S}_d^+$  is bounded.

- Peng (2005) constructed the G-expectation  $\hat{\mathbb{E}}: Lip(\Omega_T) \to \mathbb{R}$  and the conditional G-expectation  $\hat{\mathbb{E}}_t: Lip(\Omega_T) \to Lip(\Omega_t)$ .
- For  $s_1 \leq s_2 \leq T$  and  $\varphi \in C_{b.Lip}(\mathbb{R}^d)$ , define

$$\hat{\mathbb{E}}[\varphi(B_{s_2} - B_{s_1})] = u(s_2 - s_1, 0),$$

where u is the viscosity solution of the following G-heat equation:

$$\partial_t u - G(D_x^2 u) = 0, \ u(0, x) = \varphi(x).$$

• For  $X = \varphi_N(B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_N} - B_{t_{N-1}}) \in Lip(\Omega_T)$ , define

$$\hat{\mathbb{E}}_{t_i}[X] = \varphi_i(B_{t_1}, \dots, B_{t_i} - B_{t_{i-1}}) \text{ and } \hat{\mathbb{E}}[X] = \hat{\mathbb{E}}[\varphi_1(B_{t_1})],$$

where

$$\varphi_i(x_1,\ldots,x_i) := \hat{\mathbb{E}}[\varphi_{i+1}(x_1,\ldots,x_i,B_{t_{i+1}}-B_{t_i})].$$

• G-expectation space  $(\Omega_T, Lip(\Omega_T), \hat{\mathbb{E}}, (\hat{\mathbb{E}}_t)_{t \in [0,T]})$  is a consistent sublinear expectation space. The canonical process  $(B_t)_{t \in [0,T]}$  is called the G-Brownian motion under G-expectation  $\hat{\mathbb{E}}$ .

# Representation theorem of G-expectation

### Theorem (Denis-Hu-Peng (2011), Hu-Peng (2009))

There exists a unique weakly compact and convex set of probability measures  $\mathcal{P}$  on  $(\Omega_T, \mathcal{B}(\Omega_T))$  such that

$$\hat{\mathbb{E}}[X] = \sup_{P \in \mathcal{P}} E_P[X] \text{ for all } X \in Lip(\Omega_T),$$

where  $\mathcal{B}(\Omega_T) = \sigma(B_s : s \leq T)$ .

### Characterization of spaces

- $L_G^p(\Omega_t)$  the completion of  $Lip(\Omega_t)$  under the norm  $(\hat{\mathbb{E}}[|X|^p])^{1/p}$  for  $p \geq 1$ .
- $\bullet$  For  $\mathcal{P}$ ,

$$\mathbb{L}^{p}(\Omega_{t}) := \left\{ X \in \mathcal{B}(\Omega_{t}) : \sup_{P \in \mathcal{P}} E_{P}[|X|^{p}] < \infty \right\}$$

is a Banach space for  $p \ge 1$ .

ullet The capacity associated to  ${\mathcal P}$  is defined by

$$c(A) := \sup_{P \in \mathcal{P}} P(A) \text{ for } A \in \mathcal{B}(\Omega_T).$$

A set  $A \in \mathcal{B}(\Omega_T)$  is polar if c(A) = 0. A property holds "quasi-surely" (q.s. for short) if it holds outside a polar set. We do not distinguish two random variables X and Y if X = Y q.s.

#### **Definition**

 $X:\Omega_T\to\mathbb{R}$  is called quasi-continuous (q.c.) if for any  $\varepsilon>0$ , there exists a closed set F such that  $c(F^c)<\varepsilon$  and X is continuous on F. We say that  $X:\Omega_T\to\mathbb{R}$  has a quasi-continuous version if there exists a quasi-continuous function Y with X=Y q.s.

#### **Theorem**

For  $p \geq 1$ ,

$$\begin{split} L^p_G(\Omega_t) = & \quad \{X \in \mathbb{L}^p(\Omega_t) : \lim_{n \to \infty} \sup_{P \in \mathcal{P}} E_P[|X|^p I_{\{|X| > n\}}] = 0, \\ & \quad X \text{ has a quasi-continuous version}\}. \end{split}$$

### G-BSDE

### Spaces of solution

- $M_G^0(0,T) = \{ \eta_t(\omega) = \sum_{j=0}^{N-1} \xi_j(\omega) I_{[t_j,t_{j+1})}(t) : \xi_i \in L_{ip}(\Omega_{t_i}) \}.$
- $M_G^p(0,T)$ :  $M_G^0(0,T)$  under  $\|\eta\|_{M_G^p} = \{\hat{\mathbb{E}}[\int_0^T |\eta_s|^p ds]\}^{1/p}$ .
- $\bullet \ H^p_G(0,T) \colon M^0_G(0,T) \ \text{under} \ \|\eta\|_{H^p_G} = \{\hat{\mathbb{E}}[(\int_0^T |\eta_s|^2 ds)^{p/2}]\}^{1/p}.$
- $S_G^0(0,T) = \{h(t, B_{t_1 \wedge t}, \dots, B_{t_n \wedge t}) : h \in C_{b,Lip}(\mathbb{R}^{n+1})\}.$
- $\bullet \ S^p_G(0,T) \colon S^0_G(0,T) \ \text{under} \ \|\eta\|_{S^p_G} = \{\hat{\mathbb{E}}[\sup_{t \in [0,T]} |\eta_t|^p]\}^{\frac{1}{p}}.$

**Remark** G is non-degenerate, i.e., there exists a  $\underline{\sigma}^2>0$  such that  $G(A)-G(B)\geq\underline{\sigma}^2\mathrm{tr}[A-B]$  for any  $A\geq B$ .

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds + \int_t^T g_{ij}(s, Y_s, Z_s) d\langle B^i, B^j \rangle_s$$
$$- \int_t^T Z_s dB_s - (K_T - K_t)$$

(H1) 
$$f(\cdot, \cdot, y, z), g_{ij}(\cdot, \cdot, y, z) \in M_G^{\beta}(0, T)$$
 for some  $\beta > 1$ .

(H2) There exists some L > 0 such that

$$|f(t,y,z) - f(t,y',z')| + |g_{ij}(t,y,z) - g_{ij}(t,y',z')|$$

$$\leq L(|y-y'| + |z-z'|).$$

**Remark** Soner-Touzi-Zhang (2012) studied a new type of fully nonlinear BSDE, called 2BSDE, by different formulation and method, and obtained the deep result of the existence and uniqueness theorem for 2BSDE.

### Existence and uniqueness theorem

### Theorem (Hu-Ji-Peng-Song (2014))

Assume that  $\xi \in L_G^{\beta}(\Omega_T)$  and f,  $g_{ij}$  satisfy (H1) and (H2) for some  $\beta > 1$ . Then G-BSDE has a unique solution (Y, Z, K). Moreover,  $Y \in S_G^{\alpha}(0,T)$  and  $Z \in H_G^{\alpha}(0,T; \mathbb{R}^d)$ ,  $K_T \in L_G^{\alpha}(\Omega_T)$  for any  $1 < \alpha < \beta$ .

### Some useful estimates

### Proposition

Assume that  $\xi^k \in L_G^\beta(\Omega_T)$  and  $f^k$ ,  $g_{ij}^k$  satisfy (H1) and (H2) for  $\beta>1$ ,  $k=1,\ 2$ . The solution is denoted by  $(Y^k,Z^k,K^k)$ . Then there exists a positive constant C depending on  $\alpha$ , G, L and T satisfying

$$|\hat{Y}_t|^{\alpha} \leq C \hat{\mathbb{E}}_t \left[ |\hat{\xi}|^{\alpha} + \left( \int_t^T (|\hat{f}(s)| + |\hat{g}_{ij}(s)|) ds \right)^{\alpha} \right],$$

where  $\hat{Y}_t=Y_t^1-Y_t^2$ ,  $\hat{\xi}=\xi^1-\xi^1$ ,  $\hat{f}(s)=f^1(s,Y_s^2)-f^2(s,Y_s^2)$ ,  $\hat{g}_{ij}(s)=g_{ij}^1(s,Y_s^2,Z_s^2)-g_{ij}^2(s,Y_s^2,Z_s^2)$ .

# Formulation of the control problem

Let  $t \in [0,T]$ ,  $\xi \in \bigcup_{\varepsilon>0} L_G^{2+\varepsilon}(\Omega_t;\mathbb{R}^n)$ . Consider the following G-FBSDE:

$$\begin{cases} dX_s^{t,\xi,u} = b(s,X_s^{t,\xi,u},u_s)ds + h_{ij}(s,X_s^{t,\xi,u},u_s)d\langle B^i,B^j\rangle_s \\ +\sigma(s,X_s^{t,\xi,u},u_s)dB_s, \\ dY_s^{t,\xi,u} = -f(s,X_s^{t,\xi,u},Y_s^{t,\xi,u},Z_s^{t,\xi,u},u_s)ds \\ -g_{ij}(s,X_s^{t,\xi,u},Y_s^{t,\xi,u},Z_s^{t,\xi,u},u_s)d\langle B^i,B^j\rangle_s \\ +Z_s^{t,\xi,u}dB_s + dK_s^{t,\xi,u}, \\ X_t^{t,\xi,u} = \xi, Y_T^{t,\xi,u} = \Phi(X_T^{t,\xi,u}). \end{cases}$$

- ullet U is a given compact set of  $\mathbb{R}^m$
- $\mathcal{U}[t,T]=M^2(t,T;U)$  the set of all admissible controls u
- ullet  $b,h_{ij},\sigma,f,g_{ij},\Phi$  are continuous in s and Lipschitz in x,y,z,u

Define the value function

$$V(t,x) := \underset{u \in \mathcal{U}[t,T]}{ess \inf} Y_t^{t,x,u} \text{ for } x \in \mathbb{R}^n.$$

**Remark** This control problem is a "infsup problem", because

$$Y_t^{t,x,u} = \sup_{P \in \mathcal{P}} E_P \left[ \cdot \right].$$

#### Definition

The essential infimum of  $\{Y_t^{t,x,u}\mid u\in\mathcal{U}[t,T]\}$  is a random variable

$$\zeta \in L^2_G(\Omega_t)$$
 satisfying:

- (i)  $\forall u \in \mathcal{U}[t,T], \ \zeta \leq Y_t^{t,x,u}$  q.s.;
- (ii) if  $\eta$  is a random variable satisfying  $\eta \leq Y_t^{t,x,u}$  q.s. for any  $u \in \mathcal{U}[t,T]$ , then  $\zeta \geq \eta$  q.s..
- Similarly, define the essential infimum of  $\{Y_t^{t,\xi,u} \mid u \in \mathcal{U}[t,T]\}$ .

Remark The essential infimum may not exist.

# Dynamic Programming Principle

#### **Notation:**

- $L_{ip}(\Omega_s^t) := \{ \varphi(B_{t_1} B_t, ..., B_{t_n} B_t) : t_1, ..., t_n \in [t, s] \}$
- $M_G^{0,t}(t,T) := \{ \eta_s = \sum_{i=0}^{N-1} \xi_i I_{[t_i,t_{i+1})}(s) : \xi_i \in L_{ip}(\Omega_{t_i}^t) \}$
- $\bullet \ M_G^{2,t}(t,T) := \{ \text{completion of } M_G^{0,t}(t,T) \text{ under } \| \cdot \|_{M_G^2} \}$
- $\mathcal{U}^t[t,T] := \{u \in M_G^{2,t}(t,T;\mathbb{R}^m) \text{ with values in } U\}$
- $\mathbb{U}[t,T] := \{ u = \sum_{i=1}^{n} I_{A_i} u^i : u^i \in \mathcal{U}^t[t,T], I_{A_i} \in L^2_G(\Omega_t), \Omega = \bigcup_{i=1}^{n} A_i \}$

### The value function is well defined

#### Lemma

Let  $u \in \mathcal{U}[t,T]$  be given. Then there exists a sequence  $(u^k)_{k\geq 1}$  in  $\mathbb{U}[t,T]$  such that

$$\lim_{k \to \infty} \hat{\mathbb{E}} \left[ \int_t^T |u_s - u_s^k|^2 ds \right] = 0.$$

Based on this lemma, we obtain

#### Theorem

The value function V(t,x) exists and

$$V(t,x) = \inf_{u \in \mathcal{U}^t[t,T]} Y_t^{t,x,u}.$$

## Properties of the value function

#### **Proposition**

There exists a constant C > 0 such that

$$|V(t,x) - V(t,y)| \le C |x-y|$$
 for any  $x, y \in \mathbb{R}^n$ ,

$$\mid V(t,x)\mid \leq C(1+\mid x\mid)$$
 for any  $x\in \mathbb{R}^n.$ 

#### Theorem

For any  $\xi \in \cup_{\varepsilon > 0} L^{2+\varepsilon}_G(\Omega_t; \mathbb{R}^n)$ ,

$$V(t,\xi) = \underset{u \in \mathcal{U}[t,T]}{ess \inf} Y_t^{t,\xi,u}.$$

# Backward semigroup method (Peng 1997)

For  $\eta \in \bigcup_{\varepsilon>0} L_G^{2+\varepsilon}(\Omega_{t+\delta})$ , define

$$\mathbb{G}^{t,x,u}_{t,t+\delta}[\eta]:=\tilde{Y}^{t,x,u}_t,$$

where

$$\begin{cases} dX_s^{t,x,u} = b(s, X_s^{t,x,u}, u_s) ds + h_{ij}(s, X_s^{t,x,u}, u_s) d\langle B^i, B^j \rangle_s \\ + \sigma(s, X_s^{t,x,u}, u_s) dB_s, \\ d\tilde{Y}_s^{t,x,u} = -f(s, X_s^{t,x,u}, \tilde{Y}_s^{t,x,u}, \tilde{Z}_s^{t,x,u}, u_s) ds \\ -g_{ij}(s, X_s^{t,x,u}, \tilde{Y}_s^{t,x,u}, \tilde{Z}_s^{t,x,u}, u_s) d\langle B^i, B^j \rangle_s \\ + \tilde{Z}_s^{t,x,u} dB_s + d\tilde{K}_s^{t,x,u}, \\ X_t^{t,x,u} = x, \tilde{Y}_{t+\delta}^{t,x,u} = \eta, s \in [t, t+\delta]. \end{cases}$$

# Dynamic Programming Principle

#### Theorem

For any  $t < t + \delta \le T$ ,  $x \in \mathbb{R}^n$ , we have

$$\begin{split} V(t,x) &= \underset{u(\cdot) \in \mathcal{U}[t,t+\delta]}{\operatorname{ess \, inf}} \mathbb{G}^{t,x,u}_{t,t+\delta}[V(t+\delta,X^{t,x,u}_{t+\delta})] \\ &= \underset{u(\cdot) \in \mathcal{U}^t[t,t+\delta]}{\inf} \mathbb{G}^{t,x,u}_{t,t+\delta}[V(t+\delta,X^{t,x,u}_{t+\delta})]. \end{split}$$

# Key point of proof

• For each give  $u(\cdot)\in\mathcal{U}[t,t+\delta]$ , the idea is to find  $\tilde{u}(\cdot)\in\mathcal{U}[t+\delta,T]$ such that

$$Y_{t+\delta}^{t+\delta,X_{t+\delta}^{t,x,u},\tilde{u}} \approx V(t+\delta,X_{t+\delta}^{t,x,u}).$$

• Usual method:  $A_i = [x_i, x_{i+1}), i \leq k$ , is a partition of  $\mathbb{R}^n$ , choose

$$\tilde{u}(\cdot) = \sum_{i=1}^{k} I_{\{X_{t+\delta}^{t,x,u} \in A_i\}} \bar{u}_i(\cdot),$$

where

$$Y_{t+\delta}^{t+\delta,x_i,\bar{u}_i} \approx V(t+\delta,x_i).$$

• Difficulty:  $I_{\{X_{t+\delta}^{t,x,u}\in A_i\}}$  may not in  $L^1_G$ , then  $\tilde{u}$  may not in  $\mathcal{U}[t+\delta,T].$  For example:

$$I_{\{\langle B\rangle_\delta\in A_i\}}\not\in L^1_G.$$

### Our Method

• Implied partition method: find Y such that  $I_{\{X_{t+\delta}^{t,x,u}+Y\in A_i\}}$ ,  $I_{\{Y\in A_i\}}\in L^1_G$ , using

$$\tilde{u}(\cdot) = \sum_{i,j=1}^{k} I_{\{X_s^{t,x,u} + Y \in A_i\} \cap \{Y \in A_j\}} \bar{u}_{ij}(\cdot),$$

where

$$Y_{t+\delta}^{t+\delta,x_i-x_j,\bar{u}_{ij}} \approx V(t+\delta,x_i-x_j).$$

• Recently, Hu-Ji-Li (2022) obtained that, for any  $\xi \in L^2_G(\Omega_{t+\delta})$ , there exists a sequence  $\xi_k = \sum_{i=1}^{N_k} x_i^k I_{A^k}$ ,  $k \geq 1$ , such that

$$\lim_{k \to \infty} \hat{\mathbb{E}} \left[ |\xi - \xi_k|^2 \right] = 0,$$

where  $x_i^k \in \mathbb{R}$ ,  $I_{A_i^k} \in L_G^2(\Omega_{t+\delta})$ .



## Hamilton-Jacobi-Bellman equation

#### Theorem

V is the unique viscosity solution of the following HJB equation:

$$\begin{cases} \partial_t V + \inf_{u \in U} H(t, x, V, \partial_x V, \partial_{xx}^2 V, u) = 0 \\ V(T, x) = \Phi(x), & x \in \mathbb{R}^n \end{cases}$$

where

$$H(t, x, v, p, A, u) = G(F) + \langle p, b(t, x, u) \rangle + f(t, x, v, \sigma^{T}(t, x, u)p, u),$$
  

$$F_{ij}(t, x, v, p, A, u) = (\sigma^{T}(t, x, u)A\sigma(t, x, u))_{ij} + 2\langle p, h_{ij}(t, x, u) \rangle$$
  

$$+2q_{ij}(t, x, v, \sigma^{T}(t, x, u)p, u).$$

# Thank you!