

Central limit theorems over nonlinear functionals of measures and fluctuations of mean-field interacting particle systems

Benjamin Jourdain

CERMICS, École des Ponts, INRIA project team Mathrisk Joint work with Alvin TSE

BSDE 2022

June 29 2022

Central Limit Theorem

Fluctuations of interacting particle systems

Let $\ell \geq 0$, $\mathcal{P}_{\ell}(\mathbb{R}^d) = \{ \text{prob. meas. } \eta \text{ on } \mathbb{R}^d \text{ s.t. } \int_{\mathbb{R}^d} |x|^{\ell} \eta(dx) < \infty \},\$ and $U : \mathcal{P}_{\ell}(\mathbb{R}^d) \to \mathbb{R}$ be the linear functional defined by

$$U(\mu) = \int_{\mathbb{R}^d} \varphi(\mathbf{x}) \mu(\mathbf{dx}),$$

where $\varphi : \mathbb{R}^d \to \mathbb{R}$ is a measurable s.t. $\sup_{x \in \mathbb{R}^d} \frac{|\varphi(x)|}{1+|x|^{\ell/2}} < \infty$. Let $m^N = \frac{1}{N} \sum_{i=1}^N \delta_{\zeta_i}$ where $(\zeta_i)_{i\geq 1}$ are i.i.d. according to $m_0 \in \mathcal{P}_{\ell}(\mathbb{R}^d)$. We have

$$\sqrt{N}(U(m^N) - U(m_0)) = \sqrt{N} \left(\frac{1}{N} \sum_{i=1}^N \varphi(\zeta_i) - \mathbb{E}[\varphi(\zeta_1)]\right)$$
$$\xrightarrow{(d)} \mathcal{N}_1(0, \operatorname{Var}(\varphi(\zeta_1))) \text{ as } N \to \infty$$

Central Limit Theorem

Let $\ell \geq 0$, $\mathcal{P}_{\ell}(\mathbb{R}^d) = \{ \text{prob. meas. } \eta \text{ on } \mathbb{R}^d \text{ s.t. } \int_{\mathbb{R}^d} |x|^{\ell} \eta(dx) < \infty \},\$ and $U : \mathcal{P}_{\ell}(\mathbb{R}^d) \to \mathbb{R}$ be the linear functional defined by

$$U(\mu) = \int_{\mathbb{R}^d} \varphi(x) \mu(dx),$$

where $\varphi : \mathbb{R}^d \to \mathbb{R}$ is a measurable s.t. $\sup_{x \in \mathbb{R}^d} \frac{|\varphi(x)|}{1+|x|^{\ell/2}} < \infty$. Let $m^N = \frac{1}{N} \sum_{i=1}^N \delta_{\zeta_i}$ where $(\zeta_i)_{i\geq 1}$ are i.i.d. according to $m_0 \in \mathcal{P}_{\ell}(\mathbb{R}^d)$. We have

$$\begin{split} \sqrt{N}(U(m^N) - U(m_0)) &= \sqrt{N} \left(\frac{1}{N} \sum_{i=1}^N \varphi(\zeta_i) - \mathbb{E}[\varphi(\zeta_1)] \right) \\ & \xrightarrow{(d)} \mathcal{N}_1(0, \operatorname{Var}(\varphi(\zeta_1))) \text{ as } N \to \infty \end{split}$$

Pluctuations of interacting particle systems

Linear functional derivative

Notion first introduced by *Cardaliaguet, Delarue, Lasry, Lions* and used in the literature on mean-field games.

Definition

Let $\ell \geq 0$. A functional $U : \mathcal{P}_{\ell}(\mathbb{R}^d) \to \mathbb{R}$ admits a linear functional derivative at $\mu \in \mathcal{P}_{\ell}(\mathbb{R}^d)$ if there exists a measurable function $\mathbb{R}^d \ni \mathbf{y} \mapsto \frac{\delta U}{\delta m}(\mu, \mathbf{y})$ such that $\sup_{\mathbf{y} \in \mathbb{R}^d} \left| \frac{\delta U}{\delta m}(\mu, \mathbf{y}) \right| / (1 + |\mathbf{y}|^{\ell}) < \infty$ and

$$\forall \nu \in \mathcal{P}_{\ell}(\mathbb{R}^{d}), \lim_{\varepsilon \to 0^{+}} \frac{U(\mu + \varepsilon(\nu - \mu)) - U(\mu)}{\varepsilon} = \int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}(\mu, \mathbf{y}) (\nu - \mu) (d\mathbf{y}).$$

For $\varphi : \mathbb{R}^d \to \mathbb{R}$ measurable such that $\sup_{x \in \mathbb{R}^d} \frac{|\varphi(x)|}{1+|x|^{\epsilon}} < \infty$, the linear functional $U(\mu) = \int_{\mathbb{R}^d} \varphi(x) \mu(dx)$ admits a linear functional derivative at each $\mu \in \mathcal{P}_{\ell}(\mathbb{R}^d)$ given by $\frac{\delta U}{\delta m}(\mu, y) = \varphi(y)$.

Linear functional derivative

Notion first introduced by *Cardaliaguet, Delarue, Lasry, Lions* and used in the literature on mean-field games.

Definition

Let $\ell \geq 0$. A functional $U : \mathcal{P}_{\ell}(\mathbb{R}^d) \to \mathbb{R}$ admits a linear functional derivative at $\mu \in \mathcal{P}_{\ell}(\mathbb{R}^d)$ if there exists a measurable function $\mathbb{R}^d \ni \mathbf{y} \mapsto \frac{\delta U}{\delta m}(\mu, \mathbf{y})$ such that $\sup_{\mathbf{y} \in \mathbb{R}^d} \left| \frac{\delta U}{\delta m}(\mu, \mathbf{y}) \right| / (1 + |\mathbf{y}|^{\ell}) < \infty$ and

$$\forall \nu \in \mathcal{P}_{\ell}(\mathbb{R}^{d}), \lim_{\varepsilon \to 0^{+}} \frac{U(\mu + \varepsilon(\nu - \mu)) - U(\mu)}{\varepsilon} = \int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}(\mu, \mathbf{y}) (\nu - \mu) (d\mathbf{y}).$$

For $\varphi : \mathbb{R}^d \to \mathbb{R}$ measurable such that $\sup_{x \in \mathbb{R}^d} \frac{|\varphi(x)|}{1+|x|^\ell} < \infty$, the linear functional $U(\mu) = \int_{\mathbb{R}^d} \varphi(x) \mu(dx)$ admits a linear functional derivative at each $\mu \in \mathcal{P}_{\ell}(\mathbb{R}^d)$ given by $\frac{\delta U}{\delta m}(\mu, y) = \varphi(y)$.

Related integral calculus

Lemma

Let $\ell \geq 0$, $m, m' \in \mathcal{P}_{\ell}(\mathbb{R}^d)$, and suppose that the linear functional derivative of a functional $U : \mathcal{P}_{\ell}(\mathbb{R}^d) \to \mathbb{R}$ exists on the segment $(m_s := sm' + (1 - s)m)_{s \in [0,1]}$ and that

$$\sup_{(s,y)\in[0,1]\times\mathbb{R}^d}\left|\frac{\delta U}{\delta m}(m_s,y)\right|/(1+|y|^\ell)<\infty.$$

Then

$$U(m')-U(m)=\int_0^1\int_{\mathbb{R}^d}rac{\delta U}{\delta m}(m_s,y)(m'-m)(dy)\,ds.$$

Generalization of the CLT to nonlinear functionals For $i \in \{1, \dots, N\}$ and $s \in [0, 1]$, write

$$m_{s}^{N,i}:=\frac{N-(i-1)-s}{N}m_{0}+\frac{1}{N}\sum_{j=1}^{i-1}\delta_{\zeta_{j}}+\frac{s}{N}\delta_{\zeta_{i}}.$$

Using $m_0^{N,i} = m_1^{N,i-1}$, one has the telescoping sum

$$U(m^{N}) - U(m_{0}) = U(m_{1}^{N,N}) - U(m_{0}^{N,1}) = \sum_{i=1}^{N} \left(U(m_{1}^{N,i}) - U(m_{0}^{N,i}) \right)$$

$$=\sum_{i=1}^{N}\int_{s=0}^{1}\int_{\mathbb{R}^{d}}\frac{\delta U}{\delta m}(m_{s}^{N,i},x)\frac{\delta_{\zeta_{i}}-m_{0}}{N}(dx)ds.$$

Note that $m_0^{N,i} = m_1^{N,i-1} = \frac{N-(i-1)}{N}m_0 + \frac{1}{N}\sum_{j=1}^{i-1}\delta_{\zeta_j}$ is indep. from ζ_i .

N/

Generalization of the CLT to nonlinear functionals U

$$\sqrt{N}(U(m^{N}) - U(m_{0})) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \underbrace{\int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}(m_{0}^{N,i}, x)(\delta_{\zeta_{i}} - m_{0})(dx)}_{TV(m_{s}^{N,i}, m_{0}^{N,i}, s)} + R_{N}$$

$$R_{N} = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{s=0}^{1} \int_{\mathbb{R}^{d}} \underbrace{\left(\frac{\delta U}{\delta m}(m_{s}^{N,i}, x) - \frac{\delta U}{\delta m}(m_{0}^{N,i}, x)\right)}_{TV(m_{s}^{N,i}, m_{0}^{N,i}) \leq \frac{s}{N}} (\delta_{\zeta_{i}} - m_{0})(dx) ds$$

Find assumptions on *U* ensuring that

• by the Central Limit Theorem for martingales and using

$$\sup_{1\leq i\leq N,s\in[0,1]}W_{\ell}(m_s^{N,i},m_0)\underset{N\to\infty}{\longrightarrow}0,$$

the first term converges in law to $\mathcal{N}_1(0, \operatorname{Var}(\frac{\delta U}{\delta m}(m_0, \zeta_1)))$, • the remainder R_N vanishes as $N \to \infty$.

Generalization of the CLT to nonlinear functionals U

$$\sqrt{N}(U(m^{N}) - U(m_{0})) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \underbrace{\int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}(m_{0}^{N,i}, x)(\delta_{\zeta_{i}} - m_{0})(dx)}_{TV(m_{s}^{N,i}, m_{0}^{N,i}, s)} + R_{N}$$

$$R_{N} = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{s=0}^{1} \int_{\mathbb{R}^{d}} \underbrace{\left(\frac{\delta U}{\delta m}(m_{s}^{N,i}, x) - \frac{\delta U}{\delta m}(m_{0}^{N,i}, x)\right)}_{TV(m_{s}^{N,i}, m_{0}^{N,i}) \leq \frac{s}{N}} (\delta_{\zeta_{i}} - m_{0})(dx) ds$$

Find assumptions on *U* ensuring that

• by the Central Limit Theorem for martingales and using

$$\sup_{1\leq i\leq N,s\in[0,1]}W_{\ell}(m_s^{N,i},m_0)\underset{N\to\infty}{\longrightarrow}0,$$

the first term converges in law to $\mathcal{N}_1(0, \operatorname{Var}(\frac{\delta U}{\delta m}(m_0, \zeta_1)))$, • the remainder R_N vanishes as $N \to \infty$.

Remarks

- For linear functionals $U(\mu) = \int_{\mathbb{R}^d} \varphi(x)\mu(dx)$, $\frac{\delta U}{\delta m}(\mu, x) = \varphi(x)$ and $\operatorname{Var}(\frac{\delta U}{\delta m}(m_0, \zeta_1)) = \operatorname{Var}(\varphi(\zeta_1))$.
- To prove the CLT, our decomposition requires less regularity on U than the one previously considered by *Delarue, Lacker, Ramanan EJP 19* (see also *Szpruch and Tse AAP 21*) to prove that $\sup_{N \in \mathbb{N}} N^2 \mathbb{E}[(U(m^N) U(m_0))^4] < \infty$:

independent increments

$$U(m^{N}) - U(m_{0}) = \frac{1}{N} \sum_{i=1}^{N} \underbrace{\int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}(m_{0}, x)(\delta_{\zeta_{i}} - m_{0})(dx)}_{+ \frac{1}{N} \sum_{i=1}^{N} \int_{s=0}^{1} \int_{\mathbb{R}^{d}} \underbrace{\left(\frac{\delta U}{\delta m}(m_{s}^{N,i}, x) - \frac{\delta U}{\delta m}(m_{0}, x)\right)}_{TV(m_{s}^{N,i}, m_{0}) \leq \frac{i+s-1}{N}} (\delta_{\zeta_{i}} - m_{0})(dx) ds$$

Remarks

- For linear functionals $U(\mu) = \int_{\mathbb{R}^d} \varphi(x)\mu(dx)$, $\frac{\delta U}{\delta m}(\mu, x) = \varphi(x)$ and $\operatorname{Var}(\frac{\delta U}{\delta m}(m_0, \zeta_1)) = \operatorname{Var}(\varphi(\zeta_1))$.
- To prove the CLT, our decomposition requires less regularity on U than the one previously considered by *Delarue, Lacker, Ramanan EJP 19* (see also *Szpruch and Tse AAP 21*) to prove that $\sup_{N \in \mathbb{N}} N^2 \mathbb{E}[(U(m^N) U(m_0))^4] < \infty$:

$$U(m^{N}) - U(m_{0}) = \frac{1}{N} \sum_{i=1}^{N} \underbrace{\int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m}(m_{0}, x)(\delta_{\zeta_{i}} - m_{0})(dx)}_{TV(m_{s}^{N,i}, m_{0}) \leq \frac{i+s-1}{N}} (\delta_{\zeta_{i}} - m_{0})(dx)$$

Theorem

Let $\ell \ge 0$, $m_0 \in \mathcal{P}_{\ell}(\mathbb{R}^d)$ and $m^N = \frac{1}{N} \sum_{i=1}^N \delta_{\zeta_i}$, with $(\zeta_i)_{i\ge 1}$ i.i.d. $\sim m_0$. Suppose that there exists r > 0 such that

- *U* admits a linear functional derivative on the ball $B_{W_{\ell}}(m_0, r)$,
- $\exists C < \infty, \ \forall (\mu, x) \in B_{W_{\ell}}(m_0, r) \times \mathbb{R}^d, \left| \frac{\delta U}{\delta m}(\mu, x) \right| \leq C \left(1 + |x|^{\ell/2} \right)$
- $\exists \alpha \in (1/2, 1], \exists C < \infty, \forall \mu_1, \mu_2 \in B_{W_\ell}(m_0, r), \\ \forall x \in \mathbb{R}^d, \left| \frac{\delta U}{\delta m}(\mu_2, x) \frac{\delta U}{\delta m}(\mu_1, x) \right| \le C(1 + |x|^\ell) T V^{\alpha}(\mu_2, \mu_1),$ • $\sup_{x \in \mathbb{R}^d} \frac{\left| \frac{\delta U}{\delta m}(\mu, x) - \frac{\delta U}{\delta m}(m_0, x) \right|}{1 + |x|^{\ell/2}}$ converges to 0 when $W_\ell(\mu, m_0) \to 0.$

Then the following convergence in distribution holds :

$$\sqrt{N}\Big(U(m^N)-U(m_0)\Big) \stackrel{d}{\Longrightarrow} \mathcal{N}\Big(0,\operatorname{Var}\Big(\frac{\delta U}{\delta m}(m_0,\zeta_1)\Big)\Big).$$

Wasserstein distances

• For $\ell > 0$, we endow $\mathcal{P}_{\ell}(\mathbb{R}^d)$ with the Wasserstein distance :

for
$$\mu, \nu \in \mathcal{P}_{\ell}(\mathbb{R}^{d})$$
, $W_{\ell}(\mu, \nu) = \left(\inf_{\pi \in \mathcal{P}(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} |y - x|^{\ell} \pi(dx, dy)\right)^{1/\ell \vee 1}$
where $\mathcal{P}(\mu, \nu) = \{\pi \in \mathcal{P}_{\ell}(\mathbb{R}^{2d}) : \forall A \in \mathcal{B}(\mathbb{R}^{d}), \pi(A \times \mathbb{R}^{d}) = \mu(A)$
and $\pi(\mathbb{R}^{d} \times A) = \nu(A)\}$

• We endow $\mathcal{P}_0(\mathbb{R}^d)$ with

$$W_0(\mu,\nu) = \inf_{\pi \in \mathcal{P}(\mu,\nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left(|y-x| \wedge 1 \right) \pi(dx,dy),$$

which metricizes the weak convergence topology

• When m_0 is discrete, for $D_{\ell}(\mu_2, \mu_1) := \int_{\mathbb{R}^d} (1 + |y|^{\ell}) |\mu_2 - \mu_1|(dy)$, $\sup_{1 \le l \le N, s \in [0,1]} D_{\ell}(m_s^{N,l}, m_0) \xrightarrow[N \to \infty]{} 0$, and we may replace W_{ℓ} by the stronger metric D_{ℓ} in the hypotheses.

Wasserstein distances

• For $\ell > 0$, we endow $\mathcal{P}_{\ell}(\mathbb{R}^d)$ with the Wasserstein distance :

for
$$\mu, \nu \in \mathcal{P}_{\ell}(\mathbb{R}^{d})$$
, $W_{\ell}(\mu, \nu) = \left(\inf_{\pi \in \mathcal{P}(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} |y - x|^{\ell} \pi(dx, dy)\right)^{1/\ell \vee 1}$
where $\mathcal{P}(\mu, \nu) = \{\pi \in \mathcal{P}_{\ell}(\mathbb{R}^{2d}) : \forall A \in \mathcal{B}(\mathbb{R}^{d}), \pi(A \times \mathbb{R}^{d}) = \mu(A)$
and $\pi(\mathbb{R}^{d} \times A) = \nu(A)\}$

• We endow $\mathcal{P}_0(\mathbb{R}^d)$ with

$$W_0(\mu,\nu) = \inf_{\pi \in \mathcal{P}(\mu,\nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left(|y - x| \wedge 1 \right) \pi(dx, dy),$$

which metricizes the weak convergence topology.

• When m_0 is discrete, for $D_{\ell}(\mu_2, \mu_1) := \int_{\mathbb{R}^d} (1 + |y|^{\ell}) |\mu_2 - \mu_1|(dy)$, $\sup_{1 \le i \le N, s \in [0,1]} D_{\ell}(m_s^{N,i}, m_0) \underset{N \to \infty}{\longrightarrow} 0$, and we may replace W_{ℓ} by the stronger metric D_{ℓ} in the hypotheses.

Wasserstein distances

• For $\ell > 0$, we endow $\mathcal{P}_{\ell}(\mathbb{R}^d)$ with the Wasserstein distance :

for
$$\mu, \nu \in \mathcal{P}_{\ell}(\mathbb{R}^{d}), \ W_{\ell}(\mu, \nu) = \left(\inf_{\pi \in \mathcal{P}(\mu, \nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} |y - x|^{\ell} \pi(dx, dy)\right)^{1/\ell \vee 1}$$

where $\mathcal{P}(\mu, \nu) = \{\pi \in \mathcal{P}_{\ell}(\mathbb{R}^{2d}) : \forall A \in \mathcal{B}(\mathbb{R}^{d}), \pi(A \times \mathbb{R}^{d}) = \mu(A)$
and $\pi(\mathbb{R}^{d} \times A) = \nu(A)\}$

• We endow $\mathcal{P}_0(\mathbb{R}^d)$ with

$$W_0(\mu,\nu) = \inf_{\pi \in \mathcal{P}(\mu,\nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \left(|y - x| \wedge 1 \right) \pi(dx, dy),$$

which metricizes the weak convergence topology.

• When m_0 is discrete, for $D_{\ell}(\mu_2, \mu_1) := \int_{\mathbb{R}^d} (1 + |y|^{\ell}) |\mu_2 - \mu_1|(dy)$, $\sup_{1 \le i \le N, s \in [0,1]} D_{\ell}(m_s^{N,i}, m_0) \underset{N \to \infty}{\longrightarrow} 0$, and we may replace W_{ℓ} by the stronger metric D_{ℓ} in the hypotheses.

Related results in the statistical literature

• Boos Serfling Ann. Stat 80 dimension d = 1, existence of a Gateaux differential of U at m_0 linear in the measure such that

$$U(m^{N}) - U(m_{0}) - \frac{1}{N} \sum_{i=1}^{N} dU(m_{0}, \delta_{\zeta_{i}} - m_{0}) = o\left(\left\| (m^{N} - m_{0})((-\infty, \cdot]) \right\|_{\infty}\right)$$

(almost amounts to Fréchet diff. at mo w.r.t. Kolmogorov dist.).

• *Dudley 90 :* "Gateaux derivative considered too weak Existence of a class \mathcal{F} of measurable functions s.t.

Fréchet differentiability at m₀ with respect to

$$\|\mu-m_0\|=\sup_{f\in\mathcal{F}}\left|\int f(x)(\mu-m_0)(dx)\right|,$$

- a CLT for empirical measures holds with respect to uniform convergence over $\mathcal{F}.$
- ightarrow balance needed.

Integral calculus related to the (Gateaux) linear functional derivative \rightarrow versatile tool permitting to go beyond the i.i.d. case (*Flenghi J. 22*)

Related results in the statistical literature

• Boos Serfling Ann. Stat 80 dimension d = 1, existence of a Gateaux differential of U at m_0 linear in the measure such that

$$U(m^{N}) - U(m_{0}) - \frac{1}{N} \sum_{i=1}^{N} dU(m_{0}, \delta_{\zeta_{i}} - m_{0}) = o\left(\left\| (m^{N} - m_{0})((-\infty, \cdot]) \right\|_{\infty}\right)$$

(almost amounts to Fréchet diff. at m₀ w.r.t. Kolmogorov dist.).

- Dudley 90 : "Gateaux derivative considered too weak" Existence of a class *F* of measurable functions s.t.
 - Fréchet differentiability at m₀ with respect to

$$\|\mu-m_0\|=\sup_{f\in\mathcal{F}}\left|\int f(x)(\mu-m_0)(dx)\right|,$$

- a CLT for empirical measures holds with respect to uniform convergence over $\mathcal{F}.$
- \rightarrow balance needed.

Integral calculus related to the (Gateaux) linear functional derivative \rightarrow versatile tool permitting to go beyond the i.i.d. case (*Flenghi J. 22*)

Related results in the statistical literature

• Boos Serfling Ann. Stat 80 dimension d = 1, existence of a Gateaux differential of U at m_0 linear in the measure such that

$$U(m^{N}) - U(m_{0}) - \frac{1}{N} \sum_{i=1}^{N} dU(m_{0}, \delta_{\zeta_{i}} - m_{0}) = o\left(\left\| (m^{N} - m_{0})((-\infty, \cdot]) \right\|_{\infty}\right)$$

(almost amounts to Fréchet diff. at m₀ w.r.t. Kolmogorov dist.).

- Dudley 90 : "Gateaux derivative considered too weak" Existence of a class *F* of measurable functions s.t.
 - Fréchet differentiability at m_0 with respect to

$$\|\mu-m_0\|=\sup_{f\in\mathcal{F}}\left|\int f(x)(\mu-m_0)(dx)\right|,$$

- a CLT for empirical measures holds with respect to uniform convergence over $\ensuremath{\mathcal{F}}.$
- \rightarrow balance needed.

Integral calculus related to the (Gateaux) linear functional derivative

 \rightarrow versatile tool permitting to go beyond the i.i.d. case (*Flenghi J. 22*)

Central limit theorems over nonlinear functions of measures

-Fluctuations of interacting particle systems

Generalization to nonlinear functionals

2 Fluctuations of interacting particle systems

Interacting particle system

$$\begin{cases} \boldsymbol{Y}_{t}^{i,N} = \zeta_{i} + \int_{0}^{t} \boldsymbol{b}(\boldsymbol{Y}_{s}^{i,N}, \boldsymbol{\mu}_{s}^{N}) \, d\boldsymbol{s} + \int_{0}^{t} \boldsymbol{\sigma}(\boldsymbol{Y}_{s}^{i,N}, \boldsymbol{\mu}_{s}^{N}) \, d\boldsymbol{W}_{s}^{i}, & 1 \leq i \leq N, \quad t \geq 0, \\ \boldsymbol{\mu}_{s}^{N} := \frac{1}{N} \sum_{i=1}^{N} \delta_{\boldsymbol{Y}_{s}^{i,N}}, \end{cases}$$

where

- $b: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^d, \, \sigma: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^{d \times d'}$ Lipschitz,
- (Wⁱ, ζ_i)_{i≥1} i.i.d. with Wⁱ a d'-dimensional Brownian motion independent from the ℝ^d-valued initial random vector ζ_i ~ m₀.

Mean-field limit as $N \rightarrow \infty$: SDE nonlinear in the sense of McKean

 $\begin{cases} X_t = \zeta + \int_0^t b(X_s, \mu_s^\infty) \, ds + \int_0^t \sigma(X_s, \mu_s^\infty) \, dW_s, \qquad t \ge 0, \\ \mu_s^\infty := \mathsf{Law}(X_s), \end{cases}$

with W d'-dimensional Brownian motion $\perp \zeta \sim m_0$. Question : for $\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ a nonlinear functional, limiting behaviour of the fluctuations process

 $(\sqrt{N}[\Phi(\mu_t^N) - \Phi(\mu_t^\infty)])_{t>0}?$

Interacting particle system

$$\begin{cases} \boldsymbol{Y}_{t}^{i,N} = \zeta_{i} + \int_{0}^{t} \boldsymbol{b}(\boldsymbol{Y}_{s}^{i,N}, \boldsymbol{\mu}_{s}^{N}) \, d\boldsymbol{s} + \int_{0}^{t} \boldsymbol{\sigma}(\boldsymbol{Y}_{s}^{i,N}, \boldsymbol{\mu}_{s}^{N}) \, d\boldsymbol{W}_{s}^{i}, & 1 \leq i \leq N, \quad t \geq 0, \\ \boldsymbol{\mu}_{s}^{N} := \frac{1}{N} \sum_{i=1}^{N} \delta_{\boldsymbol{Y}_{s}^{i,N}}, \end{cases}$$

where

- $b: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^d, \sigma: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^{d \times d'}$ Lipschitz,
- (Wⁱ, ζ_i)_{i≥1} i.i.d. with Wⁱ a d'-dimensional Brownian motion independent from the ℝ^d-valued initial random vector ζ_i ~ m₀.

Mean-field limit as $N \to \infty$: SDE nonlinear in the sense of McKean

$$\begin{cases} X_t = \zeta + \int_0^t b(X_s, \mu_s^\infty) \, ds + \int_0^t \sigma(X_s, \mu_s^\infty) \, dW_s, \qquad t \ge 0, \\ \mu_s^\infty := \operatorname{Law}(X_s), \end{cases}$$

with *W* d'-dimensional Brownian motion $\perp \zeta \sim m_0$. Question : for $\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ a nonlinear functional, limiting behaviour of the fluctuations process

 $(\sqrt{N}[\Phi(\mu_t^N) - \Phi(\mu_t^\infty)])_{t>0}?$

Interacting particle system

$$\begin{cases} \mathbf{Y}_{t}^{i,N} = \zeta_{i} + \int_{0}^{t} b(\mathbf{Y}_{s}^{i,N}, \mu_{s}^{N}) \, ds + \int_{0}^{t} \sigma(\mathbf{Y}_{s}^{i,N}, \mu_{s}^{N}) \, dW_{s}^{i}, & 1 \leq i \leq N, \quad t \geq 0, \\ \mu_{s}^{N} := \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{Y}_{s}^{i,N}}, \end{cases}$$

where

- $b: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^d, \sigma: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^{d \times d'}$ Lipschitz,
- (Wⁱ, ζ_i)_{i≥1} i.i.d. with Wⁱ a d'-dimensional Brownian motion independent from the ℝ^d-valued initial random vector ζ_i ~ m₀.

Mean-field limit as $N \to \infty$: SDE nonlinear in the sense of McKean

$$\begin{cases} X_t = \zeta + \int_0^t b(X_s, \mu_s^\infty) \, ds + \int_0^t \sigma(X_s, \mu_s^\infty) \, dW_s, \qquad t \ge 0, \\ \mu_s^\infty := \operatorname{Law}(X_s), \end{cases}$$

with W d'-dimensional Brownian motion $\perp \zeta \sim m_0$. Question : for $\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ a nonlinear functional, limiting behaviour of the fluctuations process

$$(\sqrt{N}[\Phi(\mu_t^N) - \Phi(\mu_t^\infty)])_{t>0}?$$

Regularity class

Definition

A function $f : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ belongs to class $\mathcal{M}_k(\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d))$, if the derivatives $D^{(j,n,\beta)}f(x,\mu,y_1,\ldots,y_n)$ exist for every multi-index (j,n,β) such that $|(j,n,\beta)| \leq k$ and satisfy

$$\begin{aligned} \forall x, y_1, \dots, y_n \in \mathbb{R}^d, \ \forall \mu \in \mathcal{P}_2(\mathbb{R}^d), \ \left| D^{(j,n,\beta)} f(x, \mu, y_1, \dots, y_n) \right| &\leq C \\ \text{and} \ \forall x', y'_1, \dots, y'_n \in \mathbb{R}^d, \ \forall \mu' \in \mathcal{P}_2(\mathbb{R}^d), \\ \left| D^{(j,n,\beta)} f(x, \mu, y_1, \dots, y_n) - D^{(j,n,\beta)} f(x', \mu', y'_1, \dots, y'_n) \right| \\ &\leq C \left(|x - x'| + \sum_{i=1}^n |y_i - y'_i| + W_2(\mu, \mu') \right) \end{aligned}$$

The *n* derivatives w.r.t. μ are taken in the Lions sense

$$D^{(0,1,0)}f(x,\mu) = \partial_{y_1} \frac{\delta U}{\delta m}(x,\mu,y_1).$$

Master equation

Let $\mathcal{V}:\mathbb{R}_+\times\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}$ defined by

$$\mathcal{V}(t,\mathcal{L}(\theta)) = \Phi(\mathcal{L}(X_t^{\theta}))$$

where, for θ a square integrable \mathbb{R}^d -valued initial random vector $\perp W$,

$$X^{ heta}_t = heta + \int_0^t b(X^{ heta}_s, \mathcal{L}(X^{ heta}_s)) \, ds + \int_0^t \sigma(X^{ heta}_s, \mathcal{L}(X^{ heta}_s)) \, dW_s, \qquad t \geq 0.$$

Buckdahn, Li, Peng, Rainer AP 17 \longrightarrow if $\Phi \in \mathcal{M}_2(\mathcal{P}_2(\mathbb{R}^d))$, b, $\sigma \in \mathcal{M}_2(\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d))$, then \mathcal{V} satisfies the master equation :

 $\begin{cases} \partial_{s} \mathcal{V}(s,\mu) = \int_{\mathbb{R}^{d}} \left[\partial_{\mu} \mathcal{V}(s,\mu)(x) \cdot b(x,\mu) + \frac{1}{2} \operatorname{Tr} \left(\partial_{x} \partial_{\mu} \mathcal{V}(s,\mu)(x) a(x,\mu) \right) \right] \mu(dx) \\ \mathcal{V}(0,\mu) = \Phi(\mu), \end{cases}$

where $a(x,\mu) := \sigma(x,\mu)\sigma(x,\mu)^*$.

Master equation

Let $\mathcal{V}:\mathbb{R}_+\times\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}$ defined by

$$\mathcal{V}(t,\mathcal{L}(\theta)) = \Phi(\mathcal{L}(X_t^{\theta}))$$

where, for θ a square integrable \mathbb{R}^d -valued initial random vector $\perp W$,

$$X^{ heta}_t = heta + \int_0^t b(X^{ heta}_s, \mathcal{L}(X^{ heta}_s)) \, ds + \int_0^t \sigma(X^{ heta}_s, \mathcal{L}(X^{ heta}_s)) \, dW_s, \qquad t \geq 0.$$

Buckdahn, Li, Peng, Rainer AP 17 \longrightarrow if $\Phi \in \mathcal{M}_2(\mathcal{P}_2(\mathbb{R}^d))$, $b, \sigma \in \mathcal{M}_2(\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d))$, then \mathcal{V} satisfies the master equation :

$$\begin{cases} \partial_{s} \mathcal{V}(s,\mu) = \int_{\mathbb{R}^{d}} \left[\partial_{\mu} \mathcal{V}(s,\mu)(x) \cdot b(x,\mu) + \frac{1}{2} \operatorname{Tr} \left(\partial_{x} \partial_{\mu} \mathcal{V}(s,\mu)(x) a(x,\mu) \right) \right] \mu(dx) \\ \mathcal{V}(0,\mu) = \Phi(\mu), \end{cases}$$

where $a(x,\mu) := \sigma(x,\mu)\sigma(x,\mu)^*$.

Central limit theorems over nonlinear functions of measures

Fluctuations of interacting particle systems

$$\begin{split} \sqrt{N} \Big[\Phi(\mu_t^N) - \Phi(\mu_t^\infty) \Big] &= \overline{\sqrt{N}(\mathcal{V}(t, m^N) - \mathcal{V}(t, m_0))} \\ &+ \frac{1}{\sqrt{N}} \sum_{i=1}^N \int_0^t \partial_\mu \mathcal{V}^* (t - s, \mu_s^N) (Y_s^{i,N}) \sigma(Y_s^{i,N}, \mu_s^N) dW_s^i \quad := I_t^N \\ &+ \int_0^t \frac{1}{2} \bigg[\underbrace{\frac{1}{N^{3/2}} \sum_{i=1}^N \operatorname{Tr} \Big(a(Y_s^{i,N}, \mu_s^N) \partial_\mu^2 \mathcal{V}(t - s, \mu_s^N) (Y_s^{i,N}, Y_s^{i,N}) \Big) \bigg] \, ds. \end{split}$$

$$\langle I_{\cdot}^{N} \rangle_{t} = \frac{1}{N} \sum_{i=1}^{N} \int_{0}^{t} \partial_{\mu} \mathcal{V}^{*} (t-s, \mu_{s}^{N}) (Y_{s}^{i,N}) a(Y_{s}^{i,N}, \mu_{s}^{N}) \partial_{\mu} \mathcal{V} (t-s, \mu_{s}^{N}) (Y_{s}^{i,N}) ds$$

$$\xrightarrow{}_{N \to \infty} \int_{0}^{t} \int_{\mathbb{R}^{d}} \partial_{\mu} \mathcal{V}^{*} (t-s, \mu_{s}^{\infty}) (y) a(y, \mu_{s}^{\infty}) \mathcal{V} (t-s, \mu_{s}^{\infty}) (y) \mu_{s}^{\infty} (dy) ds.$$

Central limit theorems over nonlinear functions of measures

Fluctuations of interacting particle systems

$$\begin{split} \sqrt{N} \Big[\Phi(\mu_t^N) - \Phi(\mu_t^\infty) \Big] &= \overline{\sqrt{N}(\mathcal{V}(t, m^N) - \mathcal{V}(t, m_0))} \\ &+ \frac{1}{\sqrt{N}} \sum_{i=1}^N \int_0^t \partial_\mu \mathcal{V}^* (t - s, \mu_s^N) (Y_s^{i,N}) \sigma(Y_s^{i,N}, \mu_s^N) dW_s^i \quad := I_t^N \\ &+ \int_0^t \frac{1}{2} \bigg[\underbrace{\frac{1}{N^{3/2}} \sum_{i=1}^N \operatorname{Tr} \left(a(Y_s^{i,N}, \mu_s^N) \partial_\mu^2 \mathcal{V}(t - s, \mu_s^N) (Y_s^{i,N}, Y_s^{i,N}) \right) \bigg] \, ds. \end{split}$$

$$\langle I_{\cdot}^{N} \rangle_{t} = \frac{1}{N} \sum_{i=1}^{N} \int_{0}^{t} \partial_{\mu} \mathcal{V}^{*} (t-s, \mu_{s}^{N}) (Y_{s}^{i,N}) a(Y_{s}^{i,N}, \mu_{s}^{N}) \partial_{\mu} \mathcal{V} (t-s, \mu_{s}^{N}) (Y_{s}^{i,N}) ds$$

$$\xrightarrow{}_{N \to \infty} \int_{0}^{t} \int_{\mathbb{R}^{d}} \partial_{\mu} \mathcal{V}^{*} (t-s, \mu_{s}^{\infty}) (y) a(y, \mu_{s}^{\infty}) \mathcal{V} (t-s, \mu_{s}^{\infty}) (y) \mu_{s}^{\infty} (dy) ds.$$

Theorem

Suppose $m_0 \in \mathcal{P}_{12}(\mathbb{R}^d)$, $\Phi \in \mathcal{M}_5(\mathcal{P}_2(\mathbb{R}^d))$, $b, \sigma \in \mathcal{M}_5(\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d))$ and uniformly bounded. Then, in $C(\mathbb{R}_+, \mathbb{R})$, the fluctuations process

$$(\sqrt{N} [\Phi(\mu_t^N) - \Phi(\mu_t^\infty)])_{t\geq 0}$$

converges weakly to a centered Gaussian process L with covariance

$$Cov(L_t, L_u) = Cov\left(\frac{\delta \mathcal{V}}{\delta m}(t, m_0, \xi_1), \frac{\delta \mathcal{V}}{\delta m}(u, m_0, \xi_1)\right) \\ + \int_0^{t \wedge u} \int_{\mathbb{R}^d} \partial_\mu \mathcal{V}^*(t - s, \mu_s^\infty)(y) a(y, \mu_s^\infty) \mathcal{V}(u - s, \mu_s^\infty)(y) \mu_s^\infty(dy) ds.$$