Central limit theorems over nonlinear functionals of measures and fluctuations of mean-field interacting particle systems

Benjamin Jourdain

CERMICS, École des Ponts, INRIA project team Mathrisk
Joint work with Alvin TSE

BSDE 2022

June 29 2022
Central Limit Theorem

Let $\ell \geq 0$, $\mathcal{P}_\ell(\mathbb{R}^d) = \{\text{prob. meas. } \eta \text{ on } \mathbb{R}^d \text{ s.t. } \int_{\mathbb{R}^d} |x|^{\ell} \eta(dx) < \infty\}$, and $U : \mathcal{P}_\ell(\mathbb{R}^d) \to \mathbb{R}$ be the linear functional defined by

$$U(\mu) = \int_{\mathbb{R}^d} \varphi(x)\mu(dx),$$

where $\varphi : \mathbb{R}^d \to \mathbb{R}$ is a measurable s.t. $\sup_{x \in \mathbb{R}^d} \frac{|\varphi(x)|}{1 + |x|^{\ell/2}} < \infty$.

Let $m^N = \frac{1}{N} \sum_{i=1}^N \delta_{\zeta_i}$ where $(\zeta_i)_{i \geq 1}$ are i.i.d. according to $m_0 \in \mathcal{P}_\ell(\mathbb{R}^d)$. We have

$$\sqrt{N}(U(m^N) - U(m_0)) = \sqrt{N} \left(\frac{1}{N} \sum_{i=1}^N \varphi(\zeta_i) - \mathbb{E}[\varphi(\zeta_1)] \right)$$

$\xrightarrow{(d)} N_1(0, \text{Var}(\varphi(\zeta_1)))$ as $N \to \infty$.

Benjamin Jourdain (Ecole des Ponts) June 29 2022
Central Limit Theorem

Let $\ell \geq 0$, $\mathcal{P}_\ell(\mathbb{R}^d) = \{\text{prob. meas. } \eta \text{ on } \mathbb{R}^d \text{ s.t. } \int_{\mathbb{R}^d} |x|^{\ell} \eta(dx) < \infty\}$, and $U: \mathcal{P}_\ell(\mathbb{R}^d) \to \mathbb{R}$ be the linear functional defined by

$$U(\mu) = \int_{\mathbb{R}^d} \varphi(x) \mu(dx),$$

where $\varphi: \mathbb{R}^d \to \mathbb{R}$ is a measurable s.t. $\sup_{x \in \mathbb{R}^d} \frac{\varphi(x)}{1 + |x|^{\ell/2}} < \infty$.

Let $m^N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\zeta_i}$ where $(\zeta_i)_{i \geq 1}$ are i.i.d. according to $m_0 \in \mathcal{P}_\ell(\mathbb{R}^d)$. We have

$$\sqrt{N}(U(m^N) - U(m_0)) = \sqrt{N} \left(\frac{1}{N} \sum_{i=1}^{N} \varphi(\zeta_i) - \mathbb{E}[\varphi(\zeta_1)] \right) \xrightarrow{(d)} N_1(0, \text{Var}(\varphi(\zeta_1))) \text{ as } N \to \infty.$$
1. Generalization to nonlinear functionals

2. Fluctuations of interacting particle systems
Linear functional derivative

Notion first introduced by Cardaliaguet, Delarue, Lasry, Lions and used in the literature on mean-field games.

Definition

Let $\ell \geq 0$. A functional $U : \mathcal{P}_\ell(\mathbb{R}^d) \to \mathbb{R}$ admits a linear functional derivative at $\mu \in \mathcal{P}_\ell(\mathbb{R}^d)$ if there exists a measurable function $\mathbb{R}^d \ni y \mapsto \frac{\delta U}{\delta m}(\mu, y)$ such that $\sup_{y \in \mathbb{R}^d} \left| \frac{\delta U}{\delta m}(\mu, y) \right| / (1 + |y|^{\ell}) < \infty$ and

$$\forall \nu \in \mathcal{P}_\ell(\mathbb{R}^d), \quad \lim_{\varepsilon \to 0^+} \frac{U(\mu + \varepsilon(\nu - \mu)) - U(\mu)}{\varepsilon} = \int_{\mathbb{R}^d} \frac{\delta U}{\delta m}(\mu, y)(\nu - \mu)(dy).$$

For $\varphi : \mathbb{R}^d \to \mathbb{R}$ measurable such that $\sup_{x \in \mathbb{R}^d} \frac{|\varphi(x)|}{1 + |x|^{\ell}} < \infty$, the linear functional $U(\mu) = \int_{\mathbb{R}^d} \varphi(x)\mu(dx)$ admits a linear functional derivative at each $\mu \in \mathcal{P}_\ell(\mathbb{R}^d)$ given by $\frac{\delta U}{\delta m}(\mu, y) = \varphi(y)$.

Linear functional derivative

Notion first introduced by Cardaliaguet, Delarue, Lasry, Lions and used in the literature on mean-field games.

Definition

Let $\ell \geq 0$. A functional $U : \mathcal{P}_\ell(\mathbb{R}^d) \rightarrow \mathbb{R}$ admits a linear functional derivative at $\mu \in \mathcal{P}_\ell(\mathbb{R}^d)$ if there exists a measurable function $\mathbb{R}^d \ni y \mapsto \frac{\delta U}{\delta m}(\mu, y)$ such that $\sup_{y \in \mathbb{R}^d} \left| \frac{\delta U}{\delta m}(\mu, y) \right| \left(1 + |y|^\ell \right) < \infty$ and

$$\forall \nu \in \mathcal{P}_\ell(\mathbb{R}^d), \lim_{\varepsilon \to 0^+} \frac{U(\mu + \varepsilon(\nu - \mu)) - U(\mu)}{\varepsilon} = \int_{\mathbb{R}^d} \frac{\delta U}{\delta m}(\mu, y) (\nu - \mu)(dy).$$

For $\varphi : \mathbb{R}^d \rightarrow \mathbb{R}$ measurable such that $\sup_{x \in \mathbb{R}^d} \frac{|\varphi(x)|}{1 + |x|^\ell} < \infty$, the linear functional $U(\mu) = \int_{\mathbb{R}^d} \varphi(x) \mu(dx)$ admits a linear functional derivative at each $\mu \in \mathcal{P}_\ell(\mathbb{R}^d)$ given by $\frac{\delta U}{\delta m}(\mu, y) = \varphi(y)$.
Related integral calculus

Lemma

Let $\ell \geq 0$, $m, m' \in \mathcal{P}_\ell(\mathbb{R}^d)$, and suppose that the linear functional derivative of a functional $U : \mathcal{P}_\ell(\mathbb{R}^d) \to \mathbb{R}$ exists on the segment $(m_s := sm' + (1 - s)m)_{s \in [0,1]}$ and that

$$\sup_{(s,y) \in [0,1] \times \mathbb{R}^d} \left| \frac{\delta U}{\delta m}(m_s, y) \right| / (1 + |y|^\ell) < \infty.$$

Then

$$U(m') - U(m) = \int_0^1 \int_{\mathbb{R}^d} \frac{\delta U}{\delta m}(m_s, y)(m' - m)(dy) \, ds.$$
Generalization of the CLT to nonlinear functionals

For $i \in \{1, \cdots, N\}$ and $s \in [0, 1]$, write

$$m_{s}^{N,i} := \frac{N - (i - 1) - s}{N} m_0 + \frac{1}{N} \sum_{j=1}^{i-1} \delta_{\zeta_j} + \frac{s}{N} \delta_{\zeta_i}.$$

Using $m_{0}^{N,i} = m_{1}^{N,i-1}$, one has the telescoping sum

$$U(m^{N}) - U(m_{0}) = U(m_{1}^{N,N}) - U(m_{0}^{N,1}) = \sum_{i=1}^{N} \left(U(m_{1}^{N,i}) - U(m_{0}^{N,i}) \right)$$

$$= \sum_{i=1}^{N} \int_{s=0}^{1} \int_{\mathbb{R}^{d}} \frac{\delta U}{\delta m_{s}^{N,i}}(m_{s}^{N,i}, x) \frac{\delta_{\zeta_i} - m_0}{N} (dx) ds.$$

Note that $m_{0}^{N,i} = m_{1}^{N,i-1} = \frac{N-(i-1)}{N} m_0 + \frac{1}{N} \sum_{j=1}^{i-1} \delta_{\zeta_j}$ is indep. from ζ_i.
Generalization of the CLT to nonlinear functionals U

\[
\sqrt{N}(U(m^N) - U(m_0)) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{\mathbb{R}^d} \frac{\delta U}{\delta m}(m_0^{N,i}, x)(\delta \zeta - m_0) \cdot (dx) + R_N
\]

\[
R_N = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{s=0}^{1} \int_{\mathbb{R}^d} \left(\frac{\delta U}{\delta m}(m_s^{N,i}, x) - \frac{\delta U}{\delta m}(m_0^{N,i}, x) \right)(\delta \zeta - m_0) \cdot (dx)ds
\]

Find assumptions on U ensuring that

- by the Central Limit Theorem for martingales and using

\[
\sup_{1 \leq i \leq N, s \in [0,1]} W_{\ell}(m_s^{N,i}, m_0) \to 0,
\]

the first term converges in law to $\mathcal{N}_1(0, \text{Var}(\frac{\delta U}{\delta m}(m_0, \zeta_1)))$,

- the remainder R_N vanishes as $N \to \infty$.

Benjamin Jourdain (Ecole des Ponts) June 29 2022
Generalization of the CLT to nonlinear functionals U

\[\sqrt{N}(U(m^N) - U(m_0)) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{\mathbb{R}^d} \delta U \left(m_0^N, x \right) (\delta \zeta_i - m_0)(dx) + R_N \]

\[R_N = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_{s=0}^{1} \int_{\mathbb{R}^d} \left(\frac{\delta U}{\delta m} \left(m_s^N, x \right) - \frac{\delta U}{\delta m} \left(m_0^N, x \right) \right) (\delta \zeta_i - m_0)(dx)ds \]

Find assumptions on U ensuring that

- by the Central Limit Theorem for martingales and using

\[\sup_{1 \leq i \leq N, s \in [0, 1]} W_{\ell} \left(m_s^N, m_0 \right) \xrightarrow{N \to \infty} 0, \]

the first term converges in law to $\mathcal{N}_1(0, \text{Var} \left(\frac{\delta U}{\delta m} \left(m_0, \zeta_1 \right) \right))$,

- the remainder R_N vanishes as $N \to \infty$.
Remarks

- For linear functionals $U(\mu) = \int_{\mathbb{R}^d} \varphi(x)\mu(dx)$, $\frac{\delta U}{\delta m}(\mu, x) = \varphi(x)$ and $\text{Var}(\frac{\delta U}{\delta m}(m_0, \zeta_1)) = \text{Var}(\varphi(\zeta_1))$.

- To prove the CLT, our decomposition requires less regularity on U than the one previously considered by Delarue, Lacker, Ramanan EJP 19 (see also Szpruch and Tse AAP 21) to prove that $\sup_{N \in \mathbb{N}} N^2 \mathbb{E}[(U(m^N) - U(m_0))^4] < \infty$:

\[
U(m^N) - U(m_0) = \frac{1}{N} \sum_{i=1}^{N} \int_{\mathbb{R}^d} \frac{\delta U}{\delta m}(m_0, x)(\delta \zeta_i - m_0)(dx) + \frac{1}{N} \sum_{i=1}^{N} \int_{s=0}^{1} \int_{\mathbb{R}^d} \left(\frac{\delta U}{\delta m}(m^N_{s,i}, x) - \frac{\delta U}{\delta m}(m_0, x) \right)(\delta \zeta_i - m_0)(dx)ds
\]

\[
\text{TV}(m^N_{s,i}, m_0) \leq \frac{i+s-1}{N}
\]
Remarks

- For linear functionals $U(\mu) = \int_{\mathbb{R}^d} \varphi(x) \mu(dx)$, $\frac{\delta U}{\delta m}(\mu, x) = \varphi(x)$ and $\text{Var}(\frac{\delta U}{\delta m}(m_0, \zeta_1)) = \text{Var}(\varphi(\zeta_1))$.

- To prove the CLT, our decomposition requires less regularity on U than the one previously considered by Delarue, Lacker, Ramanan EJP 19 (see also Szpruch and Tse AAP 21) to prove that $\sup_{N \in \mathbb{N}} N^2 \mathbb{E}[(U(m^N) - U(m_0))^4] < \infty$.

\[
U(m^N) - U(m_0) = \frac{1}{N} \sum_{i=1}^{N} \int_{\mathbb{R}^d} \frac{\delta U}{\delta m}(m_0, x) (\delta \zeta_i - m_0)(dx)
\]

\[
+ \frac{1}{N} \sum_{i=1}^{N} \int_{s=0}^{1} \int_{\mathbb{R}^d} \left(\frac{\delta U}{\delta m}(m_s^{N,i}, x) - \frac{\delta U}{\delta m}(m_0, x) \right) (\delta \zeta_i - m_0)(dx) ds
\]

$\text{TV}(m_s^{N,i}, m_0) \leq \frac{i+s-1}{N}$
Theorem

Let \(\ell \geq 0 \), \(m_0 \in \mathcal{P}_\ell(\mathbb{R}^d) \) and \(m^N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\zeta_i} \), with \((\zeta_i)_{i \geq 1} \) i.i.d. \(\sim m_0 \). Suppose that there exists \(r > 0 \) such that

- \(U \) admits a linear functional derivative on the ball \(B_{W_\ell}(m_0, r) \),
- \(\exists C < \infty, \forall (\mu, x) \in B_{W_\ell}(m_0, r) \times \mathbb{R}^d, \left| \frac{\delta U}{\delta m}(\mu, x) \right| \leq C \left(1 + |x|^{\ell/2} \right) \)
- \(\exists \alpha \in (1/2, 1], \exists C < \infty, \forall \mu_1, \mu_2 \in B_{W_\ell}(m_0, r), \forall x \in \mathbb{R}^d, \left| \frac{\delta U}{\delta m}(\mu_2, x) - \frac{\delta U}{\delta m}(\mu_1, x) \right| \leq C(1 + |x|^{\ell})TV^\alpha(\mu_2, \mu_1), \)
- \(\sup_{x \in \mathbb{R}^d} \left| \frac{\delta U}{\delta m}(\mu, x) - \frac{\delta U}{\delta m}(m_0, x) \right| \) converges to 0 when \(W_\ell(\mu, m_0) \rightarrow 0 \).

Then the following convergence in distribution holds:

\[
\sqrt{N} \left(U(m^N) - U(m_0) \right) \xrightarrow{d} \mathcal{N} \left(0, \text{Var} \left(\frac{\delta U}{\delta m}(m_0, \zeta_1) \right) \right).
\]
Wasserstein distances

- For $\ell > 0$, we endow $P_\ell(\mathbb{R}^d)$ with the Wasserstein distance:

 $$W_\ell(\mu, \nu) = \left(\inf_{\pi \in P(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} |y - x|^\ell \pi(dx, dy) \right)^{1/\ell \vee 1}$$

 where $P(\mu, \nu) = \{ \pi \in P_\ell(\mathbb{R}^{2d}) : \forall A \in \mathcal{B}(\mathbb{R}^d), \pi(A \times \mathbb{R}^d) = \mu(A)$ and $\pi(\mathbb{R}^d \times A) = \nu(A) \}$

- We endow $P_0(\mathbb{R}^d)$ with

 $$W_0(\mu, \nu) = \inf_{\pi \in P(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} (|y - x| \wedge 1) \pi(dx, dy),$$

 which metricizes the weak convergence topology.

- When m_0 is discrete, for $D_\ell(\mu_2, \mu_1) := \int_{\mathbb{R}^d} (1 + |y|^\ell) |\mu_2 - \mu_1|(dy)$,

 $$\sup_{1 \leq i \leq N, s \in [0,1]} D_\ell(m^{N,i}_s, m_0) \xrightarrow{N \to \infty} 0,$$

 and we may replace W_ℓ by the stronger metric D_ℓ in the hypotheses.
Wasserstein distances

- For $\ell > 0$, we endow $\mathcal{P}_\ell(\mathbb{R}^d)$ with the Wasserstein distance:

$$W_\ell(\mu, \nu) = \left(\inf_{\pi \in \mathcal{P}(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} |y - x|^{\ell} \pi(dx, dy) \right)^{1/\ell \vee 1}$$

where $\mathcal{P}(\mu, \nu) = \{\pi \in \mathcal{P}_\ell(\mathbb{R}^{2d}) : \forall A \in \mathcal{B}(\mathbb{R}^d), \pi(A \times \mathbb{R}^d) = \mu(A) \text{ and } \pi(\mathbb{R}^d \times A) = \nu(A)\}$

- We endow $\mathcal{P}_0(\mathbb{R}^d)$ with

$$W_0(\mu, \nu) = \inf_{\pi \in \mathcal{P}(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} (|y - x| \wedge 1) \pi(dx, dy),$$

which metricizes the weak convergence topology.

- When m_0 is discrete, for $D_\ell(\mu_2, \mu_1) := \int_{\mathbb{R}^d} (1 + |y|^\ell) |\mu_2 - \mu_1|(dy)$,

$$\sup_{1 \leq i \leq N, s \in [0,1]} D_\ell(m_s^{N,i}, m_0) \to 0 \text{ as } N \to \infty,$$

and we may replace W_ℓ by the stronger metric D_ℓ in the hypotheses.
Wasserstein distances

- For $\ell > 0$, we endow $\mathcal{P}_\ell(\mathbb{R}^d)$ with the Wasserstein distance:

$$
W_\ell(\mu, \nu) = \left(\inf_{\pi \in \mathcal{P}(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} |y - x|^\ell \pi(dx, dy) \right)^{1/\ell \vee 1}
$$

where $\mathcal{P}(\mu, \nu) = \{ \pi \in \mathcal{P}_\ell(\mathbb{R}^{2d}) : \forall A \in \mathcal{B}(\mathbb{R}^d), \pi(A \times \mathbb{R}^d) = \mu(A)$

and $\pi(\mathbb{R}^d \times A) = \nu(A) \}$

- We endow $\mathcal{P}_0(\mathbb{R}^d)$ with

$$
W_0(\mu, \nu) = \inf_{\pi \in \mathcal{P}(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} (|y - x| \wedge 1) \pi(dx, dy),
$$

which metricizes the weak convergence topology.

- When m_0 is discrete, for $D_\ell(\mu_2, \mu_1) := \int_{\mathbb{R}^d} (1 + |y|^\ell) |\mu_2 - \mu_1|(dy)$, $\sup_{1 \leq i \leq N, s \in [0, 1]} D_\ell(m_s^{N,i}, m_0) \underset{N \to \infty}{\longrightarrow} 0$, and we may replace W_ℓ by the stronger metric D_ℓ in the hypotheses.
Related results in the statistical literature

- **Boos Serfling Ann. Stat 80** dimension \(d = 1 \), existence of a Gateaux differential of \(U \) at \(m_0 \) linear in the measure such that

\[
U(m^N) - U(m_0) - \frac{1}{N} \sum_{i=1}^{N} dU(m_0, \delta_{\xi_i} - m_0) = o \left(\left\| (m^N - m_0)((-\infty, \cdot]) \right\|_\infty \right)
\]

(almost amounts to Fréchet diff. at \(m_0 \) w.r.t. Kolmogorov dist.).

- **Dudley 90** : "Gateaux derivative considered too weak"
 Existence of a class \(\mathcal{F} \) of measurable functions s.t.
 - Fréchet differentiability at \(m_0 \) with respect to
 \[
 \left\| \mu - m_0 \right\| = \sup_{f \in \mathcal{F}} \left| \int f(x)(\mu - m_0)(dx) \right|
 \]
 - a CLT for empirical measures holds with respect to uniform convergence over \(\mathcal{F} \).

→ balance needed.

Integral calculus related to the (Gateaux) linear functional derivative
→ versatile tool permitting to go beyond the i.i.d. case (Flenghi J. 22)
Related results in the statistical literature

- **Boos Serfling Ann. Stat 80** dimension $d = 1$, existence of a Gateaux differential of U at m_0 linear in the measure such that

$$U(m^N) - U(m_0) - \frac{1}{N} \sum_{i=1}^{N} dU(m_0, \delta_{\zeta_i} - m_0) = o \left(\| (m^N - m_0)((-\infty, \cdot]) \|_\infty \right)$$

(almost amounts to Fréchet diff. at m_0 w.r.t. Kolmogorov dist.).

- **Dudley 90** : "Gateaux derivative considered too weak"

Existence of a class \mathcal{F} of measurable functions s.t.
- Fréchet differentiability at m_0 with respect to

$$\| \mu - m_0 \| = \sup_{f \in \mathcal{F}} \left| \int f(x)(\mu - m_0)(dx) \right|,$$

- a CLT for empirical measures holds with respect to uniform convergence over \mathcal{F}.

\rightarrow balance needed.

Integral calculus related to the (Gateaux) linear functional derivative
\rightarrow versatile tool permitting to go beyond the i.i.d. case (Flenghi J. 22)
Related results in the statistical literature

- **Boos Serfling Ann. Stat 80** dimension $d = 1$, existence of a Gateaux differential of U at m_0 linear in the measure such that

$$U(m^N) - U(m_0) - \frac{1}{N} \sum_{i=1}^{N} dU(m_0, \delta_{\zeta_i} - m_0) = o \left(\| (m^N - m_0)((-\infty, \cdot]) \|_{\infty} \right)$$

(almost amounts to Fréchet diff. at m_0 w.r.t. Kolmogorov dist.).

- **Dudley 90**: "Gateaux derivative considered too weak"

Existence of a class \mathcal{F} of measurable functions s.t.

- Fréchet differentiability at m_0 with respect to

$$\| \mu - m_0 \| = \sup_{f \in \mathcal{F}} \left| \int f(x)(\mu - m_0)(dx) \right|,$$

- a CLT for empirical measures holds with respect to uniform convergence over \mathcal{F}.

→ balance needed.

Integral calculus related to the (Gateaux) linear functional derivative

→ versatile tool permitting to go beyond the i.i.d. case (*Flenghi J. 22*)
1. Generalization to nonlinear functionals

2. Fluctuations of interacting particle systems
Interacting particle system

\[
\begin{cases}
Y_{t}^{i,N} = \zeta_i + \int_{0}^{t} b(Y_{s}^{i,N}, \mu_{s}^{N}) \, ds + \int_{0}^{t} \sigma(Y_{s}^{i,N}, \mu_{s}^{N}) \, dW_{s}^{i}, & 1 \leq i \leq N, \quad t \geq 0, \\
\mu_{s}^{N} := \frac{1}{N} \sum_{i=1}^{N} \delta_{Y_{s}^{i,N}},
\end{cases}
\]

where
- \(b : \mathbb{R}^{d} \times \mathcal{P}_2(\mathbb{R}^{d}) \rightarrow \mathbb{R}^{d}, \sigma : \mathbb{R}^{d} \times \mathcal{P}_2(\mathbb{R}^{d}) \rightarrow \mathbb{R}^{d \times d'} \) Lipschitz,
- \((W_{i}, \zeta_{i})_{i \geq 1}\ i.i.d.\ with\ W_{i}\ a\ d'-dimensional\ Brownian\ motion\ independent\ from\ the\ \mathbb{R}^{d}-valued\ initial\ random\ vector\ \zeta_{i} \sim m_0.\)

Mean-field limit as \(N \rightarrow \infty \): SDE nonlinear in the sense of McKean

\[
\begin{cases}
X_{t} = \zeta + \int_{0}^{t} b(X_{s}, \mu_{s}^{\infty}) \, ds + \int_{0}^{t} \sigma(X_{s}, \mu_{s}^{\infty}) \, dW_{s}, & t \geq 0, \\
\mu_{s}^{\infty} := \text{Law}(X_{s}),
\end{cases}
\]

with \(W \ d'-dimensional\ Brownian\ motion \perp \zeta \sim m_0.\)

Question: for \(\Phi : \mathcal{P}_2(\mathbb{R}^{d}) \rightarrow \mathbb{R} \) a nonlinear functional, limiting behaviour of the fluctuations process

\[
(\sqrt{N}[\Phi(\mu_{t}^{N}) - \Phi(\mu_{t}^{\infty})])_{t \geq 0}?
\]
Interacting particle system

\[
\begin{cases}
Y_{t, i}^i, N = \zeta_i + \int_0^t b(Y_{s, i}^i, \mu_{s}^N) \, ds + \int_0^t \sigma(Y_{s, i}^i, \mu_{s}^N) \, dW_s, & 1 \leq i \leq N, \quad t \geq 0, \\
\mu_{s}^N := \frac{1}{N} \sum_{i=1}^N \delta_{Y_{s, i}^i},
\end{cases}
\]

where

- \(b : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^d \), \(\sigma : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^{d \times d'} \) Lipschitz,
- \((W^i, \zeta_i)_{i \geq 1}\) i.i.d. with \(W^i\) a \(d'\)-dimensional Brownian motion independent from the \(\mathbb{R}^d\)-valued initial random vector \(\zeta_i \sim m_0\).

Mean-field limit as \(N \to \infty\): SDE nonlinear in the sense of McKean

\[
\begin{cases}
X_t = \zeta + \int_0^t b(X_s, \mu_{s}^\infty) \, ds + \int_0^t \sigma(X_s, \mu_{s}^\infty) \, dW_s, & t \geq 0, \\
\mu_{s}^\infty := \text{Law}(X_s),
\end{cases}
\]

with \(W\) \(d'\)-dimensional Brownian motion \(\perp \zeta \sim m_0\).

Question: for \(\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}\) a nonlinear functional, limiting behaviour of the fluctuations process

\[
(\sqrt{N}[\Phi(\mu_{t}^N) - \Phi(\mu_{t}^\infty)])_{t > 0}?
\]
Interacting particle system

\[\begin{cases} Y^{i,N}_t = \zeta_i + \int_0^t b(Y^{i,N}_s, \mu^N_s) \, ds + \int_0^t \sigma(Y^{i,N}_s, \mu^N_s) \, dW^i_s, & 1 \leq i \leq N, \quad t \geq 0, \\ \mu^N_s := \frac{1}{N} \sum_{i=1}^N \delta_{Y^{i,N}_s}, \end{cases} \]

where

- \(b : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^d \), \(\sigma : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^d \times d' \) Lipschitz,
- \((W^i, \zeta_i)_{i \geq 1}\) i.i.d. with \(W^i\) a \(d'\)-dimensional Brownian motion independent from the \(\mathbb{R}^d\)-valued initial random vector \(\zeta_i \sim m_0\).

Mean-field limit as \(N \to \infty\) : SDE nonlinear in the sense of McKean

\[\begin{cases} X_t = \zeta + \int_0^t b(X_s, \mu^\infty_s) \, ds + \int_0^t \sigma(X_s, \mu^\infty_s) \, dW_s, & t \geq 0, \\ \mu^\infty_s := \text{Law}(X_s), \end{cases} \]

with \(W\) \(d'\)-dimensional Brownian motion \(\perp \zeta \sim m_0\).

Question : for \(\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}\) a nonlinear functional, limiting behaviour of the fluctuations process

\[(\sqrt{N} [\Phi(\mu^{N}_t) - \Phi(\mu^{\infty}_t)])_{t > 0}? \]
Regularity class

Definition

A function $f : \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ belongs to class $\mathcal{M}_k(\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d))$, if the derivatives $D^{(j,n,\beta)} f(x, \mu, y_1, \ldots, y_n)$ exist for every multi-index (j, n, β) such that $|(j, n, \beta)| \leq k$ and satisfy

$$\forall x, y_1, \ldots, y_n \in \mathbb{R}^d, \forall \mu \in \mathcal{P}_2(\mathbb{R}^d), \quad |D^{(j,n,\beta)} f(x, \mu, y_1, \ldots, y_n)| \leq C$$

and

$$\forall x', y'_1, \ldots, y'_n \in \mathbb{R}^d, \forall \mu' \in \mathcal{P}_2(\mathbb{R}^d),$$

$$\left|D^{(j,n,\beta)} f(x, \mu, y_1, \ldots, y_n) - D^{(j,n,\beta)} f(x', \mu', y'_1, \ldots, y'_n)\right| \leq C \left(|x - x'| + \sum_{i=1}^n |y_i - y'_i| + W_2(\mu, \mu')\right)$$

The n derivatives w.r.t. μ are taken in the Lions sense

$$D^{(0,1,0)} f(x, \mu) = \partial_{y_1} \frac{\delta U}{\delta m}(x, \mu, y_1).$$
Master equation

Let $\mathcal{V} : \mathbb{R}_+ \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ defined by

$$\mathcal{V}(t, \mathcal{L}(\theta)) = \Phi(\mathcal{L}(X^\theta_t))$$

where, for θ a square integrable \mathbb{R}^d-valued initial random vector $\perp \mathcal{W}$,

$$X^\theta_t = \theta + \int_0^t b(X^\theta_s, \mathcal{L}(X^\theta_s)) \, ds + \int_0^t \sigma(X^\theta_s, \mathcal{L}(X^\theta_s)) \, d\mathcal{W}_s,$$

$t \geq 0$.

Buckdahn, Li, Peng, Rainer AP 17 \rightarrow if $\Phi \in \mathcal{M}_2(\mathcal{P}_2(\mathbb{R}^d))$, $b, \sigma \in \mathcal{M}_2(\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d))$, then \mathcal{V} satisfies the master equation:

$$\begin{cases}
\partial_s \mathcal{V}(s, \mu) = \int_{\mathbb{R}^d} \left[\partial_\mu \mathcal{V}(s, \mu)(x) \cdot b(x, \mu) + \frac{1}{2} \text{Tr}(\partial_x \partial_\mu \mathcal{V}(s, \mu)(x)a(x, \mu)) \right] \mu(dx) \\
\mathcal{V}(0, \mu) = \Phi(\mu),
\end{cases}$$

where $a(x, \mu) \coloneqq \sigma(x, \mu)\sigma(x, \mu)^*$.
Master equation

Let $\mathcal{V}: \mathbb{R}_+ \times \mathcal{P}_2(\mathbb{R}^d) \rightarrow \mathbb{R}$ defined by

$$\mathcal{V}(t, \mathcal{L}(\theta)) = \Phi(\mathcal{L}(X^\theta_t))$$

where, for θ a square integrable \mathbb{R}^d-valued initial random vector $\perp \mathcal{W}$,

$$X^\theta_t = \theta + \int_0^t b(X^\theta_s, \mathcal{L}(X^\theta_s)) \, ds + \int_0^t \sigma(X^\theta_s, \mathcal{L}(X^\theta_s)) \, d\mathcal{W}_s, \quad t \geq 0.$$

Buckdahn, Li, Peng, Rainer AP 17 → if $\Phi \in \mathcal{M}_2(\mathcal{P}_2(\mathbb{R}^d))$, $b, \sigma \in \mathcal{M}_2(\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d))$, then \mathcal{V} satisfies the master equation:

$$\begin{cases}
\partial_s \mathcal{V}(s, \mu) = \int_{\mathbb{R}^d} \left[\partial_\mu \mathcal{V}(s, \mu)(x) \cdot b(x, \mu) + \frac{1}{2} \text{Tr}(\partial_x \partial_\mu \mathcal{V}(s, \mu)(x) a(x, \mu)) \right] \mu(dx) \\
\mathcal{V}(0, \mu) = \Phi(\mu),
\end{cases}$$

where $a(x, \mu) := \sigma(x, \mu)\sigma(x, \mu)^*$.

\[\sqrt{N} \left[\Phi(\mu^N_t) - \Phi(\mu^\infty_t) \right] = \sqrt{N} (\mathcal{V}(t, m^N) - \mathcal{V}(t, m_0)) \]

\[+ \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_0^t \partial_\mu \mathcal{V}^* (t - s, \mu^N_s) (Y_{s,i}^N) \sigma(Y_{s,i}^N, \mu^N_s) dW_i^s \equiv I_t^N \]

\[+ \int_0^t \frac{1}{2} \sum_{i=1}^{N} \left[\frac{1}{N^{3/2}} \operatorname{Tr} \left(a(Y_{s,i}^N, \mu^N_s) \partial_\mu^2 \mathcal{V} (t - s, \mu^N_s) (Y_{s,i}^N, Y_{s,i}^N) \right) \right] ds. \]

\[\langle I_t^N \rangle_t = \frac{1}{N} \sum_{i=1}^{N} \int_0^t \partial_\mu \mathcal{V}^* (t - s, \mu^N_s) (Y_{s,i}^N) a(Y_{s,i}^N, \mu^N_s) \partial_\mu \mathcal{V} (t - s, \mu^N_s) (Y_{s,i}^N) ds \]

\[\overset{N\to\infty}{\longrightarrow} \int_0^t \int_{\mathbb{R}^d} \partial_\mu \mathcal{V}^* (t - s, \mu^\infty_s) (y) a(y, \mu^\infty_s) \mathcal{V} (t - s, \mu^\infty_s) (y) \mu^\infty_s (dy) ds. \]
Generalization to nonlinear functionals

Fluctuations of interacting particle systems

Central limit theorems over nonlinear functions of measures

\[\sqrt{N} \left[\Phi(\mu_t^N) - \Phi(\mu_t^\infty) \right] = \sqrt{N} \left(\mathcal{V}(t, m^N) - \mathcal{V}(t, m_0) \right) \]

fluctuations of the initial emp. meas.

\[+ \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \int_0^t \partial_\mu \mathcal{V}^*(t - s, \mu_s^N)(Y_s^{i,N})\sigma(Y_s^{i,N}, \mu_s^N) dW^i_s \quad := I^N_t \]

\[+ \int_0^t \frac{1}{2} \sum_{i=1}^{N} O(N^{-1/2}) \right \} \right] ds. \]

\[\left\langle I^N_t \right\rangle = \frac{1}{N} \sum_{i=1}^{N} \int_0^t \partial_\mu \mathcal{V}^*(t - s, \mu_s^N)(Y_s^{i,N}) a(Y_s^{i,N}, \mu_s^N) \partial_\mu \mathcal{V}(t - s, \mu_s^N)(Y_s^{i,N}) ds \]

\[\lim_{N \to \infty} \int_0^t \int_{\mathbb{R}^d} \partial_\mu \mathcal{V}^*(t - s, \mu_s^\infty)(y) a(y, \mu_s^\infty) \mathcal{V}(t - s, \mu_s^\infty)(y) \mu_s^\infty(dy) ds. \]
Suppose $m_0 \in \mathcal{P}_{12}(\mathbb{R}^d)$, $\Phi \in \mathcal{M}_5(\mathcal{P}_2(\mathbb{R}^d))$, $b, \sigma \in \mathcal{M}_5(\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d))$ and uniformly bounded. Then, in $C(\mathbb{R}_+, \mathbb{R})$, the fluctuations process
\[
(\sqrt{N}[\Phi(\mu^N_t) - \Phi(\mu^\infty_t)])_{t \geq 0}
\]
converges weakly to a centered Gaussian process L with covariance
\[
\text{Cov}(L_t, L_u) = \text{Cov}\left(\frac{\delta \nu}{\delta m}(t, m_0, \xi_1), \frac{\delta \nu}{\delta m}(u, m_0, \xi_1)\right) + \int_0^{t \wedge u} \int_{\mathbb{R}^d} \partial_\mu \nu^*(t - s, \mu^\infty_s)(y) a(y, \mu^\infty_s) \nu(u - s, \mu^\infty_s)(y) \mu^\infty_s(dy) ds.
\]