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Central Limit Theorem
Let ℓ ≥ 0, Pℓ(Rd ) = {prob. meas. η on Rd s.t.

∫
Rd |x |ℓη(dx) < ∞},

and U : Pℓ(Rd ) → R be the linear functional defined by

U(µ) =

∫
Rd

φ(x)µ(dx),

where φ : Rd → R is a measurable s.t. supx∈Rd
|φ(x)|

1+|x|ℓ/2 < ∞.

Let mN = 1
N

∑N
i=1 δζi where (ζi)i≥1 are i.i.d. according to m0 ∈ Pℓ(Rd ).

We have

√
N(U(mN)− U(m0)) =

√
N

(
1
N

N∑
i=1

φ(ζi)− E[φ(ζ1)]

)
(d)−→ N1(0,Var(φ(ζ1))) as N → ∞.
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Generalization to nonlinear functionals

Linear functional derivative
Notion first introduced by Cardaliaguet, Delarue, Lasry, Lions and
used in the literature on mean-field games.

Definition
Let ℓ ≥ 0. A functional U : Pℓ(Rd ) → R admits a linear functional
derivative at µ ∈ Pℓ(Rd ) if there exists a measurable function
Rd ∋ y 7→ δU

δm (µ, y) such that supy∈Rd

∣∣ δU
δm (µ, y)

∣∣ /(1 + |y |ℓ) < ∞ and

∀ν ∈ Pℓ(Rd ), lim
ε→0+

U(µ+ ε(ν − µ))− U(µ)

ε
=

∫
Rd

δU
δm

(µ, y) (ν−µ)(dy).

For φ : Rd → R measurable such that supx∈Rd
|φ(x)|
1+|x|ℓ < ∞, the linear

functional U(µ) =
∫
Rd φ(x)µ(dx) admits a linear functional derivative

at each µ ∈ Pℓ(Rd ) given by δU
δm (µ, y) = φ(y).
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Related integral calculus

Lemma
Let ℓ ≥ 0, m,m′ ∈ Pℓ(Rd ), and suppose that the linear functional
derivative of a functional U : Pℓ(Rd ) → R exists on the segment
(ms := sm′ + (1 − s)m)s∈[0,1] and that

sup
(s,y)∈[0,1]×Rd

∣∣∣∣ δU
δm

(ms, y)
∣∣∣∣ /(1 + |y |ℓ) < ∞.

Then

U(m′)− U(m) =

∫ 1

0

∫
Rd

δU
δm

(ms, y)(m′ − m)(dy)ds.
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Generalization of the CLT to nonlinear functionals
For i ∈ {1, · · · ,N} and s ∈ [0,1], write

mN,i
s :=

N − (i − 1)− s
N

m0 +
1
N

i−1∑
j=1

δζj +
s
N
δζi .

Using mN,i
0 = mN,i−1

1 , one has the telescoping sum

U(mN)− U(m0) = U(mN,N
1 )− U(mN,1

0 ) =
N∑

i=1

(
U(mN,i

1 )− U(mN,i
0 )
)

=
N∑

i=1

∫ 1

s=0

∫
Rd

δU
δm

(mN,i
s , x)

δζi − m0

N
(dx)ds.

Note that mN,i
0 = mN,i−1

1 = N−(i−1)
N m0 +

1
N

∑i−1
j=1 δζj is indep. from ζi .
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Generalization to nonlinear functionals

Generalization of the CLT to nonlinear functionals U

√
N(U(mN)− U(m0)) =

1√
N

N∑
i=1

martingale increment︷ ︸︸ ︷∫
Rd

δU
δm

(mN,i
0 , x)(δζi − m0)(dx)+RN

RN =
1√
N

N∑
i=1

∫ 1

s=0

∫
Rd

(
δU
δm

(mN,i
s , x)− δU

δm
(mN,i

0 , x)
)

︸ ︷︷ ︸
TV (mN,i

s ,mN,i
0 )≤ s

N

(δζi − m0)(dx)ds

Find assumptions on U ensuring that
by the Central Limit Theorem for martingales and using

sup
1≤i≤N,s∈[0,1]

Wℓ(m
N,i
s ,m0) −→

N→∞
0,

the first term converges in law to N1(0,Var( δU
δm (m0, ζ1))),

the remainder RN vanishes as N → ∞.
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Generalization to nonlinear functionals

Remarks
For linear functionals U(µ) =

∫
Rd φ(x)µ(dx), δU

δm (µ, x) = φ(x) and
Var( δU

δm (m0, ζ1)) = Var (φ(ζ1)).
To prove the CLT, our decomposition requires less regularity on
U than the one previously considered by Delarue, Lacker,
Ramanan EJP 19 (see also Szpruch and Tse AAP 21) to prove
that supN∈N N2E[(U(mN)− U(m0))

4] < ∞ :

U(mN)− U(m0) =
1
N

N∑
i=1

independent increments︷ ︸︸ ︷∫
Rd

δU
δm

(m0, x)(δζi − m0)(dx)

+
1
N

N∑
i=1

∫ 1

s=0

∫
Rd

(
δU
δm

(mN,i
s , x)− δU

δm
(m0, x)

)
︸ ︷︷ ︸

TV (mN,i
s ,m0)≤ i+s−1

N

(δζi − m0)(dx)ds
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Generalization to nonlinear functionals

Theorem
Let ℓ ≥ 0, m0 ∈ Pℓ(Rd ) and mN = 1

N

∑N
i=1 δζi , with (ζi)i≥1 i.i.d. ∼ m0.

Suppose that there exists r > 0 such that
U admits a linear functional derivative on the ball BWℓ

(m0, r),
∃C < ∞, ∀(µ, x) ∈ BWℓ

(m0, r)× Rd ,
∣∣ δU
δm (µ, x)

∣∣ ≤ C
(
1 + |x |ℓ/2

)
∃α ∈ (1/2,1], ∃C < ∞, ∀µ1, µ2 ∈ BWℓ

(m0, r),
∀x ∈ Rd ,

∣∣ δU
δm (µ2, x)− δU

δm (µ1, x)
∣∣ ≤ C(1 + |x |ℓ)TVα(µ2, µ1),

supx∈Rd
| δU
δm (µ,x)− δU

δm (m0,x)|
1+|x|ℓ/2 converges to 0 when Wℓ(µ,m0) → 0.

Then the following convergence in distribution holds :

√
N
(

U(mN)− U(m0)

)
d

=⇒ N
(

0,Var
(
δU
δm

(m0, ζ1)

))
.
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Generalization to nonlinear functionals

Wasserstein distances
For ℓ > 0, we endow Pℓ(Rd ) with the Wasserstein distance :

for µ, ν ∈ Pℓ(Rd ), Wℓ(µ, ν) =

(
inf

π∈P(µ,ν)

∫
Rd×Rd

|y − x |ℓπ(dx ,dy)
)1/ℓ∨1

where P(µ, ν) = {π ∈ Pℓ(R2d ) : ∀A ∈ B(Rd ), π(A × Rd ) = µ(A)

and π(Rd × A) = ν(A)}

We endow P0(Rd ) with

W0(µ, ν) = inf
π∈P(µ,ν)

∫
Rd×Rd

(|y − x | ∧ 1)π(dx ,dy),

which metricizes the weak convergence topology.
When m0 is discrete, for Dℓ(µ2, µ1) :=

∫
Rd (1 + |y |ℓ)|µ2 − µ1|(dy),

sup1≤i≤N,s∈[0,1] Dℓ(m
N,i
s ,m0) −→

N→∞
0, and we may replace Wℓ by

the stronger metric Dℓ in the hypotheses.
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Related results in the statistical literature
Boos Serfling Ann. Stat 80 dimension d = 1, existence of a
Gateaux differential of U at m0 linear in the measure such that

U(mN)−U(m0)−
1
N

N∑
i=1

dU(m0, δζi−m0) = o
(∥∥(mN − m0)((−∞, ·])

∥∥
∞

)
(almost amounts to Fréchet diff. at m0 w.r.t. Kolmogorov dist.).
Dudley 90 : "Gateaux derivative considered too weak"
Existence of a class F of measurable functions s.t.

Fréchet differentiability at m0 with respect to

∥µ− m0∥ = sup
f∈F

∣∣∣∣∫ f (x)(µ− m0)(dx)
∣∣∣∣ ,

a CLT for empirical measures holds with respect to uniform
convergence over F .

→ balance needed.
Integral calculus related to the (Gateaux) linear functional derivative
→ versatile tool permitting to go beyond the i.i.d. case (Flenghi J. 22)
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Fluctuations of interacting particle systems

Interacting particle system
{

Y i,N
t = ζi +

∫ t
0 b(Y i,N

s , µN
s )ds +

∫ t
0 σ(Y

i,N
s , µN

s )dW i
s, 1 ≤ i ≤ N, t ≥ 0,

µN
s := 1

N

∑N
i=1 δY i,N

s
,

where
b : Rd × P2(Rd ) → Rd , σ : Rd × P2(Rd ) → Rd×d ′

Lipschitz,
(W i , ζi)i≥1 i.i.d. with W i a d ′-dimensional Brownian motion
independent from the Rd -valued initial random vector ζi ∼ m0.

Mean-field limit as N → ∞ : SDE nonlinear in the sense of McKean{
Xt = ζ +

∫ t
0 b(Xs, µ

∞
s )ds +

∫ t
0 σ(Xs, µ

∞
s )dWs, t ≥ 0,

µ∞
s := Law(Xs),

with W d ′-dimensional Brownian motion ⊥ ζ ∼ m0.
Question : for Φ : P2(Rd ) → R a nonlinear functional, limiting
behaviour of the fluctuations process

(
√

N
[
Φ(µN

t )− Φ(µ∞
t )
]
)t≥0?
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Fluctuations of interacting particle systems

Regularity class
Definition
A function f : Rd × P2(Rd ) → R belongs to class Mk (Rd × P2(Rd )), if
the derivatives D(j,n,β)f (x , µ, y1, . . . , yn) exist for every multi-index
(j ,n, β) such that |(j ,n, β)| ≤ k and satisfy

∀x , y1, . . . , yn ∈ Rd , ∀µ ∈ P2(Rd ),
∣∣D(j,n,β)f (x , µ, y1, . . . , yn)

∣∣ ≤ C

and ∀x ′, y ′
1, . . . , y

′
n ∈ Rd , ∀µ′ ∈ P2(Rd ),∣∣∣D(j,n,β)f (x , µ, y1, . . . , yn)− D(j,n,β)f (x ′, µ′, y ′

1, . . . , y
′
n)
∣∣∣

≤ C
(
|x − x ′|+

n∑
i=1

|yi − y ′
i |+ W2(µ, µ

′)

)
The n derivatives w.r.t. µ are taken in the Lions sense

D(0,1,0)f (x , µ) = ∂y1

δU
δm

(x , µ, y1).
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Generalization to nonlinear functionals
Fluctuations of interacting particle systems

Central limit theorems over nonlinear functions of measures

Fluctuations of interacting particle systems

Master equation
Let V : R+ × P2(Rd ) → R defined by

V(t ,L(θ)) = Φ
(
L(X θ

t )
)

where, for θ a square integrable Rd -valued initial random vector ⊥ W ,

X θ
t = θ +

∫ t

0
b(X θ

s ,L(X θ
s ))ds +

∫ t

0
σ(X θ

s ,L(X θ
s ))dWs, t ≥ 0.

Buckdahn, Li, Peng, Rainer AP 17 −→ if Φ ∈ M2(P2(Rd )),
b, σ ∈ M2(Rd × P2(Rd )), then V satisfies the master equation :{
∂sV(s, µ) =

∫
Rd

[
∂µV(s, µ)(x) · b(x , µ) + 1

2 Tr
(
∂x∂µV(s, µ)(x)a(x , µ)

)]
µ(dx), s ≥ 0,

V(0, µ) = Φ(µ),

where a(x , µ) := σ(x , µ)σ(x , µ)∗.
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Generalization to nonlinear functionals
Fluctuations of interacting particle systems

Central limit theorems over nonlinear functions of measures

Fluctuations of interacting particle systems

√
N
[
Φ(µN

t )− Φ(µ∞
t )
]
=

fluctuations of the initial emp. meas.︷ ︸︸ ︷√
N
(
V(t ,mN)− V(t ,m0)

)
+

1√
N

N∑
i=1

∫ t

0
∂µV∗(t − s, µN

s
)
(Y i,N

s )σ(Y i,N
s , µN

s )dW i
s := IN

t

+

∫ t

0

1
2

[
1

N3/2

N∑
i=1︸ ︷︷ ︸

O(N−1/2)

Tr
(

a
(
Y i,N

s , µN
s
)
∂2
µV
(
t − s, µN

s
)
(Y i,N

s ,Y i,N
s )

)]
ds.

⟨IN
· ⟩t =

1
N

N∑
i=1

∫ t

0
∂µV∗(t − s, µN

s
)
(Y i,N

s )a(Y i,N
s , µN

s )∂µV
(
t − s, µN

s
)
(Y i,N

s )ds

−→
N→∞

∫ t

0

∫
Rd

∂µV∗(t − s, µ∞
s
)
(y)a(y , µ∞

s )V
(
t − s, µ∞

s
)
(y)µ∞

s (dy)ds.
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Generalization to nonlinear functionals
Fluctuations of interacting particle systems

Central limit theorems over nonlinear functions of measures

Fluctuations of interacting particle systems

Theorem
Suppose m0 ∈ P12(Rd ), Φ ∈ M5(P2(Rd )), b, σ ∈ M5(Rd × P2(Rd ))
and uniformly bounded. Then, in C(R+,R), the fluctuations process

(
√

N
[
Φ(µN

t )− Φ(µ∞
t )
]
)t≥0

converges weakly to a centered Gaussian process L with covariance

Cov(Lt ,Lu) = Cov
(
δV
δm

(t ,m0, ξ1),
δV
δm

(u,m0, ξ1)

)
+

∫ t∧u

0

∫
Rd

∂µV∗(t − s, µ∞
s
)
(y)a(y , µ∞

s )V
(
u − s, µ∞

s
)
(y)µ∞

s (dy)ds.
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