Kolmogorov equations on spaces of measures

 associated to nonlinear filtering processesMattia Martini
Università degli Studi di Milano

Overview

(1) Stochastic filtering

- Nonlinear filtering problem
- Nonlinear filtering equations

2 Kolmogorov equations associated to filtering equations
Itô formula

- Backward equation associated to the Zakai equation
- Backward equation associated to the K.-S. equation

Kolmogorov equations on spaces of measures

We want to introduce and study a class of backward Kolmogorov equations on

- $\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right), \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$: positive and probability measures with finite second moment;
- $\langle\mu, \psi\rangle=\mu(\psi)=\int_{\mathbb{R}^{d}} \psi(x) \mu(\mathrm{d} \boldsymbol{x})$;

Kolmogorov equations on spaces of measures

We want to introduce and study a class of backward Kolmogorov equations on

- $\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right), \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$: positive and probability measures with finite second moment;
- $\langle\mu, \psi\rangle=\mu(\psi)=\int_{\mathbb{R}^{d}} \psi(x) \mu(\mathrm{d} \boldsymbol{x})$;

SDEs for measure-valued processes arise naturally in the stochastic filtering framework.

- Many results when there is a density, using stochastic calculus on Hilbert spaces (e.g. Rozovsky [9], Pardoux [8]).
- New tools for calculus on spaces of (probability) measures (e.g. Ambrosio, Gigli \& Savarè [1], P.-L. Lions [5], Carmona \& Delarue [3]).
- Optimal control with partial observation (e.g. Gozzi \& Święch [4] in the Hilbert setting, or recently Bandini, Cosso, Fuhrman \& Pham [2] on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$).

Stochastic filtering The problem

Signal process

$$
\begin{equation*}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} s+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0} \in L^{2}\left(\Omega, \mathcal{F}_{0}\right), \quad t \in[0, T] . \tag{1}
\end{equation*}
$$

Stochastic filtering The problem

Signal process

$$
\begin{equation*}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} s+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0} \in L^{2}\left(\Omega, \mathcal{F}_{0}\right), \quad t \in[0, T] . \tag{1}
\end{equation*}
$$

Observation process

For every $t \in[0, T]$,

$$
\begin{array}{r}
\mathrm{d} Y_{t}=h\left(X_{t}\right) \mathrm{d} t+\mathrm{d} B_{t}, \quad Y_{0}=0, \\
\mathcal{F}_{t}^{Y}=\sigma\left(Y_{s}, 0 \leq s \leq t\right) \vee \mathcal{N}, \tag{2}
\end{array}
$$

where \mathcal{N} are \mathbb{P}-negligible sets.

Stochastic filtering The problem

Signal process

$$
\begin{equation*}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} s+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0} \in L^{2}\left(\Omega, \mathcal{F}_{0}\right), \quad t \in[0, T] . \tag{1}
\end{equation*}
$$

Observation process

For every $t \in[0, T]$,

$$
\begin{array}{r}
\mathrm{d} Y_{t}=h\left(X_{t}\right) \mathrm{d} t+\mathrm{d} B_{t}, \quad Y_{0}=0 \\
\mathcal{F}_{t}^{Y}=\sigma\left(Y_{s}, 0 \leq s \leq t\right) \vee \mathcal{N} \tag{2}
\end{array}
$$

where \mathcal{N} are \mathbb{P}-negligible sets.

Goal

- The signal X is not directly observed;
- The available information is given by Y;
- We want to provide an approximation of X given the observation Y.

Stochastic filtering The filter

- Given the information \mathcal{F}_{t}^{Y}, the best estimate for $\varphi\left(X_{t}\right)$ is

$$
\mathbb{E}\left[\varphi\left(X_{t}\right) \mid \mathcal{F}_{t}^{\curlyvee}\right] ;
$$

Stochastic filtering The filter

- Given the information \mathcal{F}_{t}^{Y}, the best estimate for $\varphi\left(X_{t}\right)$ is

$$
\mathbb{E}\left[\varphi\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right] ;
$$

- Let Π_{t} be the regular conditional probability distribution of X_{t} given \mathcal{F}_{t}^{Y} : for any $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$

$$
\Pi_{t}(A, \omega)=\mathbb{P}\left(X_{t} \in A \mid \mathcal{F}_{t}^{Y}\right)(\omega), \quad \text { a.e. } \omega
$$

- Given the information \mathcal{F}_{t}^{Y}, the best estimate for $\varphi\left(X_{t}\right)$ is

$$
\mathbb{E}\left[\varphi\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right]
$$

- Let Π_{t} be the regular conditional probability distribution of X_{t} given \mathcal{F}_{t}^{Y} : for any $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$

$$
\Pi_{t}(A, \omega)=\mathbb{P}\left(X_{t} \in A \mid \mathcal{F}_{t}^{Y}\right)(\omega), \quad \text { a.e. } \omega
$$

- For every $\varphi \in \mathrm{C}_{\mathrm{b}}\left(\mathbb{R}^{d}\right)$ and $t \in[0, T]$,

$$
\left\langle\Pi_{t}, \varphi\right\rangle=\mathbb{E}\left[\varphi\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right], \quad \text { a.s. }
$$

- Given the information \mathcal{F}_{t}^{Y}, the best estimate for $\varphi\left(X_{t}\right)$ is

$$
\mathbb{E}\left[\varphi\left(X_{t}\right) \mid \mathcal{F}_{t}^{\gamma}\right] ;
$$

- Let Π_{t} be the regular conditional probability distribution of X_{t} given \mathcal{F}_{t}^{Y} : for any $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$

$$
\Pi_{t}(A, \omega)=\mathbb{P}\left(X_{t} \in A \mid \mathcal{F}_{t}^{Y}\right)(\omega), \quad \text { a.e. } \omega
$$

- For every $\varphi \in \mathrm{C}_{\mathrm{b}}\left(\mathbb{R}^{d}\right)$ and $t \in[0, T]$,

$$
\left\langle\Pi_{t}, \varphi\right\rangle=\mathbb{E}\left[\varphi\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right], \quad \text { a.s. }
$$

$\left\{\Pi_{t}=\operatorname{Law}\left(X_{t} \mid \mathcal{F}_{t}^{Y}\right)\right\}_{t \in[0, T]}$ is a $\mathcal{P}\left(\mathbb{R}^{d}\right)$-valued process called filter.

Stochastic filtering The unnormalized filter

Define \mathbb{Q} by $\left.\frac{\mathrm{d} \mathbb{Q}}{\mathrm{dP}}\right|_{\mathcal{F}_{t}}=M_{t}^{-1}=\exp \left\{-\frac{1}{2} \int_{0}^{t}\left|h\left(X_{s}\right)\right|^{2} \mathrm{~d} s-\int_{0}^{t} h\left(X_{s}\right) \mathrm{d} B_{s}\right\}$.

Define \mathbb{Q} by $\left.\frac{\mathrm{dQ}}{\mathrm{dP}}\right|_{\mathcal{F}_{t}}=M_{t}^{-1}=\exp \left\{-\frac{1}{2} \int_{0}^{t}\left|h\left(X_{s}\right)\right|^{2} \mathrm{~d} s-\int_{0}^{t} h\left(X_{s}\right) \mathrm{d} B_{s}\right\}$.

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as

$$
\begin{equation*}
\left\langle\Pi_{t}, \varphi\right\rangle=\frac{\left\langle\rho_{t}, \varphi\right\rangle}{\left\langle\rho_{t}, \mathbf{1}\right\rangle}, \quad t \in[0, T], \varphi \in \mathrm{C}_{\mathrm{b}}\left(\mathbb{R}^{d}\right), \tag{3}
\end{equation*}
$$

where $\left\langle\rho_{t}, \varphi\right\rangle=\mathbb{E}^{\mathbb{Q}}\left[M_{t} \varphi\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right]$.
$\left\{\rho_{t}\right\}_{t \in[0, T]}$ is a $\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$-valued process called unnormalized filter.

Define \mathbb{Q} by $\left.\frac{\mathrm{dQ}}{\mathrm{dP}}\right|_{\mathcal{F}_{t}}=M_{t}^{-1}=\exp \left\{-\frac{1}{2} \int_{0}^{t}\left|h\left(X_{s}\right)\right|^{2} \mathrm{~d} s-\int_{0}^{t} h\left(X_{s}\right) \mathrm{d} B_{s}\right\}$.

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as

$$
\begin{equation*}
\left\langle\Pi_{t}, \varphi\right\rangle=\frac{\left\langle\rho_{t}, \varphi\right\rangle}{\left\langle\rho_{t}, \mathbf{1}\right\rangle}, \quad t \in[0, T], \varphi \in \mathrm{C}_{\mathrm{b}}\left(\mathbb{R}^{d}\right), \tag{3}
\end{equation*}
$$

where $\left\langle\rho_{t}, \varphi\right\rangle=\mathbb{E}^{\mathbb{Q}}\left[M_{t} \varphi\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right]$.
$\left\{\rho_{t}\right\}_{t \in[0, T]}$ is a $\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$-valued process called unnormalized filter.
Y is a brownian motion under \mathbb{Q}.

Define \mathbb{Q} by $\left.\frac{\mathrm{dQ}}{\mathrm{dP}}\right|_{\mathcal{F}_{t}}=M_{t}^{-1}=\exp \left\{-\frac{1}{2} \int_{0}^{t}\left|h\left(X_{s}\right)\right|^{2} \mathrm{~d} s-\int_{0}^{t} h\left(X_{s}\right) \mathrm{d} B_{s}\right\}$.

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as

$$
\begin{equation*}
\left\langle\Pi_{t}, \varphi\right\rangle=\frac{\left\langle\rho_{t}, \varphi\right\rangle}{\left\langle\rho_{t}, \mathbf{1}\right\rangle}, \quad t \in[0, T], \varphi \in \mathrm{C}_{\mathrm{b}}\left(\mathbb{R}^{d}\right), \tag{3}
\end{equation*}
$$

where $\left\langle\rho_{t}, \varphi\right\rangle=\mathbb{E}^{\mathbb{Q}}\left[M_{t} \varphi\left(X_{t}\right) \mid \mathcal{F}_{t}^{Y}\right]$.
$\left\{\rho_{t}\right\}_{t \in[0, T]}$ is a $\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$-valued process called unnormalized filter.
Y is a brownian motion under \mathbb{Q}. By Itô formula applied to $M_{t} \varphi(X)$ we obtain

The Zakai equation (Z)

The unnormalized filter satisfies, for every test φ,

$$
\begin{equation*}
\mathrm{d}\left\langle\rho_{t}, \varphi\right\rangle=\left\langle\rho_{t}, A \varphi\right\rangle \mathrm{d} t+\left\langle\rho_{t}, h \varphi\right\rangle \mathrm{d} Y_{t}, \quad t \in(0, T], \tag{4}
\end{equation*}
$$

where A is the infinitesimal generator of X.

Stochastic filtering Kushner-Stratonovitch equation

Let A be the generator of $X: A \varphi=b^{\top}\left(D_{x} \varphi\right)+\frac{1}{2} \operatorname{tr}\left\{\left(\mathrm{D}_{x}^{2} \varphi\right) \sigma \sigma^{\top}\right\}$.
The Zakai equation (Z)
The unnormalized filter satisfies, for every test φ,

$$
\mathrm{d}\left\langle\rho_{t}, \varphi\right\rangle=\left\langle\rho_{t}, \boldsymbol{A} \varphi\right\rangle \mathrm{d} t+\left\langle\rho_{t}, h \varphi\right\rangle \mathrm{d} Y_{t}, \quad t \in(0, T],
$$

where Y is a Brownian motion under \mathbb{Q}.

Stochastic filtering Kushner-Stratonovitch equation

Let A be the generator of $X: A \varphi=b^{\top}\left(D_{x} \varphi\right)+\frac{1}{2} \operatorname{tr}\left\{\left(\mathrm{D}_{x}^{2} \varphi\right) \sigma \sigma^{\top}\right\}$.
The Zakai equation (Z)
The unnormalized filter satisfies, for every test φ,

$$
\mathrm{d}\left\langle\rho_{t}, \varphi\right\rangle=\left\langle\rho_{t}, \boldsymbol{A} \varphi\right\rangle \mathrm{d} t+\left\langle\rho_{t}, h \varphi\right\rangle \mathrm{d} Y_{t}, \quad t \in(0, T],
$$

where Y is a Brownian motion under \mathbb{Q}.

Using the Kallianpur-Striebel formula

The Kushner-Stratonovich equation (KS)

The filter satisfies, for every test φ,

$$
\mathrm{d}\left\langle\Pi_{t}, \varphi\right\rangle=\left\langle\Pi_{t}, A \varphi\right\rangle \mathrm{d} t+\left(\left\langle\Pi_{t}, h \varphi\right\rangle-\left\langle\Pi_{t}, \varphi\right\rangle\left\langle\Pi_{t}, h\right\rangle\right) \mathrm{d} / t, \quad t \in(0, T],
$$

where $\left\{I_{t}\right\}_{t \in[0, T]}$ is called innovation process and is a Brownian motion under \mathbb{P}.

Stochastic filtering Example: Kalman-Bucy filter

Signal:

$$
\begin{array}{r}
\mathrm{d} X_{t}=b_{t} X_{t} \mathrm{~d} t+\sigma_{t} \mathrm{~d} W_{t}, \quad a_{t}^{i j}=\sigma_{t} \sigma_{t}^{\top}, \\
A_{t} \varphi(x)=\mathrm{D}_{x} \varphi(x)^{\top} b_{t} x+\frac{1}{2} \sum_{i, j} a_{t}^{i j} \partial_{i j}^{2} \varphi(x) .
\end{array}
$$

Stochastic filtering Example: Kalman-Bucy filter

Signal:

$$
\begin{aligned}
\mathrm{d} X_{t} & =b_{t} X_{t} \mathrm{~d} t+\sigma_{t} \mathrm{~d} W_{t}, \quad a_{t}^{i j}=\sigma_{t} \sigma_{t}^{\top}, \\
A_{t} \varphi(x) & =\mathrm{D}_{x} \varphi(x)^{\top} b_{t} X+\frac{1}{2} \sum_{i, j} a_{\mathrm{t}}^{i j} \partial_{i j}^{2} \varphi(x) .
\end{aligned}
$$

Observation:

$$
\mathrm{d} Y_{t}=h_{\mathrm{t}} X_{\mathrm{t}} \mathrm{~d} t+\mathrm{d} B_{\mathrm{t}}, \quad Y_{0}=0 .
$$

(X, Y) is a gaussian process.

Stochastic filtering Example: Kalman-Bucy filter

Signal:

$$
\begin{array}{r}
\mathrm{d} X_{t}=b_{t} X_{t} \mathrm{~d} t+\sigma_{t} \mathrm{~d} W_{t}, \quad a_{t}^{i j}=\sigma_{t} \sigma_{t}^{\top}, \\
A_{t} \varphi(x)=\mathrm{D}_{x} \varphi(x)^{\top} b_{t} X+\frac{1}{2} \sum_{i, j} a_{t}^{i j} \partial_{i j}^{2} \varphi(x) .
\end{array}
$$

Observation:

$$
\mathrm{d} Y_{t}=h_{\mathrm{t}} X_{\mathrm{t}} \mathrm{~d} t+\mathrm{d} B_{\mathrm{t}}, \quad Y_{0}=0 .
$$

(X, Y) is a gaussian process.
The filter Π solves

$$
\mathrm{d}\left\langle\Pi_{\mathrm{t}}, \varphi\right\rangle=\left\langle\Pi_{\mathrm{t}}, A_{s} \varphi\right\rangle \mathrm{d} t+\left\langle\Pi_{\mathrm{t}}, \varphi h_{\mathrm{t}}^{\top} \iota\right\rangle \mathrm{d} l_{\mathrm{t}}-\left\langle\Pi_{\mathrm{t}}, \varphi\right\rangle\left\langle\Pi_{\mathrm{t}}, h^{\top} \iota\right\rangle \mathrm{d} l_{\mathrm{t}},
$$

$\iota(x)=x$.

Stochastic filtering Example: Kalman-Bucy filter

Signal:

$$
\begin{array}{r}
\mathrm{d} X_{t}=b_{t} X_{t} \mathrm{~d} t+\sigma_{t} \mathrm{~d} W_{t}, \quad a_{t}^{i j}=\sigma_{t} \sigma_{t}^{\top}, \\
A_{t} \varphi(x)=\mathrm{D}_{x} \varphi(x)^{\top} b_{t} X+\frac{1}{2} \sum_{i, j} a_{t}^{i j} \partial_{i j}^{2} \varphi(x) .
\end{array}
$$

Observation:

$$
\mathrm{d} Y_{t}=h_{\mathrm{t}} X_{t} \mathrm{~d} t+\mathrm{d} B_{\mathrm{t}}, \quad Y_{0}=0 .
$$

(X, Y) is a gaussian process.
The filter Π solves

$$
\mathrm{d}\left\langle\Pi_{t}, \varphi\right\rangle=\left\langle\Pi_{t}, A_{s} \varphi\right\rangle \mathrm{d} t+\left\langle\Pi_{\mathrm{t}}, \varphi h_{t}^{\top} \iota\right\rangle \mathrm{d} I_{t}-\left\langle\Pi_{\mathrm{t}}, \varphi\right\rangle\left\langle\Pi_{\mathrm{t}}, h^{\top} \iota\right\rangle \mathrm{d} l_{t},
$$

$\iota(x)=x$. Moreover, for $\omega \in \Omega$ fixed, $\Pi_{t}(\omega)$ is gaussian with

- Mean \hat{X}_{t} that solves the SDE

$$
\mathrm{d} \hat{X}_{t}=b_{\mathrm{t}} \hat{X}_{t} \mathrm{~d} t+\gamma_{t} h_{t} \mathrm{~d} l_{t}, \quad I_{t}=Y_{t}-\int_{0}^{t} h_{s} \hat{X}_{s} \mathrm{ds} .
$$

- Deterministic variance that solves the Riccati equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \gamma_{t}=\gamma_{t} \boldsymbol{b}_{t}^{\top}+b_{\mathrm{t}} \gamma_{t}+\mathrm{a}_{\mathrm{t}}-\gamma_{\mathrm{t}}\left(h^{\top} h\right) \gamma_{t}^{\top} .
$$

Itô formula for the Zakai equation

Let $\left\{\rho_{t}\right\}_{t \in[0, T]}$ be a solution to (Z), i.e. for every test φ

$$
\mathrm{d}\left\langle\rho_{t}, \varphi\right\rangle=\left\langle\rho_{\mathrm{t}}, A \varphi\right\rangle \mathrm{d} t+\left\langle\rho_{t}, h \varphi\right\rangle \mathrm{d} Y_{t}, \quad t \in(0, T] .
$$

Itô formula for the Zakai equation

Let $\left\{\rho_{t}\right\}_{t \in[0, T]}$ be a solution to (Z), i.e. for every test φ

$$
\mathrm{d}\left\langle\rho_{t}, \varphi\right\rangle=\left\langle\rho_{\mathrm{t}}, A \varphi\right\rangle \mathrm{d} t+\left\langle\rho_{\mathrm{t}}, h \varphi\right\rangle \mathrm{d} Y_{t}, \quad t \in(0, T] .
$$

Hypotheses (H)

a. b, σ, h are Borel-measurable and bounded, b, σ are Lipschitz;
b. The matrix $\sigma \sigma^{\top}(x)$ is positive definite for every $x \in \mathbb{R}^{d}$.

Itô formula for the Zakai equation

Let $\left\{\rho_{t}\right\}_{t \in[0, T]}$ be a solution to (Z), i.e. for every test φ

$$
\mathrm{d}\left\langle\rho_{t}, \varphi\right\rangle=\left\langle\rho_{\mathrm{t}}, A \varphi\right\rangle \mathrm{d} t+\left\langle\rho_{t}, h \varphi\right\rangle \mathrm{d} Y_{t}, \quad t \in(0, T] .
$$

Hypotheses (H)

a. b, σ, h are Borel-measurable and bounded, b, σ are Lipschitz;
b. The matrix $\sigma \sigma^{\top}(x)$ is positive definite for every $x \in \mathbb{R}^{d}$.

Proposition (M. [6])

Let u be in $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ and let us assume (H). Then, for every $t \in[0, T]$:

$$
\mathrm{d} u\left(\rho_{t}\right)=\left\langle\rho_{t}, A \delta_{\mu} u\left(\rho_{t}\right)\right\rangle \mathrm{d} t+\left\langle\rho_{t}, h \delta_{\mu} u\left(\rho_{t}\right)\right\rangle \mathrm{d} Y_{t}+\frac{1}{2}\left\langle\rho_{t} \otimes \rho_{t}, h^{\top} h \delta_{\mu}^{2} u\left(\rho_{t}\right)\right\rangle \mathrm{d} t
$$

Itô formula for the Zakai equation

Let $\left\{\rho_{t}\right\}_{t \in[0, T]}$ be a solution to (\mathbb{Z}), i.e. for every test φ

$$
\mathrm{d}\left\langle\rho_{t}, \varphi\right\rangle=\left\langle\rho_{t}, A \varphi\right\rangle \mathrm{d} t+\left\langle\rho_{t}, h \varphi\right\rangle \mathrm{d} Y_{t}, \quad t \in(0, T] .
$$

Hypotheses (H)

a. b, σ, h are Borel-measurable and bounded, b, σ are Lipschitz;
b. The matrix $\sigma \sigma^{\top}(x)$ is positive definite for every $x \in \mathbb{R}^{d}$.

Proposition (M. [6])

Let u be in $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ and let us assume (H). Then, for every $t \in[0, T]$:

$$
\mathrm{d} u\left(\rho_{t}\right)=\left\langle\rho_{t}, A \delta_{\mu} u\left(\rho_{t}\right)\right\rangle \mathrm{d} t+\left\langle\rho_{t}, h \delta_{\mu} u\left(\rho_{t}\right)\right\rangle \mathrm{d} Y_{t}+\frac{1}{2}\left\langle\rho_{t} \otimes \rho_{t}, h^{\top} h \delta_{\mu}^{2} u\left(\rho_{t}\right)\right\rangle \mathrm{d} t
$$

- $\delta_{\mu} u$ is a notions of derivatives for $u: \mathcal{M}^{+}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$:

$$
\delta_{\mu} u: \mathcal{M}^{+}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad \delta_{\mu}^{2} u: \mathcal{M}^{+}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R} ;
$$

- Proof by cylindrical approximation: $u(\mu):=g\left(\left\langle\mu, \psi_{1}\right\rangle, \ldots,\left\langle\mu, \psi_{n}\right\rangle\right)$.

The generator $\mathcal{L}: \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathrm{C}_{\mathrm{b}}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$

The infinitesimal generator of the Zakai equation

The generator $\mathcal{L}: \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathrm{C}_{\mathrm{b}}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$

$$
\begin{aligned}
& (\mathcal{L} u)(\mu)=\left\langle\mu, A \delta_{\mu} u(\mu)\right\rangle+\frac{1}{2}\left\langle\mu \otimes \mu, h^{\top} h \delta_{\mu}^{2} u(\mu)\right\rangle \\
& \quad=\int_{\mathbb{R}^{d}}\left(A \delta_{\mu} u\right)(\mu, x) \mu(\mathrm{d} x)+\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} h(x)^{\top} h(y) \delta_{\mu}^{2} u(\mu, x, y) \mu(\mathrm{d} x) \mu(\mathrm{d} y) .
\end{aligned}
$$

The infinitesimal generator of the Zakai equation

The generator $\mathcal{L}: \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathrm{C}_{\mathrm{b}}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$

$$
\begin{aligned}
& (\mathcal{L} u)(\mu)=\left\langle\mu, A \delta_{\mu} u(\mu)\right\rangle+\frac{1}{2}\left\langle\mu \otimes \mu, h^{\top} h \delta_{\mu}^{2} u(\mu)\right\rangle \\
& \quad=\int_{\mathbb{R}^{d}}\left(A \delta_{\mu} u\right)(\mu, x) \mu(\mathrm{d} x)+\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} h(x)^{\top} h(y) \delta_{\mu}^{2} u(\mu, x, y) \mu(\mathrm{d} x) \mu(\mathrm{d} y) .
\end{aligned}
$$

Remark

- Formally $\mathrm{d} \rho_{t}=A^{*} \rho_{t} \mathrm{~d} t+h^{\top} \rho_{t} \mathrm{~d} Y_{t}$, so:

$$
\mathrm{d} u\left(\rho_{t}\right)=\left\langle\boldsymbol{A}^{*} \rho_{t}, \delta_{\mu} u\left(\rho_{t}\right)\right\rangle \mathrm{d} t+\left\langle h^{\top} \rho_{t}, \delta_{\mu} u\left(\rho_{t}\right)\right\rangle \mathrm{d} Y_{t}+\frac{1}{2}\left\langle h^{\top} \rho_{t} \otimes h \rho_{t}, \delta_{\mu}^{2} u\left(\rho_{t}\right)\right\rangle \mathrm{d} t
$$

The infinitesimal generator of the Zakai equation

The generator $\mathcal{L}: \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathrm{C}_{\mathrm{b}}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$

$$
\begin{aligned}
& (\mathcal{L} u)(\mu)=\left\langle\mu, A \delta_{\mu} u(\mu)\right\rangle+\frac{1}{2}\left\langle\mu \otimes \mu, h^{\top} h \delta_{\mu}^{2} u(\mu)\right\rangle \\
& \quad=\int_{\mathbb{R}^{d}}\left(A \delta_{\mu} u\right)(\mu, x) \mu(\mathrm{d} x)+\frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} h(x)^{\top} h(y) \delta_{\mu}^{2} u(\mu, x, y) \mu(\mathrm{d} x) \mu(\mathrm{d} y) .
\end{aligned}
$$

Remark

- Formally $\mathrm{d} \rho_{t}=A^{*} \rho_{t} \mathrm{~d} t+h^{\top} \rho_{t} \mathrm{~d} Y_{t}$, so:

$$
\mathrm{d} u\left(\rho_{t}\right)=\left\langle A^{*} \rho_{t}, \delta_{\mu} u\left(\rho_{t}\right)\right\rangle \mathrm{d} t+\left\langle h^{\top} \rho_{t}, \delta_{\mu} u\left(\rho_{t}\right)\right\rangle \mathrm{d} Y_{t}+\frac{1}{2}\left\langle h^{\top} \rho_{t} \otimes h \rho_{t}, \delta_{\mu}^{2} u\left(\rho_{t}\right)\right\rangle \mathrm{d} t .
$$

- On \mathbb{R}, if $\mathrm{d} X_{t}=b X_{t} \mathrm{~d} t+\sigma X_{t} \mathrm{~d} B_{t}$, then

$$
\mathrm{d} u\left(X_{t}\right)=b X_{t} \mathrm{D}_{x} u\left(X_{t}\right) \mathrm{d} t+\sigma X_{t} \mathrm{D}_{x} u\left(X_{t}\right) \mathrm{d} B_{t}+\frac{1}{2} \sigma^{2} X_{t}^{2} \mathrm{D}_{x}^{2} u\left(X_{t}\right) \mathrm{d} t .
$$

The backward Kolmogorov equation Existence and uniqueness

Let

$$
\begin{equation*}
(\mathcal{L} u)(\mu)=\left\langle\mu, A \delta_{\mu} u(\mu)\right\rangle+\frac{1}{2}\left\langle\mu \otimes \mu, h^{\top} h \delta_{\mu}^{2} u(\mu)\right\rangle \tag{5}
\end{equation*}
$$

The backward Kolmogorov equation Existence and uniqueness

Let

$$
\begin{equation*}
(\mathcal{L} u)(\mu)=\left\langle\mu, A \delta_{\mu} u(\mu)\right\rangle+\frac{1}{2}\left\langle\mu \otimes \mu, h^{\top} h \delta_{\mu}^{2} u(\mu)\right\rangle \tag{5}
\end{equation*}
$$

Given $\Phi: \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, the Backward Kolmogorov equation (BEZ) reads as

$$
\begin{cases}\partial_{s} u(\mu, s)+\mathcal{L} u(\mu, s)=0, & (\mu, s) \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) \times[0, T], \\ u(\mu, T)=\Phi(\mu), & \mu \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) .\end{cases}
$$

The backward Kolmogorov equation Existence and uniqueness

Let

$$
\begin{equation*}
(\mathcal{L} u)(\mu)=\left\langle\mu, A \delta_{\mu} u(\mu)\right\rangle+\frac{1}{2}\left\langle\mu \otimes \mu, h^{\top} h \delta_{\mu}^{2} u(\mu)\right\rangle \tag{5}
\end{equation*}
$$

Given $\Phi: \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, the Backward Kolmogorov equation (BEZ) reads as

$$
\begin{cases}\partial_{s} u(\mu, s)+\mathcal{L} u(\mu, s)=0, & (\mu, s) \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) \times[0, T] \\ u(\mu, T)=\Phi(\mu), & \mu \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) .\end{cases}
$$

Let $\left\{\rho_{t}^{s, \mu}\right\}_{t \in[s, T]}$ be a solution to (Z) starting at time s from $\mu \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)$.

The backward Kolmogorov equation Existence and uniqueness

Let

$$
\begin{equation*}
(\mathcal{L} u)(\mu)=\left\langle\mu, A \delta_{\mu} u(\mu)\right\rangle+\frac{1}{2}\left\langle\mu \otimes \mu, h^{\top} h \delta_{\mu}^{2} u(\mu)\right\rangle \tag{5}
\end{equation*}
$$

Given $\Phi: \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, the Backward Kolmogorov equation (BEZ) reads as

$$
\begin{cases}\partial_{s} u(\mu, s)+\mathcal{L} u(\mu, s)=0, & (\mu, s) \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) \times[0, T] \\ u(\mu, T)=\Phi(\mu), & \mu \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) .\end{cases}
$$

Let $\left\{\rho_{t}^{s, \mu}\right\}_{t \in[s, T]}$ be a solution to (Z) starting at time s from $\mu \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)$.

Theorem (M. [6])

Let $\Phi \in \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$. Let (H) holds and let us set

$$
\begin{equation*}
u(\mu, s):=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right], \quad(\mu, s) \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) \times[0, T] \tag{6}
\end{equation*}
$$

Then u is the unique classical solution to (BEZ).

Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

$$
u(\mu, s)=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]
$$

Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

$$
u(\mu, s)=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]
$$

Existence:

- Prove that $\mu \mapsto u(\mu, s):=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]$ is in $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$:

Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

$$
u(\mu, s)=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]
$$

Existence:

- Prove that $\mu \mapsto u(\mu, s):=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]$ is in $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$:
- given a suitable notion of derivative for functions from $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ to $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right.$), we show that $\mu \mapsto \rho_{T}^{s, \mu}$ is twice differentiable;

Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

$$
u(\mu, s)=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]
$$

Existence:

- Prove that $\mu \mapsto u(\mu, s):=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]$ is in $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$:
- given a suitable notion of derivative for functions from $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ to $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$, we show that $\mu \mapsto \rho_{T}^{s, \mu}$ is twice differentiable;
- since $\Phi \in \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ and by the previous point, we conclude by a chain rule.

Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

$$
u(\mu, s)=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]
$$

Existence:

- Prove that $\mu \mapsto u(\mu, s):=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]$ is in $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$:
- given a suitable notion of derivative for functions from $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ to $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right.$), we show that $\mu \mapsto \rho_{T}^{s, \mu}$ is twice differentiable;
- since $\Phi \in \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ and by the previous point, we conclude by a chain rule.
- By Itô formula and Markov property

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{1}{h}[u(\mu, s+h) & -u(\mu, s)] \\
& =-\lim _{h \rightarrow 0} \frac{1}{h} \mathbb{E}\left[\int_{s}^{s+h} \mathcal{L} u\left(\rho_{\tau}^{s, \mu}, s+h\right) \mathrm{d} \tau\right]=-\mathcal{L} u(\mu, s)
\end{aligned}
$$

The Kushner-Stratonovich equation case

The operator $\mathcal{L}^{K S}: \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathrm{C}_{\mathrm{b}}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$

$$
\mathcal{L}^{K S} u(\pi)=\left\langle\pi, A \delta_{\mu} u(\pi)\right\rangle+\frac{1}{2}\left\langle\pi \otimes \pi,(h-\pi(h))^{\top}(h-\pi(h)) \delta_{\mu}^{2} u(\pi)\right\rangle .
$$

The Kushner-Stratonovich equation case

The operator $\mathcal{L}^{K S}: \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathrm{C}_{\mathrm{b}}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$

$$
\mathcal{L}^{K S} u(\pi)=\left\langle\pi, A \delta_{\mu} u(\pi)\right\rangle+\frac{1}{2}\left\langle\pi \otimes \pi,(h-\pi(h))^{\top}(h-\pi(h)) \delta_{\mu}^{2} u(\pi)\right\rangle .
$$

Given $\Phi: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, the Backward Kolmogorov equation (BEKS) reads as

$$
\begin{cases}\partial_{s} u(\pi, s)+\mathcal{L}^{K s} u(\pi, s)=0, & (\pi, s) \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times[0, T], \\ u(\pi, T)=\Phi(\pi), & \pi \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) .\end{cases}
$$

The Kushner-Stratonovich equation case

The operator $\mathcal{L}^{K S}: \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right) \rightarrow \mathrm{C}_{\mathrm{b}}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$

$$
\mathcal{L}^{K S} u(\pi)=\left\langle\pi, A \delta_{\mu} u(\pi)\right\rangle+\frac{1}{2}\left\langle\pi \otimes \pi,(h-\pi(h))^{\top}(h-\pi(h)) \delta_{\mu}^{2} u(\pi)\right\rangle .
$$

Given $\Phi: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, the Backward Kolmogorov equation (BEKS) reads as

$$
\begin{cases}\partial_{s} u(\pi, s)+\mathcal{L}^{K s} u(\pi, s)=0, & (\pi, s) \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times[0, T] \\ u(\pi, T)=\Phi(\pi), & \pi \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\end{cases}
$$

Let $\left\{\Pi_{t}^{s, \pi}\right\}_{t \in[s, T]}$ be a solution to (KS) starting at time s from $\pi \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$:

$$
\begin{equation*}
\mathrm{d}\left\langle\Pi_{\mathrm{t}}, \psi\right\rangle=\left\langle\Pi_{\mathrm{t}}, A \psi\right\rangle \mathrm{d} t+\left(\left\langle\Pi_{\mathrm{t}}, h \psi\right\rangle-\left\langle\Pi_{\mathrm{t}}, \psi\right\rangle\left\langle\Pi_{\mathrm{t}}, h\right\rangle\right) \cdot \mathrm{d} I_{\mathrm{t}}, \quad t \in(0, T] . \tag{7}
\end{equation*}
$$

Theorem (M. [6])

Let $\Phi \in \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$. Let (H) holds and let us set

$$
u(\pi, s)=\mathbb{E}\left[\Phi\left(\Pi_{T}^{s, \pi}\right)\right], \quad(\pi, s) \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times[0, T]
$$

Then u is the unique classical solution to (BEKS).

The Kushner-Stratonovich equation case Viscosity approach

$K \subset \mathbb{R}^{d}$ compact, $\Phi \in \mathrm{C}_{\mathrm{b}}\left(\mathcal{P}_{2}(K)\right)$:

$$
\begin{cases}\partial_{s} u(\pi, s)+\mathcal{L}^{K s} u(\pi, s)=0, & (\pi, s) \in \mathcal{P}_{2}(K) \times(0, T], \\ u(\pi, T)=\Phi(\pi), & \pi \in \mathcal{P}_{2}(K) .\end{cases}
$$

Let $\left\{\eta_{t}^{S, \pi}\right\}_{t \in[s, T]}$ be a solution to (KS) confined in $\mathcal{P}_{2}(K)$.

Theorem (M. [7])

Let $\Phi \in \mathrm{C}_{\mathrm{b}}\left(\mathcal{P}_{2}(K)\right)$. Let (H) holds and let us set

$$
u(\pi, s)=\mathbb{E}\left[\Phi\left(\Pi_{T}^{s, \pi}\right)\right], \quad(\pi, s) \in \mathcal{P}_{2}(K) \times(0, T]
$$

Then u is the unique viscosity solution to (BEKS).

Proof of the comparison principle (Key steps)

Let u_{1} and u_{2} be respectively a subsolution and a supersolution to (BEKS).
Moreover, let $u(\pi, s):=\mathbb{E}\left[\Phi\left(\Pi_{T}^{s, \pi}\right)\right]$. We want to show that $u_{1} \leq u_{2}$.

- Show: $u_{1} \leq u$ and $u \leq u_{2}$.
- Introduce a family of approximated problems:

$$
\begin{cases}\partial_{s} u(\pi, s)+\mathcal{L}^{K S} u(\pi, s)=0, & (\pi, s) \in \mathcal{P}_{2}(K) \times(0, T] \\ u(\pi, T)=\Phi_{n}(\pi) \in \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{P}_{2}(K)\right), & \pi \in \mathcal{P}_{2}(K)\end{cases}
$$

- $u^{n}(\pi, s):=\mathbb{E}\left[\Phi_{n}\left(\Pi_{T}^{s, \pi}\right)\right]$ is a classical solution to the approximated problem which converges to u.
- Using the Borwein-Preiss variational principle with a suitable smooth gauge-type function, we introduce a suitable test function that allows us to conclude.

Thank you!

[1] L. Ambrosio, N. Gigli and G. Savarè. Gradient Flows In Metric Spaces and in the Space of Probability Measures, Birkhäuser Basel, 2005.
[2] E. BANDINI, A. Cosso, M. Fuhrman, and H. Pham. Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem, Stochastic Process. Appl, 2019.
[3] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games with Applications, Vol. I-II, Springer, 2018.
[4] F. Gozzı AND A. ŚwIĘCH. Hamilton-Jacobi-Bellman equations for the optimal control of the Duncan-Mortensen-Zakai equation, J. Funct. Anal., 2000.
[5] P.-L. Lions. Cours au Collège de France, 2007-2013.
[6] M. MARTINI. Kolmogorov equations on spaces of measures associated to nonlinear filtering processes, arXiv preprint, 2021.
[7] M. MARTINI. Kolmogorov equations on the space of probability measures associated to the nonlinear filtering equation: the viscosity approach, arXiv preprint, 2022.
[8] E. PARDoux. Filtrage non lineaire et equations aux derivees partielles stochastiques associees, Saint-Flour XIX, Springer, 1991.
[9] B. L. Rozovsky. Stochastic Evolution Systems, Springer, 1990.

Spaces of measures Linear functional derivatives

Linear functional derivative

$u: \mathcal{M}^{+}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is in $\mathrm{C}_{\mathrm{b}}^{1}\left(\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)\right)$ if it is continuous, bounded and if exists

$$
\delta_{\mu} u: \mathcal{M}^{+}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \ni(\mu, x) \mapsto \delta_{\mu} u(\mu, x) \in \mathbb{R},
$$

bounded, continuous and such that for all μ and μ^{\prime} in $\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)$, it holds:

$$
\begin{equation*}
u\left(\mu^{\prime}\right)-u(\mu)=\int_{0}^{1} \int_{\mathbb{R}^{d}} \delta_{\mu} u\left(t \mu^{\prime}+(1-t) \mu, x\right)\left[\mu^{\prime}-\mu\right](\mathrm{d} x) \mathrm{d} t \tag{8}
\end{equation*}
$$

Similarly we can define $\mathrm{C}_{\mathrm{b}}^{k}\left(\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)\right), k \in \mathbb{N}$.

Example

Let $g \in \mathrm{C}_{\mathrm{b}}^{2}(\mathbb{R})$ and let $\psi \in \mathrm{C}_{\mathrm{b}}\left(\mathbb{R}^{d}\right)$. We define

$$
u: \mathcal{M}^{+}\left(\mathbb{R}^{d}\right) \ni \mu \mapsto g(\langle\mu, \psi\rangle) \in \mathbb{R} .
$$

Then $u \in \mathrm{C}_{\mathrm{b}}^{2}\left(\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)\right)$ and it holds:

$$
\delta_{\mu} u(\mu, x)=g^{\prime}(\langle\mu, \psi\rangle) \psi(x), \quad \delta_{\mu}^{2} u(\mu, x, y)=g^{\prime \prime}(\langle\mu, \psi\rangle) \psi(x) \psi(y)
$$

Spaces of measures L-derivatives

The space $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)\right)$

$u: \mathcal{M}^{+}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ is in $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)\right)$ if:
a. u is in $\mathrm{C}_{\mathrm{b}}^{2}\left(\mathcal{M}^{+}\left(\mathbb{R}^{d}\right)\right)$;
b. $\mathbb{R}^{d} \ni x \mapsto \delta_{\mu} u(\mu, x) \in \mathbb{R}$ is twice differentiable, with continuous and bounded derivatives on $\mathcal{M}^{+}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d}$;
We set

$$
\mathrm{D}_{\mu} u(\mu, x):=\mathrm{D}_{\chi} \delta_{\mu} u(\mu, x) \in \mathbb{R}^{d}
$$

Remark

On $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the derivative $\mathrm{D}_{\mu} u$ coincides with the one introduced by P.-L. Lions through the lifting procedure in the context of mean field games ([5, 3]).

Itô formula Sketch of the proof

1. Prove the formula for functions of the form

$$
u: \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right) \ni \mu \mapsto g\left(\left\langle\mu, \psi_{1}\right\rangle, \ldots,\left\langle\mu, \psi_{n}\right\rangle\right)
$$

exploiting classical Itô formula and the the Zakai equation.
2. Prove the formula for functions of the form

$$
u(\mu)=\left\langle\frac{\mu^{r}}{\mu\left(\mathbb{R}^{d}\right)^{r}}, \varphi\left(\cdot, \ldots, \cdot, \mu\left(\mathbb{R}^{d}\right)\right)\right\rangle
$$

by approximation, where $\varphi: \mathbb{R}^{d \times r+1} \rightarrow \mathbb{R}$ is symmetrical in the first r arguments.
3. Prove the formula for functions in $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ by approximation.

The backward Kolmogorov equation Existence and uniqueness

Theorem (M. [6])

Let us set

$$
\begin{equation*}
u(\mu, s)=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right] \tag{9}
\end{equation*}
$$

where $\rho_{T}^{s, \mu}$ is the weak solution to the Zakai equation starting at time sfrom $\mu \in \mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)$, $\Phi \in \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ and let (H) hold. Then u is the unique classical solution to the backward Kolmogorov equation (BEZ).

Proof (uniqueness)

We show that if u is a classical solution to (BEZ), then $u(\mu, s)=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]$.

- By the Itô formula

$$
u\left(\rho_{T}^{s, \mu}, T\right)-u\left(\rho_{s}^{s, \mu}, s\right)=\int_{s}^{T}\left\{\partial_{s} u\left(\rho_{\tau}^{s, \mu}, \tau\right)+\mathcal{L} u\left(\rho_{\tau}^{s, \mu}, \tau\right)\right\} \mathrm{d} \tau+\int_{s}^{T} \mathcal{G} u\left(\rho_{\tau}^{s, \mu}, \tau\right) \cdot \mathrm{d} Y_{\tau}
$$

- By taking the expectation and since u solves (BEZ)

$$
\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]-u(\mu, s)=\mathbb{E}\left[\int_{s}^{T} \mathcal{G} u\left(\rho_{\tau}^{\mathrm{s}, \mu}, \tau\right) \cdot \mathrm{d} Y_{\tau}\right]
$$

- The rhs is zero since the integral is a martingale, thus $u(\mu, s)=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]$.

The backward Kolmogorov equation Existence and uniqueness

Proof (existence)

Let $u(\mu, s)=\mathbb{E}\left[\Phi\left(\rho_{T}^{s, \mu}\right)\right]$ be our candidate solution.

1. Prove that $\mu \mapsto u(\mu, s)$ is in $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$:

- given a suitable notion of derivative for functions from $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ to $\mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right.$), we show that $\mu \mapsto \rho_{T}^{s, \mu}$ is twice differentiable;
- since $\Phi \in \mathrm{C}_{\mathrm{L}}^{2}\left(\mathcal{M}_{2}^{+}\left(\mathbb{R}^{d}\right)\right)$ and by the previous point, we conclude by a chain rule.

2. Prove the continuity of

$$
[0, T] \ni s \mapsto \mathcal{L} u(\mu, s), \quad[s, T] \times[0, T] \ni(\tau, \sigma) \mapsto \mathcal{L} u\left(\rho_{\tau}^{s, \mu}, \sigma\right) \in L^{2}(\Omega)
$$

3. By the Itô formula and the Markov property

$$
\lim _{h \rightarrow 0} \frac{1}{h}[u(\mu, s+h)-u(\mu, s)]=-\lim _{h \rightarrow 0} \frac{1}{h} \mathbb{E}\left[\int_{s}^{s+h} \mathcal{L} u\left(\rho_{\tau}^{s, \mu}, s+h\right) \mathrm{d} \tau\right]=-\mathcal{L} u(\mu, s)
$$

