Kolmogorov equations on spaces of measures associated to nonlinear filtering processes

Mattia Martini Università degli Studi di Milano

Overview

- Stochastic filtering
- Nonlinear filtering problem
- Nonlinear filtering equations
- 2 Kolmogorov equations associated to filtering equations
- Itô formula
- Backward equation associated to the Zakai equation
- Backward equation associated to the K.-S. equation

Kolmogorov equations on spaces of measures

We want to introduce and study a class of backward Kolmogorov equations on

- $\mathcal{M}_2^+(\mathbb{R}^d)$, $\mathcal{P}_2(\mathbb{R}^d)$: positive and probability measures with finite second moment;
- $\langle \mu, \psi \rangle = \mu(\psi) = \int_{\mathbb{R}^d} \psi(x) \mu(dx);$

Kolmogorov equations on spaces of measures

We want to introduce and study a class of backward Kolmogorov equations on

- $\mathcal{M}_2^+(\mathbb{R}^d)$, $\mathcal{P}_2(\mathbb{R}^d)$: positive and probability measures with finite second moment;
- $\langle \mu, \psi \rangle = \mu(\psi) = \int_{\mathbb{R}^d} \psi(x) \mu(dx);$

SDEs for measure-valued processes arise naturally in the stochastic filtering framework.

- Many results when there is a density, using stochastic calculus on Hilbert spaces (e.g. Rozovsky [9], Pardoux [8]).
- New tools for calculus on spaces of (probability) measures (e.g. Ambrosio, Gigli & Savarè [1], P.-L. Lions [5], Carmona & Delarue [3]).
- Optimal control with partial observation (e.g. Gozzi & Święch [4] in the Hilbert setting, or recently Bandini, Cosso, Fuhrman & Pham [2] on $\mathcal{P}_2(\mathbb{R}^d)$).

Stochastic filtering The problem

Signal process

$$\mathrm{d} X_t = b(X_t)\,\mathrm{d} s + \sigma(X_t)\,\mathrm{d} W_t, \quad X_0 \in L^2(\Omega,\mathcal{F}_0), \quad t \in [0,T]. \tag{1}$$

Stochastic filtering The problem

Signal process

$$\mathrm{d}X_t = b(X_t)\,\mathrm{d}s + \sigma(X_t)\,\mathrm{d}W_t, \quad X_0 \in L^2(\Omega, \mathcal{F}_0), \quad t \in [0, T]. \tag{1}$$

Observation process

For every $t \in [0, T]$,

$$dY_t = h(X_t) dt + dB_t, \quad Y_0 = 0,$$

$$\mathcal{F}_t^{\gamma} = \sigma(Y_s, 0 < s < t) \lor \mathcal{N},$$
(2)

where ${\mathcal N}$ are ${\mathbb P}\text{-negligible}$ sets.

Stochastic filtering The problem

Signal process

$$dX_t = b(X_t) ds + \sigma(X_t) dW_t, \quad X_0 \in L^2(\Omega, \mathcal{F}_0), \quad t \in [0, T].$$
(1)

Observation process

For every $t \in [0, T]$,

$$dY_t = h(X_t) dt + dB_t, \quad Y_0 = 0,$$

$$\mathcal{F}_t^Y = \sigma(Y_s, 0 < s < t) \lor \mathcal{N}.$$
(2)

where $\mathcal N$ are $\mathbb P$ -negligible sets.

Goal

- The signal X is not directly observed;
- The available information is given by Y;
- We want to provide an approximation of X given the observation Y.

• Given the information $\mathcal{F}_t^{\mathsf{Y}}$, the best estimate for $\varphi(\mathsf{X}_t)$ is

$$\mathbb{E}\left[\varphi(X_t)|\mathcal{F}_t^{\mathsf{Y}}\right];$$

• Given the information $\mathcal{F}_t^{\mathsf{Y}}$, the best estimate for $\varphi(\mathsf{X}_t)$ is

$$\mathbb{E}\left[arphi(X_t)|\mathcal{F}_t^{\mathsf{Y}}
ight]$$
;

• Let Π_t be the regular conditional probability distribution of X_t given \mathcal{F}_t^Y : for any $A \in \mathcal{B}(\mathbb{R}^d)$

$$\Pi_t(A,\omega) = \mathbb{P}\left(X_t \in A|\mathcal{F}_t^{\gamma}\right)(\omega), \quad \text{a.e. } \omega.$$

• Given the information \mathcal{F}_t^Y , the best estimate for $\varphi(X_t)$ is

$$\mathbb{E}\left[arphi(X_t)|\mathcal{F}_t^{\mathsf{Y}}
ight]$$
;

• Let Π_t be the regular conditional probability distribution of X_t given \mathcal{F}_t^Y : for any $A \in \mathcal{B}(\mathbb{R}^d)$

$$\Pi_t(A,\omega) = \mathbb{P}\left(X_t \in A|\mathcal{F}_t^{\gamma}\right)(\omega), \quad \text{a.e. } \omega.$$

• For every $\varphi \in \mathrm{C_b}(\mathbb{R}^d)$ and $t \in [0,T]$,

$$\langle \Pi_t, \varphi \rangle = \mathbb{E}\left[\varphi(X_t) | \mathcal{F}_t^Y \right], \quad \text{a.s.}$$

• Given the information $\mathcal{F}_t^{\mathsf{Y}}$, the best estimate for $\varphi(\mathsf{X}_t)$ is

$$\mathbb{E}\left[arphi(X_t)|\mathcal{F}_t^{\mathsf{Y}}
ight]$$
;

• Let Π_t be the regular conditional probability distribution of X_t given \mathcal{F}_t^Y : for any $A \in \mathcal{B}(\mathbb{R}^d)$

$$\Pi_t(A,\omega) = \mathbb{P}\left(X_t \in A|\mathcal{F}_t^{\gamma}\right)(\omega), \quad \text{a.e. } \omega.$$

• For every $\varphi \in \mathrm{C_b}(\mathbb{R}^d)$ and $t \in [0, T]$,

$$\langle \Pi_t, \varphi \rangle = \mathbb{E}\left[\varphi(\boldsymbol{X}_t) | \mathcal{F}_t^Y \right], \quad \text{a.s.}$$

 $\{\Pi_t = \operatorname{Law}(X_t | \mathcal{F}_t^{Y})\}_{t \in [0,T]}$ is a $\mathcal{P}(\mathbb{R}^d)$ -valued process called **filter**.

Define \mathbb{Q} by $\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp\left\{-\frac{1}{2}\int_0^t |h(X_s)|^2\,\mathrm{d}s - \int_0^t h(X_s)\,\mathrm{d}B_s\right\}$.

Define
$$\mathbb{Q}$$
 by $\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp\left\{-\frac{1}{2}\int_0^t |h(X_s)|^2 \,\mathrm{d}s - \int_0^t h(X_s) \,\mathrm{d}B_s\right\}$.

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as

$$\langle \Pi_t, \varphi \rangle = \frac{\langle \rho_t, \varphi \rangle}{\langle \rho_t, \mathbf{1} \rangle}, \quad t \in [0, T], \varphi \in C_b(\mathbb{R}^d), \tag{3}$$

where $\langle \rho_t, \varphi \rangle = \mathbb{E}^{\mathbb{Q}}\left[M_t \varphi(X_t) | \mathcal{F}_t^Y\right]$.

 $\{\rho_t\}_{t\in[0,T]}$ is a $\mathcal{M}^+(\mathbb{R}^d)$ -valued process called **unnormalized filter**.

Define
$$\mathbb{Q}$$
 by $\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp\left\{-\frac{1}{2}\int_0^t |h(X_s)|^2 \,\mathrm{d}s - \int_0^t h(X_s) \,\mathrm{d}B_s\right\}$.

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as

$$\langle \Pi_t, \varphi \rangle = \frac{\langle \rho_t, \varphi \rangle}{\langle \rho_t, \mathbf{1} \rangle}, \quad t \in [0, T], \varphi \in C_b(\mathbb{R}^d), \tag{3}$$

where $\langle \rho_t, \varphi \rangle = \mathbb{E}^{\mathbb{Q}}\left[M_t \varphi(X_t) | \mathcal{F}_t^Y\right]$.

 $\{\rho_t\}_{t\in[0,T]}$ is a $\mathcal{M}^+(\mathbb{R}^d)$ -valued process called **unnormalized filter**.

Y is a brownian motion under Q.

Define
$$\mathbb{Q}$$
 by $\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp\left\{-\frac{1}{2}\int_0^t |h(X_s)|^2 \,\mathrm{d}s - \int_0^t h(X_s) \,\mathrm{d}B_s\right\}$.

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as

$$\langle \Pi_t, \varphi \rangle = \frac{\langle \rho_t, \varphi \rangle}{\langle \rho_t, \mathbf{1} \rangle}, \quad t \in [0, T], \varphi \in C_b(\mathbb{R}^d), \tag{3}$$

where $\langle \rho_t, \varphi \rangle = \mathbb{E}^{\mathbb{Q}} \left[M_t \varphi(X_t) | \mathcal{F}_t^{\mathsf{Y}} \right].$

 $\{\rho_t\}_{t\in[0,T]}$ is a $\mathcal{M}^+(\mathbb{R}^d)$ -valued process called **unnormalized filter**.

Y is a brownian motion under \mathbb{Q} . By Itô formula applied to $M_t\varphi(X)$ we obtain

The Zakai equation (Z)

The unnormalized filter satisfies, for every test φ ,

$$d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle dt + \langle \rho_t, h\varphi \rangle dY_t, \quad t \in (0, T], \tag{4}$$

where A is the infinitesimal generator of X.

Stochastic filtering Kushner-Stratonovitch equation

Let *A* be the generator of *X*: $A\varphi = b^{\top}(D_x\varphi) + \frac{1}{2}\operatorname{tr}\{(D_x^2\varphi)\sigma\sigma^{\top}\}.$

The Zakai equation (Z)

The unnormalized filter satisfies, for every test φ ,

$$d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle dt + \langle \rho_t, h\varphi \rangle dY_t, \quad t \in (0, T],$$

where Y is a Brownian motion under \mathbb{Q} .

Stochastic filtering Kushner-Stratonovitch equation

Let *A* be the generator of *X*: $A\varphi = b^{\top}(D_x\varphi) + \frac{1}{2}\operatorname{tr}\{(D_x^2\varphi)\sigma\sigma^{\top}\}.$

The Zakai equation (Z)

The unnormalized filter satisfies, for every test φ ,

$$d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle dt + \langle \rho_t, h\varphi \rangle dY_t, \quad t \in (0, T],$$

where Y is a Brownian motion under \mathbb{O} .

Using the Kallianpur-Striebel formula

The Kushner-Stratonovich equation (KS)

The filter satisfies, for every test φ ,

$$d\langle \Pi_t, \varphi \rangle = \langle \Pi_t, A\varphi \rangle dt + (\langle \Pi_t, h\varphi \rangle - \langle \Pi_t, \varphi \rangle \langle \Pi_t, h \rangle) dI_t, \quad t \in (0, T],$$

where $\{I_t\}_{t\in[0,T]}$ is called **innovation process** and is a Brownian motion under \mathbb{P} .

Signal:

$$\begin{split} \mathrm{d} X_t &= b_t X_t \, \mathrm{d} t + \sigma_t \, \mathrm{d} W_t, \quad a_t^{ij} = \sigma_t \sigma_t^\top, \\ A_t \varphi(x) &= \mathrm{D}_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,j} a_t^{ij} \partial_{ij}^2 \varphi(x). \end{split}$$

Signal:

$$\begin{split} \mathrm{d}X_t &= b_t X_t \, \mathrm{d}t + \sigma_t \, \mathrm{d}W_t, \quad a_t^{ij} = \sigma_t \sigma_t^\top, \\ A_t \varphi(x) &= \mathrm{D}_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,i} a_t^{ij} \partial_{ij}^2 \varphi(x). \end{split}$$

Observation:

$$\mathrm{d} Y_t = h_t X_t \, \mathrm{d} t + \, \mathrm{d} B_t, \quad Y_0 = 0.$$

(X, Y) is a gaussian process.

Signal:

$$\begin{split} \mathrm{d}X_t &= b_t X_t \, \mathrm{d}t + \sigma_t \, \mathrm{d}W_t, \quad a_t^{ij} = \sigma_t \sigma_t^\top, \\ A_t \varphi(x) &= \mathrm{D}_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,i} a_t^{ij} \partial_{ij}^2 \varphi(x). \end{split}$$

Observation:

$$dY_t = h_t X_t dt + dB_t, \quad Y_0 = 0.$$

(X, Y) is a gaussian process.

The filter Π solves

$$\mathrm{d}\langle \Pi_t, \varphi \rangle = \langle \Pi_t, A_s \varphi \rangle \, \mathrm{d}t + \langle \Pi_t, \varphi h_t^\top \iota \rangle \, \mathrm{d}l_t - \langle \Pi_t, \varphi \rangle \langle \Pi_t, h^\top \iota \rangle \, \mathrm{d}l_t,$$
$$\iota(x) = x.$$

Signal:

$$\begin{split} \mathrm{d} X_t &= b_t X_t \, \mathrm{d} t + \sigma_t \, \mathrm{d} W_t, \quad a_t^{ij} = \sigma_t \sigma_t^\top, \\ A_t \varphi(x) &= \mathrm{D}_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,i} a_t^{ij} \partial_{ij}^2 \varphi(x). \end{split}$$

Observation:

$$dY_t = h_t X_t dt + dB_t, \quad Y_0 = 0.$$

(X, Y) is a gaussian process.

The filter Π solves

$$\mathrm{d}\langle \Pi_t, \varphi \rangle = \langle \Pi_t, A_s \varphi \rangle \, \mathrm{d}t + \langle \Pi_t, \varphi h_t^\top \iota \rangle \, \mathrm{d}I_t - \langle \Pi_t, \varphi \rangle \langle \Pi_t, h^\top \iota \rangle \, \mathrm{d}I_t,$$
 $\iota(x) = x$. Moreover, for $\omega \in \Omega$ fixed, $\Pi_t(\omega)$ is gaussian with

• Mean \hat{X}_t that solves the SDE

$$\mathrm{d}\hat{X}_t = b_t \hat{X}_t \, \mathrm{d}t + \gamma_t h_t \, \mathrm{d}I_t, \quad I_t = Y_t - \int_0^t h_s \hat{X}_s \, \mathrm{d}s.$$

Deterministic variance that solves the Riccati equation

$$\frac{\mathrm{d}}{\mathrm{d}t} \gamma_t = \gamma_t b_t^\top + b_t \gamma_t + a_t - \gamma_t (h^\top h) \gamma_t^\top.$$

Let $\{\rho_t\}_{t\in[0,T]}$ be a solution to (Z), i.e. for every test φ

$$\mathrm{d} \langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle \, \mathrm{d} t + \langle \rho_t, h\varphi \rangle \, \mathrm{d} Y_t, \quad t \in (0, T].$$

Let $\{\rho_t\}_{t\in[0,T]}$ be a solution to (Z), i.e. for every test φ

$$d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle dt + \langle \rho_t, h\varphi \rangle dY_t, \quad t \in (0, T].$$

Hypotheses (H)

- a. b, σ, h are Borel-measurable and bounded, b, σ are Lipschitz;
- b. The matrix $\sigma \sigma^{\top}(x)$ is positive definite for every $x \in \mathbb{R}^d$.

Let $\{\rho_t\}_{t\in[0,T]}$ be a solution to (Z), i.e. for every test φ

$$d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle dt + \langle \rho_t, h\varphi \rangle dY_t, \quad t \in (0, T].$$

Hypotheses (H)

- a. b, σ, h are Borel-measurable and bounded, b, σ are Lipschitz;
- b. The matrix $\sigma \sigma^{\top}(x)$ is positive definite for every $x \in \mathbb{R}^d$.

Proposition (M. [6])

Let *u* be in $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ and let us assume (H). Then, for every $t \in [0, T]$:

$$\mathrm{d} u(\rho_t) = \langle \rho_t, A \delta_\mu u(\rho_t) \rangle \, \mathrm{d} t + \langle \rho_t, h \delta_\mu u(\rho_t) \rangle \, \mathrm{d} Y_t + \frac{1}{2} \langle \rho_t \otimes \rho_t, h^\top h \delta_\mu^2 u(\rho_t) \rangle \, \mathrm{d} t.$$

Let $\{\rho_t\}_{t\in[0,T]}$ be a solution to (Z), i.e. for every test φ

$$d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle dt + \langle \rho_t, h\varphi \rangle dY_t, \quad t \in (0, T].$$

Hypotheses (H)

- a. b, σ, h are Borel-measurable and bounded, b, σ are Lipschitz;
- b. The matrix $\sigma \sigma^{\top}(x)$ is positive definite for every $x \in \mathbb{R}^d$.

Proposition (M. [6])

Let *u* be in $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ and let us assume (H). Then, for every $t \in [0, T]$:

$$\mathrm{d} u(\rho_t) = \langle \rho_t, A \delta_\mu u(\rho_t) \rangle \, \mathrm{d} t + \langle \rho_t, h \delta_\mu u(\rho_t) \rangle \, \mathrm{d} Y_t + \frac{1}{2} \langle \rho_t \otimes \rho_t, h^\top h \delta_\mu^2 u(\rho_t) \rangle \, \mathrm{d} t.$$

• $\delta_u u$ is a notions of derivatives for $u \colon \mathcal{M}^+(\mathbb{R}^d) \to \mathbb{R}$:

$$\delta_{\mu}u \colon \mathcal{M}^{+}(\mathbb{R}^{d}) \times \mathbb{R}^{d} \to \mathbb{R}, \quad \delta_{\mu}^{2}u \colon \mathcal{M}^{+}(\mathbb{R}^{d}) \times \mathbb{R}^{d} \times \mathbb{R}^{d} \to \mathbb{R};$$

• Proof by cylindrical approximation: $u(\mu) := g(\langle \mu, \psi_1 \rangle, \dots, \langle \mu, \psi_n \rangle)$.

The generator $\mathcal{L} \colon \mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d)) o \mathrm{C}_\mathrm{b}(\mathcal{M}_2^+(\mathbb{R}^d))$

The generator $\mathcal{L} \colon \mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d)) \to \mathrm{C}_\mathrm{b}(\mathcal{M}_2^+(\mathbb{R}^d))$

$$\begin{split} (\mathcal{L}u)(\mu) &= \langle \mu, A\delta_{\mu}u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^{\top}h\delta_{\mu}^{2}u(\mu) \rangle \\ &= \int_{\mathbb{R}^{d}} (A\delta_{\mu}u)(\mu, x)\mu(\,\mathrm{d}x) + \frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} h(x)^{\top}h(y)\delta_{\mu}^{2}u(\mu, x, y)\mu(\,\mathrm{d}x)\mu(\,\mathrm{d}y). \end{split}$$

The generator $\mathcal{L} \colon \mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d)) o \mathrm{C}_\mathrm{b}(\mathcal{M}_2^+(\mathbb{R}^d))$

$$\begin{split} (\mathcal{L}u)(\mu) &= \langle \mu, A\delta_{\mu}u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^{\top}h\delta_{\mu}^{2}u(\mu) \rangle \\ &= \int_{\mathbb{R}^{d}} (A\delta_{\mu}u)(\mu, x)\mu(\,\mathrm{d}x) + \frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} h(x)^{\top}h(y)\delta_{\mu}^{2}u(\mu, x, y)\mu(\,\mathrm{d}x)\mu(\,\mathrm{d}y). \end{split}$$

Remark

• Formally $d\rho_t = A^* \rho_t dt + h^\top \rho_t dY_t$, so:

$$\mathrm{d} u(\rho_t) = \langle A^* \rho_t, \delta_\mu u(\rho_t) \rangle \, \mathrm{d} t + \langle h^\top \rho_t, \delta_\mu u(\rho_t) \rangle \, \mathrm{d} Y_t + \frac{1}{2} \langle h^\top \rho_t \otimes h \rho_t, \delta^2_\mu u(\rho_t) \rangle \, \mathrm{d} t.$$

The generator $\mathcal{L} \colon \mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d)) o \mathrm{C}_\mathrm{b}(\mathcal{M}_2^+(\mathbb{R}^d))$

$$\begin{split} (\mathcal{L}u)(\mu) &= \langle \mu, A\delta_{\mu}u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^{\top}h\delta_{\mu}^{2}u(\mu) \rangle \\ &= \int_{\mathbb{R}^{d}} (A\delta_{\mu}u)(\mu, x)\mu(\,\mathrm{d}x) + \frac{1}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} h(x)^{\top}h(y)\delta_{\mu}^{2}u(\mu, x, y)\mu(\,\mathrm{d}x)\mu(\,\mathrm{d}y). \end{split}$$

Remark

• Formally $d\rho_t = A^* \rho_t dt + h^\top \rho_t dY_t$, so:

$$du(\rho_t) = \langle A^* \rho_t, \delta_\mu u(\rho_t) \rangle dt + \langle h^\top \rho_t, \delta_\mu u(\rho_t) \rangle dY_t + \frac{1}{2} \langle h^\top \rho_t \otimes h \rho_t, \delta^2_\mu u(\rho_t) \rangle dt.$$

• On \mathbb{R} , if $dX_t = bX_t dt + \sigma X_t dB_t$, then

$$\mathrm{d} u(X_t) = b X_t \, \mathrm{D}_X u(X_t) \, \mathrm{d} t + \sigma X_t \, \mathrm{D}_X u(X_t) \, \mathrm{d} B_t + \frac{1}{2} \sigma^2 X_t^2 \, \mathrm{D}_X^2 u(X_t) \, \mathrm{d} t.$$

$$(\mathcal{L}u)(\mu) = \langle \mu, A\delta_{\mu}u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^{\top}h\delta_{\mu}^{2}u(\mu) \rangle.$$
 (5)

$$(\mathcal{L}u)(\mu) = \langle \mu, A\delta_{\mu}u(\mu)\rangle + \frac{1}{2}\langle \mu \otimes \mu, h^{\top}h\delta_{\mu}^{2}u(\mu)\rangle.$$
 (5)

Given $\Phi \colon \mathcal{M}_2^+(\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEZ) reads as

$$\begin{cases} \partial_s \textbf{\textit{u}}(\mu,s) + \mathcal{L}\textbf{\textit{u}}(\mu,s) = 0, & (\mu,s) \in \mathcal{M}_2^+(\mathbb{R}^d) \times [0,T], \\ \\ \textbf{\textit{u}}(\mu,T) = \Phi(\mu), & \mu \in \mathcal{M}_2^+(\mathbb{R}^d). \end{cases}$$

$$(\mathcal{L}u)(\mu) = \langle \mu, A\delta_{\mu}u(\mu) \rangle + \frac{1}{2}\langle \mu \otimes \mu, h^{\top}h\delta_{\mu}^{2}u(\mu) \rangle.$$
 (5)

Given $\Phi \colon \mathcal{M}_2^+(\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEZ) reads as

$$\begin{cases} \partial_s u(\mu,s) + \mathcal{L} u(\mu,s) = 0, & (\mu,s) \in \mathcal{M}_2^+(\mathbb{R}^d) \times [0,T], \\ \\ u(\mu,T) = \Phi(\mu), & \mu \in \mathcal{M}_2^+(\mathbb{R}^d). \end{cases}$$

Let $\{\rho_t^{s,\mu}\}_{t\in[s,T]}$ be a solution to (Z) starting at time s from $\mu\in\mathcal{M}_2^+(\mathbb{R}^d)$.

$$(\mathcal{L}u)(\mu) = \langle \mu, A\delta_{\mu}u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^{\top}h\delta_{\mu}^{2}u(\mu) \rangle.$$
 (5)

Given $\Phi \colon \mathcal{M}_2^+(\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEZ) reads as

$$\begin{cases} \partial_s u(\mu,s) + \mathcal{L} u(\mu,s) = 0, & (\mu,s) \in \mathcal{M}_2^+(\mathbb{R}^d) \times [0,T], \\ \\ u(\mu,T) = \Phi(\mu), & \mu \in \mathcal{M}_2^+(\mathbb{R}^d). \end{cases}$$

Let $\{\rho_t^{s,\mu}\}_{t\in[s,T]}$ be a solution to (Z) starting at time s from $\mu\in\mathcal{M}_2^+(\mathbb{R}^d)$.

Theorem (M. [6])

Let $\Phi \in \mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d))$. Let (H) holds and let us set

$$u(\mu, s) := \mathbb{E}\left[\Phi(\rho_T^{s,\mu})\right], \quad (\mu, s) \in \mathcal{M}_2^+(\mathbb{R}^d) \times [0, T].$$
 (6)

Then u is the unique classical solution to (BEZ).

Proof (key steps)

Uniqueness:

• By the Itô formula, every classical solution to (BEZ) has the form

$$u(\mu, s) = \mathbb{E}\left[\Phi(\rho_T^{s,\mu})\right].$$

Proof (key steps)

Uniqueness:

• By the Itô formula, every classical solution to (BEZ) has the form

$$u(\mu, s) = \mathbb{E}\left[\Phi(\rho_T^{s,\mu})\right].$$

Existence:

• Prove that $\mu\mapsto u(\mu,s):=\mathbb{E}\left[\Phi(
ho_{\mathcal{T}}^{s,\mu})\right]$ is in $\mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d))$:

Proof (key steps)

Uniqueness:

By the Itô formula, every classical solution to (BEZ) has the form

$$u(\mu, s) = \mathbb{E}\left[\Phi(\rho_T^{s,\mu})\right].$$

Existence:

- Prove that $\mu \mapsto u(\mu, s) := \mathbb{E}\left[\Phi(\rho_T^{s,\mu})\right]$ is in $\mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d))$:
 - given a suitable notion of derivative for functions from $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ to $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$, we show that $\mu\mapsto \rho_T^{s,\mu}$ is twice differentiable;

Proof (key steps)

Uniqueness:

By the Itô formula, every classical solution to (BEZ) has the form

$$u(\mu, s) = \mathbb{E}\left[\Phi(\rho_T^{s,\mu})\right].$$

Existence:

- Prove that $\mu \mapsto u(\mu, s) := \mathbb{E}\left[\Phi(\rho_T^{s,\mu})\right]$ is in $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$:
 - given a suitable notion of derivative for functions from $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ to $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$, we show that $\mu\mapsto \rho_T^{s,\mu}$ is twice differentiable;
 - since $\Phi \in \mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d))$ and by the previous point, we conclude by a chain rule.

Proof (key steps)

Uniqueness:

• By the Itô formula, every classical solution to (BEZ) has the form

$$u(\mu, s) = \mathbb{E}\left[\Phi(\rho_T^{s,\mu})\right].$$

Existence:

- Prove that $\mu \mapsto u(\mu, s) := \mathbb{E}\left[\Phi(\rho_T^{s, \mu})\right]$ is in $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$:
 - given a suitable notion of derivative for functions from $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ to $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$, we show that $\mu\mapsto \rho_T^{s,\mu}$ is twice differentiable;
 - since $\Phi \in C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ and by the previous point, we conclude by a chain rule.
- By Itô formula and Markov property

$$\begin{split} \lim_{h\to 0} \frac{1}{h} \left[u(\mu,s+h) - u(\mu,s) \right] \\ &= -\lim_{h\to 0} \frac{1}{h} \, \mathbb{E} \left[\int_s^{s+h} \mathcal{L} u(\rho_\tau^{s,\mu},s+h) \, \mathrm{d}\tau \right] = -\mathcal{L} u(\mu,s). \end{split}$$

The Kushner-Stratonovich equation case

The operator $\mathcal{L}^{\sf KS}\colon {
m C}^2_{
m L}(\mathcal{P}_2(\mathbb{R}^d)) o {
m C}_{
m b}(\mathcal{P}_2(\mathbb{R}^d))$

$$\mathcal{L}^{\mathit{KS}} \mathsf{u}(\pi) = \langle \pi, \mathsf{A} \delta_{\mu} \mathsf{u}(\pi) \rangle + \frac{1}{2} \langle \pi \otimes \pi, (h - \pi(h))^{\top} (h - \pi(h)) \delta_{\mu}^{2} \mathsf{u}(\pi) \rangle.$$

The Kushner-Stratonovich equation case

The operator $\mathcal{L}^{\mathsf{KS}} \colon \mathrm{C}^2_\mathrm{L}(\mathcal{P}_2(\mathbb{R}^d)) o \mathrm{C_b}(\mathcal{P}_2(\mathbb{R}^d))$

$$\mathcal{L}^{\textit{KS}} u(\pi) = \langle \pi, A \delta_{\mu} u(\pi) \rangle + \frac{1}{2} \langle \pi \otimes \pi, (h - \pi(h))^{\top} (h - \pi(h)) \delta_{\mu}^{2} u(\pi) \rangle.$$

Given $\Phi \colon \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEKS) reads as

$$\begin{cases} \partial_s u(\pi,s) + \mathcal{L}^{KS} u(\pi,s) = 0, & (\pi,s) \in \mathcal{P}_2(\mathbb{R}^d) \times [0,T], \\ \\ u(\pi,T) = \Phi(\pi), & \pi \in \mathcal{P}_2(\mathbb{R}^d). \end{cases}$$

The Kushner-Stratonovich equation case

The operator $\mathcal{L}^{\mathsf{KS}} \colon \mathrm{C}^2_\mathrm{L}(\mathcal{P}_2(\mathbb{R}^d)) o \mathrm{C}_\mathrm{b}(\mathcal{P}_2(\mathbb{R}^d))$

$$\mathcal{L}^{\text{KS}} \textit{\textbf{u}}(\pi) = \langle \pi, \mathsf{A} \delta_{\mu} \textit{\textbf{u}}(\pi) \rangle + \frac{1}{2} \langle \pi \otimes \pi, (h - \pi(h))^{\top} (h - \pi(h)) \delta_{\mu}^{2} \textit{\textbf{u}}(\pi) \rangle.$$

Given $\Phi \colon \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEKS) reads as

$$\begin{cases} \partial_s u(\pi,s) + \mathcal{L}^{\mathsf{KS}} u(\pi,s) = 0, & (\pi,s) \in \mathcal{P}_2(\mathbb{R}^d) \times [0,T], \\ \\ u(\pi,T) = \Phi(\pi), & \pi \in \mathcal{P}_2(\mathbb{R}^d). \end{cases}$$

Let $\{\Pi_t^{s,\pi}\}_{t\in[s,T]}$ be a solution to (KS) starting at time s from $\pi\in\mathcal{P}_2(\mathbb{R}^d)$:

$$d\langle \Pi_t, \psi \rangle = \langle \Pi_t, A\psi \rangle dt + (\langle \Pi_t, h\psi \rangle - \langle \Pi_t, \psi \rangle \langle \Pi_t, h \rangle) \cdot dI_t, \quad t \in (0, T].$$
 (7)

Theorem (M. [6])

Let $\Phi \in \mathrm{C}^2_\mathrm{L}(\mathcal{P}_2(\mathbb{R}^d))$. Let (H) holds and let us set

$$u(\pi,s) = \mathbb{E}\left[\Phi(\Pi_{\tau}^{s,\pi})\right], \quad (\pi,s) \in \mathcal{P}_2(\mathbb{R}^d) \times [0,T].$$

Then u is the unique classical solution to (BEKS).

 $K \subset \mathbb{R}^d$ compact, $\Phi \in C_b(\mathcal{P}_2(K))$:

$$\label{eq:continuous_equation} \begin{cases} \partial_s \textit{u}(\pi,s) + \mathcal{L}^\textit{KS} \textit{u}(\pi,s) = 0, & (\pi,s) \in \mathcal{P}_2(\textit{K}) \times (0,\textit{T}], \\ \\ \textit{u}(\pi,\textit{T}) = \Phi(\pi), & \pi \in \mathcal{P}_2(\textit{K}). \end{cases}$$

Let $\{\Pi_t^{s,\pi}\}_{t\in[s,T]}$ be a solution to (KS) confined in $\mathcal{P}_2(K)$.

Theorem (M. [7])

Let $\Phi \in \mathrm{C}_\mathrm{b}(\mathcal{P}_2(K))$. Let (H) holds and let us set

$$u(\pi, s) = \mathbb{E}\left[\Phi(\Pi_T^{s,\pi})\right], \quad (\pi, s) \in \mathcal{P}_2(K) \times (0, T].$$

Then u is the unique viscosity solution to (BEKS).

Proof of the comparison principle (Key steps)

Let u_1 and u_2 be respectively a subsolution and a supersolution to (BEKS). Moreover, let $u(\pi, s) := \mathbb{E} \left[\Phi(\Pi_T^{s,\pi}) \right]$. We want to show that $u_1 \leq u_2$.

- Show: $u_1 \le u$ and $u \le u_2$.
- Introduce a family of approximated problems:

$$\begin{cases} \partial_s u(\pi,s) + \mathcal{L}^{KS} u(\pi,s) = 0, & (\pi,s) \in \mathcal{P}_2(K) \times (0,T], \\ \\ u(\pi,T) = \Phi_n(\pi) \in \mathrm{C}^2_\mathrm{L}(\mathcal{P}_2(K)), & \pi \in \mathcal{P}_2(K). \end{cases}$$

- $u^n(\pi,s) := \mathbb{E}\left[\Phi_n(\Pi_T^{s,\pi})\right]$ is a classical solution to the approximated problem which converges to u.
- Using the Borwein-Preiss variational principle with a suitable smooth gauge-type function, we introduce a suitable test function that allows us to conclude.

Thank you!

References

- L. AMBROSIO, N. GIGLI AND G. SAVARÈ. Gradient Flows In Metric Spaces and in the Space of Probability Measures, Birkhäuser Basel, 2005.
- [2] E. BANDINI, A. COSSO, M. FUHRMAN, AND H. PHAM. Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem, Stochastic Process. Appl, 2019.
- [3] R. CARMONA AND F. DELARUE. Probabilistic Theory of Mean Field Games with Applications, Vol. I-II, Springer, 2018.
- [4] F. GOZZI AND A. ŚWIĘCH. Hamilton-Jacobi-Bellman equations for the optimal control of the Duncan-Mortensen-Zakai equation, J. Funct. Anal., 2000.
- [5] P.-L. LIONS. Cours au Collège de France, 2007-2013.
- [6] M. MARTINI. Kolmogorov equations on spaces of measures associated to nonlinear filtering processes, arXiv preprint, 2021.
- [7] M. MARTINI. Kolmogorov equations on the space of probability measures associated to the nonlinear filtering equation: the viscosity approach, arXiv preprint, 2022.
- E. PARDOUX. Filtrage non lineaire et equations aux derivees partielles stochastiques associees, Saint-Flour XIX, Springer, 1991.
- [9] B. L. Rozovsky. Stochastic Evolution Systems, Springer, 1990.

Spaces of measures Linear functional derivatives

Linear functional derivative

 $u \colon \mathcal{M}^+(\mathbb{R}^d) \to \mathbb{R}$ is in $\mathrm{C}^1_\mathrm{b}(\mathcal{M}^+(\mathbb{R}^d))$ if it is continuous, bounded and if exists

$$\delta_{\mu}u \colon \mathcal{M}^{+}(\mathbb{R}^{d}) \times \mathbb{R}^{d} \ni (\mu, \mathbf{x}) \mapsto \delta_{\mu}u(\mu, \mathbf{x}) \in \mathbb{R},$$

bounded, continuous and such that for all μ and μ' in $\mathcal{M}^+(\mathbb{R}^d)$, it holds:

$$u(\mu') - u(\mu) = \int_0^1 \int_{\mathbb{R}^d} \delta_{\mu} u \left(t \mu' + (1 - t) \mu, x \right) [\mu' - \mu] (dx) dt. \tag{8}$$

Similarly we can define $C^k_{\mathrm{b}}(\mathcal{M}^+(\mathbb{R}^d)), k \in \mathbb{N}$.

Example

Let $g \in \mathrm{C}^2_\mathrm{b}(\mathbb{R})$ and let $\psi \in \mathrm{C}_\mathrm{b}(\mathbb{R}^d)$. We define

$$u \colon \mathcal{M}^+(\mathbb{R}^d) \ni \mu \mapsto g(\langle \mu, \psi \rangle) \in \mathbb{R}.$$

Then $u \in C^2_b(\mathcal{M}^+(\mathbb{R}^d))$ and it holds:

$$\delta_{\mu} u(\mu, \mathbf{x}) = \mathbf{g}' \left(\langle \mu, \psi \rangle \right) \psi(\mathbf{x}), \quad \delta_{\mu}^2 u(\mu, \mathbf{x}, \mathbf{y}) = \mathbf{g}'' \left(\langle \mu, \psi \rangle \right) \psi(\mathbf{x}) \psi(\mathbf{y}).$$

Spaces of measures L-derivatives

The space $\mathrm{C}^2_\mathrm{L}(\mathcal{M}^+(\mathbb{R}^d))$

- $u \colon \mathcal{M}^+(\mathbb{R}^d) \to \mathbb{R}$ is in $C^2_L(\mathcal{M}^+(\mathbb{R}^d))$ if:
 - a. u is in $C^2_b(\mathcal{M}^+(\mathbb{R}^d))$;
 - b. $\mathbb{R}^d \ni \mathbf{x} \mapsto \delta_{\mu} u(\mu, \mathbf{x}) \in \mathbb{R}$ is twice differentiable, with continuous and bounded derivatives on $\mathcal{M}^+(\mathbb{R}^d) \times \mathbb{R}^d$:

We set

$$D_{\mu}u(\mu, x) := D_{x}\delta_{\mu}u(\mu, x) \in \mathbb{R}^{d},$$

Remark

On $\mathcal{P}_2(\mathbb{R}^d)$, the derivative $D_\mu u$ coincides with the one introduced by P.-L. Lions through the lifting procedure in the context of mean field games ([5, 3]).

1. Prove the formula for functions of the form

$$u \colon \mathcal{M}_2^+(\mathbb{R}^d) \ni \mu \mapsto g(\langle \mu, \psi_1 \rangle, \dots, \langle \mu, \psi_n \rangle),$$

exploiting classical Itô formula and the the Zakai equation.

2. Prove the formula for functions of the form

$$u(\mu) = \langle \frac{\mu^r}{\mu(\mathbb{R}^d)^r}, \varphi(\cdot, \dots, \cdot, \mu(\mathbb{R}^d)) \rangle$$

by approximation, where $\varphi\colon \mathbb{R}^{d\times r+1}\to \mathbb{R}$ is symmetrical in the first r arguments.

3. Prove the formula for functions in $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ by approximation.

The backward Kolmogorov equation Existence and uniqueness

Theorem (M. [6])

Let us set

$$u(\mu, s) = \mathbb{E}\left[\Phi(\rho_T^{s, \mu})\right],\tag{9}$$

where $ho_T^{s,\mu}$ is the weak solution to the Zakai equation starting at time s from $\mu \in \mathcal{M}_2^+(\mathbb{R}^d)$, $\Phi \in \mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d))$ and let (H) hold. Then u is the unique classical solution to the backward Kolmogorov equation (BEZ).

Proof (uniqueness)

We show that if u is a classical solution to (BEZ), then $u(\mu, s) = \mathbb{E}\left[\Phi(\rho_T^{s, \mu})\right]$.

• By the Itô formula

$$u(\rho_T^{s,\mu},T) - u(\rho_s^{s,\mu},s) = \int_s^T \{\partial_s u(\rho_\tau^{s,\mu},\tau) + \mathcal{L}u(\rho_\tau^{s,\mu},\tau)\} d\tau + \int_s^T \mathcal{G}u(\rho_\tau^{s,\mu},\tau) \cdot dY_\tau.$$

• By taking the expectation and since u solves (BEZ)

$$\mathbb{E}\left[\Phi\left(\rho_T^{s,\mu}\right)\right] - u(\mu,s) = \mathbb{E}\left[\int_s^T \mathcal{G}u(\rho_\tau^{s,\mu},\tau) \cdot dY_\tau\right].$$

• The rhs is zero since the integral is a martingale, thus $u(\mu, s) = \mathbb{E}\left[\Phi(\rho_T^{s, \mu})\right]$.

Proof (existence)

Let $u(\mu, s) = \mathbb{E}\left[\Phi(\rho_{\tau}^{s,\mu})\right]$ be our candidate solution.

- 1. Prove that $\mu \mapsto u(\mu, s)$ is in $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$:
 - given a suitable notion of derivative for functions from $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ to $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$, we show that $\mu\mapsto \rho_T^{s,\mu}$ is twice differentiable;
 - since $\Phi \in \mathrm{C}^2_\mathrm{L}(\mathcal{M}_2^+(\mathbb{R}^d))$ and by the previous point, we conclude by a chain rule.
- 2. Prove the continuity of

$$[0,T] \ni s \mapsto \mathcal{L}u(\mu,s), \quad [s,T] \times [0,T] \ni (\tau,\sigma) \mapsto \mathcal{L}u(\rho_{\tau}^{s,\mu},\sigma) \in L^2(\Omega).$$

3. By the Itô formula and the Markov property

$$\lim_{h\to 0}\frac{1}{h}\left[u(\mu,s+h)-u(\mu,s)\right]=-\lim_{h\to 0}\frac{1}{h}\mathbb{E}\left[\int_{s}^{s+h}\mathcal{L}u(\rho_{\tau}^{s,\mu},s+h)\,\mathrm{d}\tau\right]=-\mathcal{L}u(\mu,s).$$