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Kolmogorov equations on spaces of measures

We want to introduce and study a class of backward Kolmogorov equations on

o M (RY), Po(R%): positive and probability measures with finite second
moment;

o () = p(¥h) = [a Y(X)u( dx);
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Kolmogorov equations on spaces of measures K | prcaismion

We want to introduce and study a class of backward Kolmogorov equations on

o M (RY), Po(R%): positive and probability measures with finite second
moment;

o (1, Y) = () = [pa P(X)u( dx);

SDEs for measure-valued processes arise naturally in the stochastic filtering
framework.

e Many results when there is a density, using stochastic calculus on Hilbert
spaces (e.g. Rozovsky [9], Pardoux [8]).

e New tools for calculus on spaces of (probability) measures (e.g. Ambrosio,
Gigli & Savaré [1], P-L. Lions [5], Carmona & Delarue [3] ).

o Optimal control with partial observation (e.g. Gozzi & Swiech [4] in the
Hilbert setting, or recently Bandini, Cosso, Fuhrman & Pham [2] on Pz(Rd)).
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Stochastic filtering The problem

Signal process

dX; = b(X¢) ds + o(Xt) dWs, Xg € L%(Q, Fo), te[0,T]. (1)
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Stochastic filtering The problem

Signal process

dX; = b(X¢) ds + o(Xt) dWs, Xg € L%(Q, Fo), te[0,T]. (1)

Observation process

Foreveryt € [0, T],

dY; = h(Xy)dt + dB:, Yo =0,
F =0(Ys,0<s<t) VN,
where N\ are P-negligible sets.
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Stochastic filtering The problem

Signal process

dX; = b(X¢) ds + o(Xt) dWs, Xg € L%(Q, Fo), te[0,T]. (1)

Observation process

Foreveryt € [0, T],
dY: = h(X;)dt+ dB:, Yo =0,

F =0(Ys,0<s<t) VN,
where N\ are P-negligible sets.

Goal

e The signal X is not directly observed;
e The available information is given by Y;
e We want to provide an approximation of X given the observation Y.
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Stochastic filtering The filter

e Given the information 7, the best estimate for ¢ (X;) is

E [ ()17 ]
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Stochastic filtering The filter

e Given the information 7, the best estimate for ¢ (X;) is
E [ ()| 7]
e Let N, be the regular conditional probability distribution of X; given F':
forany A € B(RY)

M(A,w) =P (Xr € A|HY) (w), ae. w.
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Stochastic filtering The filter

e Given the information 7, the best estimate for ¢ (X;) is
E [ ()| 7]
e Let N, be the regular conditional probability distribution of X; given F':
forany A € B(RY)

M(A,w) =P (Xr € A|HY) (w), ae. w.

e Forevery ¢ € C,(R% andt € [0, T],

(Mo o) =E [ 7], as.
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Stochastic filtering The filter

e Given the information 7, the best estimate for ¢ (X;) is

E [ ()17 ]

e Let N, be the regular conditional probability distribution of X; given F':
forany A € B(RY)

M(A,w) =P (Xr € A|HY) (w), ae. w.

e Forevery ¢ € C,(R% andt € [0, T],
(Mo o) =E [ 7], as.

{N¢ = Law(X¢| 7)) }epo, 7 is @ P(RY)-valued process called filter.
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Stochastic filtering The unnormalized filter

Define Q by 92 |7 = M; ' = exp {—% Jolh(Xs)[>ds — [ h(Xs)st} .
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Stochastic filtering The unnormalized filter

Define Q by 92 |7 = M; ' = exp {—% Jolh(Xs)[>ds — [ h(XS)dBS} .

Theorem (Kallianpur-Striebel formula)

The filter I can be represented as

Meg) = Lo2) -t 0,7, € Cu(®Y), @3)
(pt, 1)

ts

where (pr, o) = EQ [Mro(Xt)|F{].

{pt}icpo,misa M+ (R%)-valued process called unnormalized filter.
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Stochastic filtering The unnormalized filter

Define Q by 92 |7 = M; ' = exp {—% Jolh(Xs)[>ds — [ h(Xs)st} .

Theorem (Kallianpur-Striebel formula)

The filter I can be represented as
Moy = 222 410,71, € Cu(RY), ®
</)t7 1>
where (pt, o) = E® [Mro(X:)|F].

{pt}icpo,misa M+ (R%)-valued process called unnormalized filter.

Y is a brownian motion under Q.
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Stochastic filtering The unnormalized filter
Define Q by 92|, = M, = exp {7% Jih(Xs) P ds — [ h(Xs) dBS} .

Theorem (Kallianpur-Striebel formula)

The filter I can be represented as

(M) = 222 p e 0,7, € Oy, ©

where (pr, o) = EQ [Mro(Xt)|F{].

{pt}icpo,misa M+ (R%)-valued process called unnormalized filter.

Y is a brownian motion under Q. By 1t6 formula applied to M:p(X) we obtain

The Zakai equation (Z)

The unnormalized filter satisfies, for every test ¢,
d(pt, 0) = (pt,Ap) dt + (pr,ho)y dYy, te (0,T], 4
where A is the infinitesimal generator of X.
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Stochastic filtering Kushner-Stratonovitch equation

Let A be the generator of X: Ap = b (Dxy) + 3 tr{(Di¢)oo " }.

The Zakai equation (Z)

The unnormalized filter satisfies, for every test ¢,
d{pt, ) = (pt, Ap) dt + (pt, hp) d¥r, te (0,T],

where Y is a Brownian motion under Q.
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Stochastic filtering Kushner-Stratonovitch equation

Let A be the generator of X: Ap = b (Dx¢p) + 2 tr{( 2p)oo ' ).

The Zakai equation (Z)

The unnormalized filter satisfies, for every test ¢,

d{pt, ) = (pt, Ap) dt + (pt, he) dYy, te (0,T],
where Y is a Brownian motion under Q.

Using the Kallianpur-Striebel formula

The Kushner-Stratonovich equation (KS)

The filter satisfies, for every test ¢,
d(“t: <p> = <|_|[7A99> dt + (<nt7 hLP> - <I_IT7 Qp><nt‘h>) dIU te (07 T]~
where {lt};c[o,7 is called innovation process and is a Brownian motion under P.
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Stochastic filtering Example: Kalman-Bucy filter

Signal: i
dX; = biXi dt + o th, a't’ = O’to'tT,

1
Ap(x) = Dep(x) " bex + 5 Z, alojo(x).
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Stochastic filtering Example: Kalman-Bucy filter

Signal: i
dX; = biXi dt + o th, a't’ = O’to'tT,
1 -
Arp(X) = Dxp(x) 'bix + 5 ) aldjolx).
i
Observation:
dY: = heXidt + dB:, Yo =0.

(X,Y) is a gaussian process.

Mattia Martini 7



Stochastic filtering Example: Kalman-Bucy filter

Signal: i
dX; = biXi dt + o th, a't’ = Utat-r?
1 -
Arp(X) = Dxp(x) 'bix + 5 ) aldjolx).
i
Observation:
dY: = heXidt + dB:, Yo =0.

(X,Y) is a gaussian process.

The filter I solves
d(Me, ) = (Mo, Asip) dt + (Me, ohy o) dle — (M, @) (Me, h o) e,

u(x) = x.
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Stochastic filtering Example: Kalman-Bucy filter

Signal: i
dX; = biXi dt + o th, a't’ = O’to'tT7
1 -
Arp(X) = Dxp(x) 'bix + 5 ) aldjolx).
i
Observation:
dY: = heXidt + dB:, Yo =0.

(X,Y) is a gaussian process.

The filter M solves
d(Me, ) = (Me, Asp) dt + (e, ohy" 0) dle — (Me, ) (M, h T ) e,

t(x) = x. Moreover, for w € Q fixed, IN;(w) is gaussian with

e Mean X; that solves the SDE

it
dX; = tht dt + "/1ht d/t, le=Y: — / ths ds.
J0o

e Deterministic variance that solves the Riccati equation
d
prade yib{ + beye +ar — w(h"h)y" .
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Ito formula for the Zakai equation

Let {pt }cpo,r be a solution to (Z), i.e. for every test ¢
d(pt, ) = (pt, Ap) dt + (pr,hp) dY:, t € (0,T].
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Ito formula for the Zakai equation

Let {pt }cpo,r be a solution to (Z), i.e. for every test ¢
d(pt, ) = (pt, Ap) dt + (pr,hp) dY:, t € (0,T].

Hypotheses (H)

a. b, o, h are Borel-measurable and bounded, b, o are Lipschitz;
b. The matrix oo " (x) is positive definite for every x € RY.
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Ito formula for the Zakai equation

Let {pt }1co,r be a solution to (Z), i.e. for every test ¢
d(pt, ) = (pt, Ap) dt + (pr,hp) dY:, t € (0,T].

Hypotheses (H)

a. b, o, h are Borel-measurable and bounded, b, o are Lipschitz;
b. The matrix oo " (x) is positive definite for every x € RY.

Proposition (M. [6]

Let u be in CZ (M (R?)) and let us assume (H). Then, for every t € [0, T]:

1 4
du(pr) = (pr, Aduu(pr)) dt + (ot hopu(er)) dYr + 2 (ot ® pt, hThé%u(pr)) dt.
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Ito formula for the Zakai equation

Let {pt }1co,r be a solution to (Z), i.e. for every test ¢
d(pt, ) = (pt, Ap) dt + (pr,hp) dY:, t € (0,T].

Hypotheses (H)

a. b, o, h are Borel-measurable and bounded, b, o are Lipschitz;
b. The matrix oo " (x) is positive definite for every x € RY.

Proposition (M. [6]

Let u be in CZ (M (R?)) and let us assume (H). Then, for every t € [0, T]:

1 4
du(pr) = (pr, Aduu(pr)) dt + (ot hopu(er)) dYr + 2 (ot ® pt,hTheZu(pr)) dt.
e J,u is a notions of derivatives for u: M*(R?) — R:
Suu: MT(RY) xR 5 R, %u: MT(RY) xR? x R? = R;
e Proof by cylindrical approximation: u(u) := g ({i, ¥1), ..., (i, ¥n)).
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The infinitesimal generator of the Zakai equation

The generator £: CE (M3 (R?)) — Cyp(M3 (R?))
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The infinitesimal generator of the Zakai equation

The generator £: CE (M3 (R?)) — Cyp(M3 (R?))

(Cu) (1) = (s AGu(u0) + 3 (0 @ i T hZu()

- /J;d(Aé,tu)(u,x)u(dx)Jr%/R;d H;dh(X)Th(y)(sﬁu(M,xJ)M(dx)u(dy).
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The infinitesimal generator of the Zakai equation

The generator £: C?(MJ(R?)) — C, (M3 (RY))

(Cu) (1) = (s AGu(u0) + 3 (0 @ i T hZu()

= [ en) -+ [ [ h60Thm)5EuGnx v dou(a).

e Formally dpt = A*pydt +hT prdYy, so:

du(pe) = (A" pt, Sut(pr)) dt + (h T pr, Suu(pr)) dYe + o (hTﬂt®hpr75#U(ﬂt)>
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The infinitesimal generator of the Zakai equation

The generator £: C?(MJ(R?)) — C, (M3 (RY))

(Cu) (1) = (s AGu(u0) + 3 (0 @ i T hZu()

= [ en) -+ [ [ h60Thm)5EuGnx v dou(a).

e Formally dpt = A*pydt +hT prdYy, so:

du(pe) = (A" pt, Sut(pr)) dt + (h T pr, Suu(pr)) dYe + o (hTﬂt®hpr75#U(ﬂt)>

e OnR,if dX; = bX;dt + oX¢ dBy, then

]
du(X¢) = bX; Dxu(X¢) dt + o X; Dxu(Xt) dBt + Eazx,2 D2u(Xy) dt.
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The backward Kolmogorov equation Existence and uniqueness

Let
(Lu) () = (1, ASLU(1)) + %(u ® p,hhegu()). (5)
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The backward Kolmogorov equation Existence and uniqueness

Let
(Lu) () = (1, ASLU(1)) + %(u ® p,hhegu()). (5)

Given &: MJ (R?%) — R, the Backward Kolmogorov equation (BEZ) reads as

dsu(, ) + Lu(u,s) =0, (u,8) € M (RY) x [0,T],

u(p, T) = &(p), € M3 (RY).

Mattia Martini 10



UNIVERSITA
DEGLI STUDI

The backward Kolmogorov equation Existence and uniqueness

Let
(Lu) () = (1, ASLU(1)) + %(u ® p,hhegu()). (5)

Given &: MJ (R?%) — R, the Backward Kolmogorov equation (BEZ) reads as

dsu(, ) + Lu(u,s) =0, (u,8) € M (RY) x [0,T],

u(p, T) = &(p), € M3 (RY).

Let {p{"* }te(s,m) be a solution to (2) starting at time s from p € M (R?).
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The backward Kolmogorov equation Existence and uniqueness

Let
(Lu) () = (1, ASLU(1)) + %(u ® p,hhegu()). (5)

Given &: MJ (R?%) — R, the Backward Kolmogorov equation (BEZ) reads as

dsu(, ) + Lu(u,s) =0, (u,8) € M (RY) x [0,T],

u(p, T) = ®(n), p € M3 (RY).
Let {p{"* }te(s,m) be a solution to (2) starting at time s from p € M (R?).

Theorem (M. [6]

Let & € C? (Mg (RY)). Let (H) holds and let us set
u(p, 8) = E[o(p7")],  (1,5) € M3 (R?) x [0,T]. (6)

Then u is the unique classical solution to (BEZ).
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Proof (key steps)

Uniqueness:

e By the It6 formula, every classical solution to (BEZ) has the form

u(u, s) = E [o(p7")] .
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Proof (key steps)

Uniqueness:
e By the It6 formula, every classical solution to (BEZ) has the form
(. 5) = E [0(3")]
Existence:

e Prove that u +— u(, s) := E [®(p3*)] is in CF (M] (RY)):
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Proof (key steps)

Uniqueness:
e By the It6 formula, every classical solution to (BEZ) has the form
(. 5) = E [0(3")]
Existence:

e Prove that u +— u(, s) := E [®(p3*)] is in CF (M] (RY)):
e given a suitable notion of derivative for functions from Ci(M;(Rd)) to
C% (M (RY)), we show that 1 — p3* is twice differentiable;
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Proof (key steps)

Uniqueness:
e By the It6 formula, every classical solution to (BEZ) has the form
(. 5) = E [0(3")]
Existence:

e Prove that u +— u(, s) := E [®(p3*)] is in CF (M] (RY)):
e given a suitable notion of derivative for functions from Ci(M;(Rd)) to
C% (M (RY)), we show that 1 — p3* is twice differentiable;
e since ® € Ci(M;(JRd)) and by the previous point, we conclude by a chain rule.
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Proof (key steps) K | S

Uniqueness:

e By the It6 formula, every classical solution to (BEZ) has the form

(s, 8) = E [6(p24)]
Existence:
e Prove that u +— u(, s) := E [®(p3*)] is in CF (M] (RY)):
e given a suitable notion of derivative for functions from CZ (M3 (RY)) to

C% (M (RY)), we show that 1 — p3* is twice differentiable;
e since ¢ € C? (M*(]Rd)) and by the previous point, we conclude by a chain rule.

e By It6 formula and Markov property

I|m - [U(/L s+h) —u(y,s)]

=— I|m -
h—0 h

/ LU(pS,s + hydr| = —Lu(w,$).
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The Kushner-Stratonovich equation case

The operator £5: CZ(P2(R?)) — Cp(P2(R?))

LCu(r) = (r,Adu(r)) + %<7T ® 7, (h — w(h)) T (h — m(h))d2u(r)).
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The Kushner-Stratonovich equation case

The operator £5: CZ(P2(R?)) — Cp(P2(R?))
KS _ 1 T R
L7u(m) = (m, Aduu(m)) + 5 (m @, (h —=(h)) " (h —m(h))d,u(m)).
Given ¢ Pz(Rd) — R, the Backward Kolmogorov equation (BEKS) reads as

dsu(m,s) + LSu(m,8) =0, (m,s) € Po(RY) x [0, T],

u(m, T) = &(m) T € Po(RY).
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The Kushner-Stratonovich equation case

The operator £5: CZ(P2(R?)) — Cp(P2(R?))
KS _ 1 T R
L7u(m) = (m, Aduu(m)) + 5 (m @, (h —=(h)) " (h —m(h))d,u(m)).
Given ¢ Pz(Rd) — R, the Backward Kolmogorov equation (BEKS) reads as

dsu(m,s) + LSu(m,8) =0, (m,s) € Po(RY) x [0, T],

u(m, T) = &(m) T € Po(RY).

Let {M5"" }+c[s,7) be a solution to (KS) starting at time s from 7 € P,(R?):
d(Me, ) = (M, Ay) dt + ((Ne, hy) — (N, )N, h)) - A, € (0,T]. (7)

Theorem (M. [6

Let & € CZ (P(RY)). Let (H) holds and let us set
u(m,s) =E[®(M37)], (m,8) € P2(RY) x [0, T].

Then u is the unique classical solution to (BEKS).
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The Kushner-Stratonovich equation case Viscosity approach

K c RY compact, ® € Cy,(P(K)):

dsu(m,s) + LSu(r,8) =0, (m,s) € Pa(K) x (0, T],

u(m, T) = &(m), € Po(K).

Let {M;"" }+e(s,7 be a solution to (KS) confined in P, (K).

Theorem (M. [7

Let & € Cp(P2(K)). Let (H) holds and let us set
u(r,s) =E [®(NFT)], (m,5) € P2(K) x (0,T].

Then u is the unique viscosity solution to (BEKS).
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Proof of the comparison principle (Key steps) 2 g

Let uy and u, be respectively a subsolution and a supersolution to (BEKS).
Moreover, let u(r,s) := E [®(3™)]. We want to show that u; < us.

e Show: u; <uandu < us.
e Introduce a family of approximated problems:

dsu(m, s) + LSu(r,s) =0, (m,8) € Po(K) x (0,T],

u(m, T) = ®n(mr) € CL(P2(K)), 7 € Pa(K).

e u"(m,s) :=E [®,(N}™)] is a classical solution to the approximated problem
which converges to u.

e Using the Borwein-Preiss variational principle with a suitable smooth
gauge-type function, we introduce a suitable test function that allows us to
conclude.
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Spaces of measures Linear functional derivatives K | st

Linear functional derivative

u: MF(RY) — Ris in CL (M (RY)) if it is continuous, bounded and if exists
Spuu: MFERY) x RY 5 (u,X) = 6,u(p, X) € R,

bounded, continuous and such that for all z and z/ in M*(RY), it holds:

1
) =) = [ [ 8 (@ + (1= Op06) 1 = ()t ®)

Similarly we can define CK (M*(RY)), k € N.

Example

Letg € CZ(R) and let 1 € Cy,(RY). We define

u: MP(RY) 3 p g ((1,9) €R.
Then u € C?(M*(R9)) and it holds:

8ut(p,X) = g’ (s ) $(x), 85Uk x,y) = g" ({1, ¥)) $()D().
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Spaces of measures L-derivatives 2 g

The space C}(M*(RY))

u: MH(RY) — Risin G (MH(RY)) if:
a. uisin CE(M*(RY));
b. RY 5 x  §,u(u, x) € R is twice differentiable, with continuous and bounded
derivatives on Mt (R?) x RY;
We set
D, u(p, X) := Dxd,u(u, x) € RY,

On P, (RY), the derivative D,,u coincides with the one introduced by P-L. Lions through the
lifting procedure in the context of mean field games ([5, 3]).
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Ito formula Sketch of the proof kg | oo

1. Prove the formula for functions of the form

u: M3 (RY) 3 s g (1), -, (1 ¥n))

exploiting classical 1t6 formula and the the Zakai equation.
2. Prove the formula for functions of the form

r

[ d
U(M) = <M(Rd)r~@(,~,/1(R ))>
by approximation, where ¢ : R —s R is symmetrical in the first r

arguments.
3. Prove the formula for functions in C} (M (RY)) by approximation.
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The backward Kolmogorov equation Existence and uniqueness

Theorem (M. [6

Let us set .
u(u,s) = E [o(p")], )
where p3* is the weak solution to the Zakai equation starting at time s from p € M3 (RY),

NS C%(M;(Rd)) and let (H) hold. Then u is the unique classical solution to the backward
Kolmogorov equation (BEZ).

Proof (uniqueness)

We show that if u is a classical solution to (BEZ), then u(u, s) = E [®(p3")].
e By the It6 formula

T T
u(p )~ (s, s) = [ {Beu(py )+ Lu(est )b dr+ [ Gu(ps
S )
e By taking the expectation and since u solves (BEZ)
E [0 (53] - u(is) = {/ Gu(p2, 7). ]

e Therhs is zero since the integral is a martingale, thus u(u,s) = E [d)(p‘; M.
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The backward Kolmogorov equation Existence and uniqueness

Proof (existence)

Letu(, s) = E [®(p3")] be our candidate solution.
1. Prove that p + u(g, s) is in C3 (M5 (RY)):
e given a suitable notion of derivative for functions from CZ (M; (R?)) to

C3 (M; (RY)), we show that u — p3* is twice differentiable;

e sinced € Ci(M}(IRd)) and by the previous point, we conclude by a chain rule.
2. Prove the continuity of

[0,T] 58 Lu(n,s), [s,T]x[0,T] 3 (7,0) = Lu(pS*,0) € LA(Q).
3. By the It6 formula and the Markov property

1 1 s+h R
im — — = — [fim — y _
fim & (s, + h) = U, )] = — fim - B {/S Lu(pS,s +hydr| = —Lu(u, s).
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