Kolmogorov equations on spaces of measures associated to nonlinear filtering processes

Mattia Martini

Università degli Studi di Milano

01/07/22 - BSDE2022 - Annecy
Overview

1. **Stochastic filtering**
 - Nonlinear filtering problem
 - Nonlinear filtering equations

2. **Kolmogorov equations associated to filtering equations**
 - Itô formula
 - Backward equation associated to the Zakai equation
 - Backward equation associated to the K.-S. equation
We want to introduce and study a class of backward Kolmogorov equations on

- $\mathcal{M}_2^+(\mathbb{R}^d)$, $\mathcal{P}_2(\mathbb{R}^d)$: positive and probability measures with finite second moment;
- $\langle \mu, \psi \rangle = \mu(\psi) = \int_{\mathbb{R}^d} \psi(x) \mu(dx)$;
We want to introduce and study a class of backward Kolmogorov equations on

- $\mathcal{M}_2^+(\mathbb{R}^d)$, $\mathcal{P}_2(\mathbb{R}^d)$: positive and probability measures with finite second moment;
- $\langle \mu, \psi \rangle = \mu(\psi) = \int_{\mathbb{R}^d} \psi(x) \mu(dx)$;

SDEs for measure-valued processes arise naturally in the stochastic filtering framework.

- Many results when there is a density, using stochastic calculus on Hilbert spaces (e.g. Rozovsky [9], Pardoux [8]).
- New tools for calculus on spaces of (probability) measures (e.g. Ambrosio, Gigli & Savarè [1], P.-L. Lions [5], Carmona & Delarue [3]).
- Optimal control with partial observation (e.g. Gozzi & Świąch [4] in the Hilbert setting, or recently Bandini, Cosso, Fuhrman & Pham [2] on $\mathcal{P}_2(\mathbb{R}^d)$).
Stochastic filtering

The problem

Signal process

\[dX_t = b(X_t) \, ds + \sigma(X_t) \, dW_t, \quad X_0 \in L^2(\Omega, \mathcal{F}_0), \quad t \in [0, T]. \] (1)

Observation process

For every \(t \in [0, T] \),

\[dY_t = h(X_t) \, dt + dB_t, \quad Y_0 = Y_0, \quad FY_t = \sigma(Y_s, s \leq t) \lor N, \] (two.pnum)

where \(N \) are \(\mathbb{P} \)-negligible sets.

Goal

• The signal \(X \) is not directly observed;
• The available information is given by \(Y \);
• We want to provide an approximation of \(X \) given the observation \(Y \).
Stochastic filtering The problem

Signal process

\[dX_t = b(X_t) \, ds + \sigma(X_t) \, dW_t, \quad X_0 \in L^2(\Omega, \mathcal{F}_0), \quad t \in [0, T]. \] \hspace{1cm} (1)

Observation process

For every \(t \in [0, T] \),

\[dY_t = h(X_t) \, dt + dB_t, \quad Y_0 = 0, \]

\[\mathcal{F}_t^Y = \sigma(Y_s, 0 \leq s \leq t) \cup \mathcal{N}, \] \hspace{1cm} (2)

where \(\mathcal{N} \) are \(\mathbb{P} \)-negligible sets.
Stochastic filtering The problem

Signal process

\[dX_t = b(X_t) \, ds + \sigma(X_t) \, dW_t, \quad X_0 \in L^2(\Omega, \mathcal{F}_0), \quad t \in [0, T]. \]

Observation process

For every \(t \in [0, T] \),

\[dY_t = h(X_t) \, dt + dB_t, \quad Y_0 = 0, \]

\[\mathcal{F}_t^Y = \sigma (Y_s, 0 \leq s \leq t) \lor \mathcal{N}, \]

where \(\mathcal{N} \) are \(\mathbb{P} \)-negligible sets.

Goal

- The signal \(X \) is not directly observed;
- The available information is given by \(Y \);
- We want to provide an approximation of \(X \) given the observation \(Y \).
• Given the information \mathcal{F}_t^Y, the best estimate for $\varphi(X_t)$ is

$$\mathbb{E} \left[\varphi(X_t) | \mathcal{F}_t^Y \right];$$
Stochastic filtering

The filter

- Given the information \mathcal{F}_t^Y, the best estimate for $\varphi(X_t)$ is

 $$E \left[\varphi(X_t) | \mathcal{F}_t^Y \right];$$

- Let Π_t be the regular conditional probability distribution of X_t given \mathcal{F}_t^Y: for any $A \in \mathcal{B}(\mathbb{R}^d)$

 $$\Pi_t(A, \omega) = \mathbb{P} \left(X_t \in A \mid \mathcal{F}_t^Y \right)(\omega), \quad \text{a.e.} \ \omega.$$
Stochastic filtering \textbf{The filter}

- Given the information \mathcal{F}_t^Y, the best estimate for $\varphi(X_t)$ is

$$E \left[\varphi(X_t) | \mathcal{F}_t^Y \right] ;$$

- Let Π_t be the regular conditional probability distribution of X_t given \mathcal{F}_t^Y: for any $A \in \mathcal{B}(\mathbb{R}^d)$

$$\Pi_t(A, \omega) = P \left(X_t \in A | \mathcal{F}_t^Y \right)(\omega), \quad \text{a.e. } \omega.$$

- For every $\varphi \in C_b(\mathbb{R}^d)$ and $t \in [0, T]$,

$$\langle \Pi_t, \varphi \rangle = E \left[\varphi(X_t) | \mathcal{F}_t^Y \right], \quad \text{a.s.}$$
Stochastic filtering The filter

- Given the information \mathcal{F}_t^Y, the best estimate for $\varphi(X_t)$ is
 $$\mathbb{E} \left[\varphi(X_t) | \mathcal{F}_t^Y \right];$$

- Let Π_t be the regular conditional probability distribution of X_t given \mathcal{F}_t^Y: for any $A \in \mathcal{B}(\mathbb{R}^d)$
 $$\Pi_t(A, \omega) = \mathbb{P} \left(X_t \in A | \mathcal{F}_t^Y \right)(\omega), \text{ a.e. } \omega.$$

- For every $\varphi \in C_b(\mathbb{R}^d)$ and $t \in [0, T]$,
 $$\langle \Pi_t, \varphi \rangle = \mathbb{E} \left[\varphi(X_t) | \mathcal{F}_t^Y \right], \text{ a.s.}$$

$\{\Pi_t = \text{Law}(X_t | \mathcal{F}_t^Y)\}_{t \in [0, T]}$ is a $\mathcal{P}(\mathbb{R}^d)$-valued process called filter.
Define \mathbb{Q} by $\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp\left\{ -\frac{1}{2} \int_0^t |h(X_s)|^2 \, ds - \int_0^t h(X_s) \, dB_s \right\}$.

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as

$$\langle \Pi_t, \phi \rangle = \langle \rho_t, \phi \rangle \langle \rho_t, \cdot \rangle, \quad t \in [0, T], \phi \in C_b(\mathbb{R}^d),$$

where $\langle \rho_t, \phi \rangle = \mathbb{E}_{\mathbb{Q}}[M_t \phi(X_t) | \mathcal{F}_Y]$.

$\{\rho_t\}$ is a $\mathbb{P}^+\left(\mathbb{R}^d\right)$-valued process called the unnormalized filter. Y is a brownian motion under \mathbb{Q}.

By Itô formula applied to $M_t \phi(X_t)$ we obtain

The Zakai equation (Z)

The unnormalized filter satisfies, for every test ϕ,

$$\frac{d}{dt}\langle \rho_t, \phi \rangle = \langle \rho_t, A\phi \rangle \, dt + \langle \rho_t, h\phi \rangle \, dB_t, \quad t \in (0, T),$$

where A is the infinitesimal generator of X.

Mattia Martini
Stochastic filtering The unnormalized filter

Define \mathbb{Q} by
\[
\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp \left\{ -\frac{1}{2} \int_0^t |h(X_s)|^2 \, ds - \int_0^t h(X_s) \, dB_s \right\}.
\]

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as

\[
\langle \Pi_t, \varphi \rangle = \frac{\langle \rho_t, \varphi \rangle}{\langle \rho_t, 1 \rangle}, \quad t \in [0, T], \varphi \in C_b(\mathbb{R}^d),
\]

Where $\langle \rho_t, \varphi \rangle = \mathbb{E}_\mathbb{Q}^\mathbb{Q} \left[M_t \varphi(X_t) | \mathcal{F}_t^Y \right]$.

$\{\rho_t\}_{t \in [0, T]}$ is a $\mathcal{M}^+(\mathbb{R}^d)$-valued process called unnormalized filter.
Define \mathbb{Q} by \[\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp \left\{ -\frac{1}{2} \int_0^t |h(X_s)|^2 \, ds - \int_0^t h(X_s) \, dB_s \right\}. \]

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as

$$ \langle \Pi_t, \varphi \rangle = \frac{\langle \rho_t, \varphi \rangle}{\langle \rho_t, 1 \rangle}, \quad t \in [0, T], \varphi \in C_b(\mathbb{R}^d), $$

where $\langle \rho_t, \varphi \rangle = \mathbb{E}^\mathbb{Q} \left[M_t \varphi(X_t) | \mathcal{F}_t^Y \right]$.

\{\rho_t\}_{t \in [0, T]} is a $\mathcal{M}^+(\mathbb{R}^d)$-valued process called **unnormalized filter**.

Y is a brownian motion under \mathbb{Q}.
Define \mathbb{Q} by
$$
\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp \left\{ -\frac{1}{2} \int_0^t |h(X_s)|^2 \, ds - \int_0^t h(X_s) \, dB_s \right\}.
$$

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as
$$
\langle \Pi_t, \phi \rangle = \frac{\langle \rho_t, \phi \rangle}{\langle \rho_t, 1 \rangle}, \quad t \in [0, T], \phi \in C_b(\mathbb{R}^d),
$$
where $\langle \rho_t, \phi \rangle = \mathbb{E}^\mathbb{Q} \left[M_t \phi(X_t) | \mathcal{F}_t^Y \right]$.

$
\{\rho_t\}_{t \in [0, T]}$

is a $\mathcal{M}^+(\mathbb{R}^d)$-valued process called **unnormalized filter**.

Y is a brownian motion under \mathbb{Q}. By Itô formula applied to $M_t\phi(X)$ we obtain

The Zakai equation (Z)

The unnormalized filter satisfies, for every test ϕ,
$$
d\langle \rho_t, \phi \rangle = \langle \rho_t, A\phi \rangle \, dt + \langle \rho_t, h\phi \rangle \, dY_t, \quad t \in (0, T],
$$
where A is the infinitesimal generator of X.

Mattia Martini
Let A be the generator of X: $A\varphi = b^T (D_x \varphi) + \frac{1}{2} \text{tr}\{(D_x^2 \varphi)\sigma\sigma^T\}$.

The Zakai equation (Z)

The unnormalized filter satisfies, for every test φ,

$$d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle \, dt + \langle \rho_t, h\varphi \rangle \, dY_t, \quad t \in (0, T],$$

where Y is a Brownian motion under \mathbb{Q}.
Let A be the generator of X: $A\varphi = b^\top (D_x\varphi) + \frac{1}{2} \text{tr}\{(D_x^2\varphi)\sigma\sigma^\top\}$.

The Zakai equation (Z)

The unnormalized filter satisfies, for every test φ,

$$d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle \, dt + \langle \rho_t, h\varphi \rangle \, dY_t, \quad t \in (0, T],$$

where Y is a Brownian motion under \mathbb{Q}.

Using the Kallianpur-Striebel formula

The Kushner-Stratonovich equation (KS)

The filter satisfies, for every test φ,

$$d\langle \Pi_t, \varphi \rangle = \langle \Pi_t, A\varphi \rangle \, dt + \left(\langle \Pi_t, h\varphi \rangle - \langle \Pi_t, \varphi \rangle \langle \Pi_t, h \rangle \right) \, dl_t, \quad t \in (0, T],$$

where $\{l_t\}_{t \in [0, T]}$ is called innovation process and is a Brownian motion under \mathbb{P}.
Stochastic filtering Example: Kalman-Bucy filter

Signal:

\[dX_t = b_t X_t \, dt + \sigma_t \, dW_t, \quad a_t^{ij} = \sigma_t \sigma_t^\top, \]

\[A_t \varphi(x) = D_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,j} a_t^{ij} \partial_{ij}^2 \varphi(x). \]
Stochastic filtering Example: Kalman-Bucy filter

Signal:

\[dX_t = b_t X_t \, dt + \sigma_t \, dW_t, \quad a_{ij}^t = \sigma_t \sigma_t^T, \]

\[A_t \varphi(x) = D_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,j} a_{ij}^t \partial_{ij}^2 \varphi(x). \]

Observation:

\[dY_t = h_t X_t \, dt + dB_t, \quad Y_0 = 0. \]

\((X, Y)\) is a gaussian process.
Stochastic filtering Example: Kalman-Bucy filter

Signal:

\[
\begin{align*}
 dX_t &= b_t X_t \, dt + \sigma_t \, dW_t, \\
 a_{ij}^t &= \sigma_t \sigma_t^\top, \\
 A_t \varphi(x) &= D_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,j} a_{ij}^t \partial_{ij}^2 \varphi(x).
\end{align*}
\]

Observation:

\[
\begin{align*}
 dY_t &= h_t X_t \, dt + dB_t, \\
 Y_0 &= 0.
\end{align*}
\]

\((X, Y)\) is a gaussian process.

The filter \(\Pi\) solves

\[
\begin{align*}
 d\langle \Pi_t, \varphi \rangle &= \langle \Pi_t, A_s \varphi \rangle \, dt + \langle \Pi_t, \varphi h_t^\top \nu \rangle \, dl_t - \langle \Pi_t, \varphi \rangle \langle \Pi_t, h^\top \nu \rangle \, dl_t, \\
 \nu(x) &= x.
\end{align*}
\]
Stochastic filtering Example: Kalman-Bucy filter

Signal:
\[
dX_t = b_t X_t \, dt + \sigma_t \, dW_t, \quad a_t^{ij} = \sigma_t \sigma_t^T, \\
A_t \varphi(x) = D_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,j} a_t^{ij} \partial_{ij}^2 \varphi(x).
\]

Observation:
\[
dY_t = h_t X_t \, dt + dB_t, \quad Y_0 = 0.
\]

\((X, Y)\) is a gaussian process.

The filter \(\Pi\) solves
\[
d\langle \Pi_t, \varphi \rangle = \langle \Pi_t, A_s \varphi \rangle \, dt + \langle \Pi_t, \varphi h_t^\top \nu \rangle \, dl_t - \langle \Pi_t, \varphi \rangle \langle \Pi_t, h^\top \nu \rangle \, dl_t,
\]
\(\nu(x) = x\). Moreover, for \(\omega \in \Omega\) fixed, \(\Pi_t(\omega)\) is gaussian with

- Mean \(\hat{X}_t\) that solves the SDE
 \[
d\hat{X}_t = b_t \hat{X}_t \, dt + \gamma_t h_t \, dl_t, \quad l_t = Y_t - \int_0^t h_s \hat{X}_s \, ds.
 \]

- Deterministic variance that solves the Riccati equation
 \[
 \frac{d}{dt} \gamma_t = \gamma_t b_t^\top + b_t \gamma_t + a_t - \gamma_t (h^\top h) \gamma_t^\top.
 \]
Let \(\{ \rho_t \}_{t \in [0, T]} \) be a solution to (Z), i.e. for every test \(\varphi \)
\[
d\langle \rho_t, \varphi \rangle = \langle \rho_t, A \varphi \rangle \, dt + \langle \rho_t, h \varphi \rangle \, dY_t, \quad t \in (0, T].
\]
Itô formula for the Zakai equation

Let \(\{ \rho_t \}_{t \in [0,T]} \) be a solution to (Z), i.e. for every test \(\varphi \)

\[
\mathrm{d}\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle \, \mathrm{d}t + \langle \rho_t, h\varphi \rangle \, \mathrm{d}Y_t, \quad t \in (0, T].
\]

Hypotheses (H)

a. \(b, \sigma, h \) are Borel-measurable and bounded, \(b, \sigma \) are Lipschitz;
b. The matrix \(\sigma \sigma^\top (x) \) is positive definite for every \(x \in \mathbb{R}^d \).
Itô formula for the Zakai equation

Let \(\{\rho_t\}_{t \in [0,T]} \) be a solution to (Z), i.e. for every test \(\varphi \)

\[
\, d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle \, dt + \langle \rho_t, h\varphi \rangle \, dY_t, \quad t \in (0, T].
\]

Hypotheses (H)

a. \(b, \sigma, h \) are Borel-measurable and bounded, \(b, \sigma \) are Lipschitz;

b. The matrix \(\sigma \sigma^\top (x) \) is positive definite for every \(x \in \mathbb{R}^d \).

Proposition (M. [6])

Let \(u \) be in \(C^2_L (\mathcal{M}_2^+ (\mathbb{R}^d)) \) and let us assume (H). Then, for every \(t \in [0, T] \):

\[
\, du(\rho_t) = \langle \rho_t, A\delta_\mu u(\rho_t) \rangle \, dt + \langle \rho_t, h\delta_\mu u(\rho_t) \rangle \, dY_t + \frac{1}{2} \langle \rho_t \otimes \rho_t, h^\top h\delta^2_\mu u(\rho_t) \rangle \, dt.
\]
Itô formula for the Zakai equation

Let \(\{ \rho_t \}_{t \in [0, T]} \) be a solution to (Z), i.e. for every test \(\varphi \)

\[
d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle \, dt + \langle \rho_t, h\varphi \rangle \, dY_t, \quad t \in (0, T] .
\]

Hypotheses (H)

a. \(b, \sigma, h \) are Borel-measurable and bounded, \(b, \sigma \) are Lipschitz;
b. The matrix \(\sigma \sigma^\top (x) \) is positive definite for every \(x \in \mathbb{R}^d \).

Proposition (M. [6])

Let \(u \) be in \(C^2_L (\mathcal{M}_2^+ (\mathbb{R}^d)) \) and let us assume (H). Then, for every \(t \in [0, T] \):

\[
du(\rho_t) = \langle \rho_t, A\delta_\mu u(\rho_t) \rangle \, dt + \langle \rho_t, h\delta_\mu u(\rho_t) \rangle \, dY_t + \frac{1}{2} \langle \rho_t \otimes \rho_t, h^\top h\delta^2_\mu u(\rho_t) \rangle \, dt .
\]

- \(\delta_\mu u \) is a notions of derivatives for \(u : \mathcal{M}_2^+ (\mathbb{R}^d) \rightarrow \mathbb{R} \):

\[
\delta_\mu u : \mathcal{M}_2^+ (\mathbb{R}^d) \times \mathbb{R}^d \rightarrow \mathbb{R}, \quad \delta^2_\mu u : \mathcal{M}_2^+ (\mathbb{R}^d) \times \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R} ;
\]
- Proof by cylindrical approximation: \(u(\mu) := g (\langle \mu, \psi_1 \rangle, \ldots, \langle \mu, \psi_n \rangle) \).
The generator $\mathcal{L}: C^2_L(M^+_{2}(\mathbb{R}^d)) \rightarrow C_b(M^+_{2}(\mathbb{R}^d))$
The infinitesimal generator of the Zakai equation

The generator $\mathcal{L} : C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \to C_b(\mathcal{M}_2^+(\mathbb{R}^d))$

$$(\mathcal{L}u)(\mu) = \langle \mu, A\delta_\mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h\delta^2_\mu u(\mu) \rangle$$

$$= \int_{\mathbb{R}^d} (A\delta_\mu u)(\mu, x)\mu(\text{d}x) + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x)^\top h(y)\delta^2_\mu u(\mu, x, y)\mu(\text{d}x)\mu(\text{d}y).$$
The infinitesimal generator of the Zakai equation

The generator \(\mathcal{L} : C^2_L(\mathcal{M}^+_2(\mathbb{R}^d)) \to C_b(\mathcal{M}^+_2(\mathbb{R}^d)) \)

\[
(\mathcal{L}u)(\mu) = \langle \mu, A\delta_\mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h \delta^2_\mu u(\mu) \rangle \\
= \int_{\mathbb{R}^d} (A\delta_\mu u)(\mu, x) \mu(\,dx) + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x)^\top h(y) \delta^2_\mu u(\mu, x, y) \mu(\,dx) \mu(\,dy).
\]

Remark

- Formally \(d\rho_t = A^* \rho_t \, dt + h^\top \rho_t \, dY_t \), so:

\[
du(\rho_t) = \langle A^* \rho_t, \delta_\mu u(\rho_t) \rangle \, dt + \langle h^\top \rho_t, \delta_\mu u(\rho_t) \rangle \, dY_t + \frac{1}{2} \langle h^\top \rho_t \otimes h \rho_t, \delta^2_\mu u(\rho_t) \rangle \, dt.
\]
The infinitesimal generator of the Zakai equation

The generator $\mathcal{L} : C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \to C_b(\mathcal{M}_2^+(\mathbb{R}^d))$

$$(\mathcal{L}u)(\mu) = \langle \mu, A \delta_{\mu} u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h \delta_{\mu}^2 u(\mu) \rangle$$

$$= \int_{\mathbb{R}^d} (A \delta_{\mu} u)(\mu, x) \mu(dx) + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x)^\top h(y) \delta_{\mu}^2 u(\mu, x, y) \mu(dx) \mu(dy).$$

Remark

- Formally $d \rho_t = A^* \rho_t \, dt + h^\top \rho_t \, dY_t$, so:

 $$d u(\rho_t) = \langle A^* \rho_t, \delta_{\mu} u(\rho_t) \rangle \, dt + \langle h^\top \rho_t, \delta_{\mu} u(\rho_t) \rangle \, dY_t + \frac{1}{2} \langle h^\top \rho_t \otimes h \rho_t, \delta_{\mu}^2 u(\rho_t) \rangle \, dt.$$

- On \mathbb{R}, if $dX_t = bX_t \, dt + \sigma X_t \, dB_t$, then

 $$d u(X_t) = bX_t \, D_x u(X_t) \, dt + \sigma X_t \, D_x u(X_t) \, dB_t + \frac{1}{2} \sigma^2 X_t^2 \, D_x^2 u(X_t) \, dt.$$
Let

\[(Lu)(\mu) = \langle \mu, A\delta_\mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^T h \delta^2_\mu u(\mu) \rangle.\]

(5)
The backward Kolmogorov equation

Existence and uniqueness

Let

\[(Lu)(\mu) = \langle \mu, A\delta_\mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h\delta_\mu^2 u(\mu) \rangle.\] (5)

Given \(\Phi: \mathcal{M}_2^+(\mathbb{R}^d) \to \mathbb{R},\) the Backward Kolmogorov equation (BEZ) reads as

\[
\begin{cases}
\partial_s u(\mu, s) + Lu(\mu, s) = 0, & (\mu, s) \in \mathcal{M}_2^+(\mathbb{R}^d) \times [0, T], \\
u(\mu, T) = \Phi(\mu), & \mu \in \mathcal{M}_2^+(\mathbb{R}^d).
\end{cases}
\]
Let
\[(Lu)(\mu) = \langle \mu, A\delta\mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h\delta^2 \mu u(\mu) \rangle.\] (5)

Given \(\Phi: \mathcal{M}^+_2(\mathbb{R}^d) \to \mathbb{R}\), the Backward Kolmogorov equation (BEZ) reads as
\[
\begin{cases}
\partial_s u(\mu, s) + Lu(\mu, s) = 0, & (\mu, s) \in \mathcal{M}^+_2(\mathbb{R}^d) \times [0, T], \\
u(\mu, T) = \Phi(\mu), & \mu \in \mathcal{M}^+_2(\mathbb{R}^d).
\end{cases}
\]

Let \(\{\rho^{s, \mu}_t\}_{t \in [s, T]}\) be a solution to (Z) starting at time \(s\) from \(\mu \in \mathcal{M}^+_2(\mathbb{R}^d)\).
Let
\[(Lu)(\mu) = \langle \mu, A\delta \mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h \delta^2 \mu u(\mu) \rangle.\] (5)

Given \(\Phi: \mathcal{M}^+_2(\mathbb{R}^d) \to \mathbb{R}\), the **Backward Kolmogorov equation** (BEZ) reads as
\[
\begin{cases}
\partial_s u(\mu, s) + Lu(\mu, s) = 0, & (\mu, s) \in \mathcal{M}^+_2(\mathbb{R}^d) \times [0, T], \\
u(\mu, T) = \Phi(\mu), & \mu \in \mathcal{M}^+_2(\mathbb{R}^d).
\end{cases}
\]

Let \(\{\rho_t^{s,\mu}\}_{t \in [s, T]}\) be a solution to (Z) starting at time \(s\) from \(\mu \in \mathcal{M}^+_2(\mathbb{R}^d)\).

Theorem (M. [6])

Let \(\Phi \in C^2_L(\mathcal{M}^+_2(\mathbb{R}^d))\). Let \((H)\) holds and let us set
\[u(\mu, s) := \mathbb{E} \left[\Phi(\rho_t^{s,\mu}) \right], \quad (\mu, s) \in \mathcal{M}^+_2(\mathbb{R}^d) \times [0, T].\] (6)

Then \(u\) is the unique classical solution to (BEZ).
Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

\[u(\mu, s) = \mathbb{E} \left[\Phi(\rho_{s,\mu}) \right]. \]
Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

$$u(\mu, s) = E \left[\Phi(\rho_{T}^{s, \mu}) \right].$$

Existence:

- Prove that $$\mu \mapsto u(\mu, s) := E \left[\Phi(\rho_{T}^{s, \mu}) \right]$$ is in $$C_{L}^{2}(\mathcal{M}_{2}^{+}(\mathbb{R}^{d})).$$
Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

$$u(\mu, s) = \mathbb{E} \left[\Phi(\rho_{T}^{s, \mu}) \right].$$

Existence:

- Prove that $\mu \mapsto u(\mu, s) := \mathbb{E} \left[\Phi(\rho_{T}^{s, \mu}) \right]$ is in $C_{L}^{2}(\mathcal{M}_{2}^{+}(\mathbb{R}^{d}))$:
 - given a suitable notion of derivative for functions from $C_{L}^{2}(\mathcal{M}_{2}^{+}(\mathbb{R}^{d}))$ to $C_{L}^{2}(\mathcal{M}_{2}^{+}(\mathbb{R}^{d}))$, we show that $\mu \mapsto \rho_{T}^{s, \mu}$ is twice differentiable;
Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

\[u(\mu, s) = \mathbb{E} \left[\Phi(\rho_{\tau}^{s, \mu}) \right]. \]

Existence:

- Prove that \(\mu \mapsto u(\mu, s) := \mathbb{E} \left[\Phi(\rho_{\tau}^{s, \mu}) \right] \) is in \(C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \):
 - given a suitable notion of derivative for functions from \(C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \) to \(C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \), we show that \(\mu \mapsto \rho_{\tau}^{s, \mu} \) is twice differentiable;
 - since \(\Phi \in C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \) and by the previous point, we conclude by a chain rule.
Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form
 \[u(\mu, s) = \mathbb{E} \left[\Phi(\rho^T_s, \mu) \right]. \]

Existence:

- Prove that \(\mu \mapsto u(\mu, s) := \mathbb{E} \left[\Phi(\rho^T_s, \mu) \right] \) is in \(C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \):
 - given a suitable notion of derivative for functions from \(C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \) to \(C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \), we show that \(\mu \mapsto \rho^s_T, \mu \) is twice differentiable;
 - since \(\Phi \in C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \) and by the previous point, we conclude by a chain rule.
- By Itô formula and Markov property
 \[
 \lim_{h \to 0} \frac{1}{h} \left[u(\mu, s + h) - u(\mu, s) \right] = -\lim_{h \to 0} \frac{1}{h} \mathbb{E} \left[\int_{s}^{s+h} \mathcal{L}u(\rho^s_T, \mu, s + h) \, d\tau \right] = -\mathcal{L}u(\mu, s).
 \]
The Kushner-Stratonovich equation case

The operator $\mathcal{L}^{KS}: C^2_L(\mathcal{P}_2(\mathbb{R}^d)) \to C_b(\mathcal{P}_2(\mathbb{R}^d))$

$$\mathcal{L}^{KS} u(\pi) = \langle \pi, A\delta_\mu u(\pi) \rangle + \frac{1}{2} \langle \pi \otimes \pi, (h - \pi(h)) \mathbf{1} (h - \pi(h)) \delta_\mu u(\pi) \rangle.$$
The Kushner-Stratonovich equation case

The operator \(L^{KS} : C^2_{L}(\mathcal{P}_2(\mathbb{R}^d)) \to C_b(\mathcal{P}_2(\mathbb{R}^d)) \)

\[
L^{KS}u(\pi) = \langle \pi, A\delta_\mu u(\pi) \rangle + \frac{1}{2} \langle \pi \otimes \pi, (h - \pi(h))^{\top}(h - \pi(h))\delta_\mu^2 u(\pi) \rangle.
\]

Given \(\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \), the Backward Kolmogorov equation (BEKS) reads as

\[
\begin{cases}
\partial_s u(\pi, s) + L^{KS}u(\pi, s) = 0, & (\pi, s) \in \mathcal{P}_2(\mathbb{R}^d) \times [0, T], \\
u(\pi, T) = \Phi(\pi), & \pi \in \mathcal{P}_2(\mathbb{R}^d).
\end{cases}
\]
The Kushner-Stratonovich equation case

The operator $L^{KS} : C^2_L(\mathcal{P}_2(\mathbb{R}^d)) \to C_b(\mathcal{P}_2(\mathbb{R}^d))$

$$L^{KS}u(\pi) = \langle \pi, A \delta_\mu u(\pi) \rangle + \frac{1}{2} \langle \pi \otimes \pi, (h - \pi(h)) \top (h - \pi(h)) \delta_\mu^2 u(\pi) \rangle.$$

Given $\Phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEKS) reads as

$$\begin{cases}
\partial_s u(\pi, s) + L^{KS}u(\pi, s) = 0, & (\pi, s) \in \mathcal{P}_2(\mathbb{R}^d) \times [0, T], \\
u(\pi, T) = \Phi(\pi), & \pi \in \mathcal{P}_2(\mathbb{R}^d).
\end{cases}$$

Let $\{\Pi_t^{s, \pi}\}_{t \in [s, T]}$ be a solution to (KS) starting at time s from $\pi \in \mathcal{P}_2(\mathbb{R}^d)$:

$$d \langle \Pi_t, \psi \rangle = \langle \Pi_t, A \psi \rangle \, dt + (\langle \Pi_t, h \psi \rangle - \langle \Pi_t, \psi \rangle \langle \Pi_t, h \rangle) \cdot dI_t, \quad t \in (0, T]. \quad (7)$$

Theorem (M. [6])

Let $\Phi \in C^2_L(\mathcal{P}_2(\mathbb{R}^d))$. Let (H) holds and let us set

$$u(\pi, s) = \mathbb{E} \left[\Phi(\Pi_T^{s, \pi}) \right], \quad (\pi, s) \in \mathcal{P}_2(\mathbb{R}^d) \times [0, T].$$

Then u is the unique classical solution to (BEKS).
The Kushner-Stratonovich equation case

Viscosity approach

\(K \subset \mathbb{R}^d \) compact, \(\Phi \in C_b(\mathcal{P}_2(K)) \):

\[
\begin{aligned}
\partial_s u(\pi, s) + L^{KS} u(\pi, s) &= 0, \quad (\pi, s) \in \mathcal{P}_2(K) \times (0, T], \\
u(\pi, T) &= \Phi(\pi), \quad \pi \in \mathcal{P}_2(K).
\end{aligned}
\]

Let \(\{\Pi_t^{s, \pi}\}_{t \in [s, T]} \) be a solution to (KS) confined in \(\mathcal{P}_2(K) \).

Theorem (M. [7])

Let \(\Phi \in C_b(\mathcal{P}_2(K)) \). Let (H) holds and let us set

\[
u(\pi, s) = \mathbb{E} \left[\Phi(\Pi_t^{s, \pi}) \right], \quad (\pi, s) \in \mathcal{P}_2(K) \times (0, T].
\]

Then \(u \) is the unique viscosity solution to (BEKS).
Proof of the comparison principle (Key steps)

Let u_1 and u_2 be respectively a subsolution and a supersolution to (BEKS). Moreover, let $u(\pi, s) := \mathbb{E} \left[\Phi(\Pi_s^\pi) \right]$. We want to show that $u_1 \leq u_2$.

- Show: $u_1 \leq u$ and $u \leq u_2$.
- Introduce a family of approximated problems:

$$
\begin{cases}
\partial_s u(\pi, s) + \mathcal{L}^{KS} u(\pi, s) = 0, & (\pi, s) \in \mathcal{P}_2(K) \times (0, T], \\
u(\pi, T) = \Phi_n(\pi) \in C^2_L(\mathcal{P}_2(K)), & \pi \in \mathcal{P}_2(K).
\end{cases}
$$

- $u^n(\pi, s) := \mathbb{E} \left[\Phi_n(\Pi_s^\pi) \right]$ is a classical solution to the approximated problem which converges to u.
- Using the Borwein-Preiss variational principle with a suitable smooth gauge-type function, we introduce a suitable test function that allows us to conclude.
Thank you!
References

Linear functional derivative

\(u : \mathcal{M}^+ (\mathbb{R}^d) \to \mathbb{R} \) is in \(C^1_b (\mathcal{M}^+ (\mathbb{R}^d)) \) if it is continuous, bounded and if exists

\[\delta_\mu u : \mathcal{M}^+ (\mathbb{R}^d) \times \mathbb{R}^d \ni (\mu, x) \mapsto \delta_\mu u (\mu, x) \in \mathbb{R}, \]

bounded, continuous and such that for all \(\mu \) and \(\mu' \) in \(\mathcal{M}^+ (\mathbb{R}^d) \), it holds:

\[u(\mu') - u(\mu) = \int_0^1 \int_{\mathbb{R}^d} \delta_\mu u (t\mu' + (1 - t)\mu, x) \left[\mu' \right. - \mu \left.] (dx) \, dt. \quad (8) \]

Similarly we can define \(C^k_b (\mathcal{M}^+ (\mathbb{R}^d)) \), \(k \in \mathbb{N} \).

Example

Let \(g \in C^2_b (\mathbb{R}) \) and let \(\psi \in C_b (\mathbb{R}^d) \). We define

\[u : \mathcal{M}^+ (\mathbb{R}^d) \ni \mu \mapsto g (\langle \mu, \psi \rangle) \in \mathbb{R}. \]

Then \(u \in C^2_b (\mathcal{M}^+ (\mathbb{R}^d)) \) and it holds:

\[\delta_\mu u (\mu, x) = g' (\langle \mu, \psi \rangle) \psi (x), \quad \delta^2_\mu u (\mu, x, y) = g'' (\langle \mu, \psi \rangle) \psi (x) \psi (y). \]
The space $C^2_L(\mathcal{M}^+(\mathbb{R}^d))$

$u: \mathcal{M}^+(\mathbb{R}^d) \rightarrow \mathbb{R}$ is in $C^2_L(\mathcal{M}^+(\mathbb{R}^d))$ if:

a. u is in $C^2_b(\mathcal{M}^+(\mathbb{R}^d))$;

b. $\mathbb{R}^d \ni x \mapsto \delta_\mu u(\mu, x) \in \mathbb{R}$ is twice differentiable, with continuous and bounded derivatives on $\mathcal{M}^+(\mathbb{R}^d) \times \mathbb{R}^d$;

We set

$$D_\mu u(\mu, x) := D_x \delta_\mu u(\mu, x) \in \mathbb{R}^d,$$

Remark

On $\mathcal{P}_2(\mathbb{R}^d)$, the derivative $D_\mu u$ coincides with the one introduced by P.-L. Lions through the lifting procedure in the context of mean field games ([5, 3]).
1. Prove the formula for functions of the form

\[u : \mathcal{M}_2^+(\mathbb{R}^d) \ni \mu \mapsto g(\langle \mu, \psi_1 \rangle, \ldots, \langle \mu, \psi_n \rangle), \]

exploiting classical Itô formula and the Zakai equation.

2. Prove the formula for functions of the form

\[u(\mu) = \langle \frac{\mu^r}{\mu(\mathbb{R}^d)^r}, \varphi(\cdot, \ldots, \cdot, \mu(\mathbb{R}^d)) \rangle \]

by approximation, where \(\varphi : \mathbb{R}^{d \times r + 1} \rightarrow \mathbb{R} \) is symmetrical in the first \(r \) arguments.

3. Prove the formula for functions in \(C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \) by approximation.
The backward Kolmogorov equation Existence and uniqueness

Theorem (M. [6])

Let us set

\[u(\mu, s) = \mathbb{E} \left[\Phi(\rho^s_T, \mu) \right], \tag{9} \]

where \(\rho^s_T, \mu \) is the weak solution to the Zakai equation starting at time \(s \) from \(\mu \in \mathcal{M}_2^+ (\mathbb{R}^d) \), \(\Phi \in C^2_L(\mathcal{M}_2^+ (\mathbb{R}^d)) \) and let (H) hold. Then \(u \) is the unique classical solution to the backward Kolmogorov equation (BEZ).

Proof (uniqueness)

We show that if \(u \) is a classical solution to (BEZ), then \(u(\mu, s) = \mathbb{E} \left[\Phi(\rho^s_T, \mu) \right] \).

- By the Itô formula

\[
u(\rho^s_T, T) - u(\rho^s_s, s) = \int_s^T \{ \partial_s u(\rho^s_T, \tau) + \mathcal{L} u(\rho^s_T, \tau) \} \, d\tau + \int_s^T \mathcal{G} u(\rho^s_T, \tau) \cdot dY_\tau.
\]

- By taking the expectation and since \(u \) solves (BEZ)

\[
\mathbb{E} \left[\Phi(\rho^s_T, \mu) \right] - u(\mu, s) = \mathbb{E} \left[\int_s^T \mathcal{G} u(\rho^s_T, \tau) \cdot dY_\tau \right].
\]

- The rhs is zero since the integral is a martingale, thus \(u(\mu, s) = \mathbb{E} \left[\Phi(\rho^s_T, \mu) \right]. \)
The backward Kolmogorov equation Existence and uniqueness

Proof (existence)

Let $u(\mu, s) = \mathbb{E} \left[\Phi(\rho^{s,\mu}_T) \right]$ be our candidate solution.

1. Prove that $\mu \mapsto u(\mu, s)$ is in $C^2_{L}(\mathcal{M}^+_2(\mathbb{R}^d))$:
 - given a suitable notion of derivative for functions from $C^2_{L}(\mathcal{M}^+_2(\mathbb{R}^d))$ to $C^2_{L}(\mathcal{M}^+_2(\mathbb{R}^d))$, we show that $\mu \mapsto \rho^{s,\mu}_T$ is twice differentiable;
 - since $\Phi \in C^2_{L}(\mathcal{M}^+_2(\mathbb{R}^d))$ and by the previous point, we conclude by a chain rule.

2. Prove the continuity of

 $[0, T] \ni s \mapsto \mathcal{L}u(\mu, s), \quad [s, T] \times [0, T] \ni (\tau, \sigma) \mapsto \mathcal{L}u(\rho^{s,\mu}_{\tau}, \sigma) \in L^2(\Omega)$.

3. By the Itô formula and the Markov property

 $$\lim_{h \to 0} \frac{1}{h} [u(\mu, s + h) - u(\mu, s)] = - \lim_{h \to 0} \frac{1}{h} \mathbb{E} \left[\int_s^{s+h} \mathcal{L}u(\rho^{s,\mu}_{\tau}, s + h) \, d\tau \right] = -\mathcal{L}u(\mu, s).$$