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General setting

A stochastic basis (Ω,F ,P, (Ft)t∈[0,∞)) satisfying usual conditions,
B = (Bt)t≥0 a d-dimensional Brownian motion adapted to (Ft)t≥0.

Main equation:
Xt =

∈Lp(Ω)︷︸︸︷
x0 +

n∑
i=1

∫ t

0
1{g(s)∈Ai}

∈Rd×d︷ ︸︸ ︷
σi (s,Xs ,PXs ) dBs +

∫ t

0

∈Rd︷ ︸︸ ︷
b(s,Xs ,PXs ) ds,

g(t) = E ‖Xt − z‖p︸ ︷︷ ︸
moment function

,

where
I n ∈ N (or n =∞) and p ≥ 2,
I z ∈ Rd is a fixed reference point,
I (Ai )

n
i=1, pairwise disjoint Borel sets on [0,∞) such that⋃n

i=1Ai = [0,∞),
I σi (t, x , µ), b(t, x , µ) jointly measurable, Lipschitz continuous in (x , µ),

satisfy the linear growth condition, uniformly in t.
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We discuss the following topics:

Example of an equation with multiple solutions

Uniqueness when the drift is strong enough

Non-existence of a global solution
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ExampleXt = 1 +

∫ t

0
1{g(s) 6=1+a}dBs +

∫ t

0
0 · 1{g(s)=1+a}dBs

g(t) = E |Xt |2 ,
(1)

where

a ≥ 0 a fixed constant.

Solutions:

Xw
t := 1 +Bt∧a +

(
Bt∨(a+w) − Ba+w

)
, w > 0, with moment function:

gw (t) =


1 + t, t < a,

1 + a, t ∈ [a, a + w ],

t − (1 + a) t > a + w .

Xt := 1 + Bt also a solution.
I g(t) = 1 + t.
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Observation 1

Let Y = (Yt)t≥0 be the unique strong solution to the equation

Yt = x0 +

∫ t

0
σ1(s,Ys ,PYs )dBs +

∫ t

0
b(s,Ys ,PYs )ds.

Let h(t) := E ‖Yt − z‖p and µ := λ ◦ h−1. Then for any N ∈ B([0,∞))
with µ(N ) = 0 the process Y also solves the equation

Xt = x0 +

∫ t

0
b(s,Xs ,PXs )ds +

∫ t

0
1{g(s)∈[0,∞)\N}σ1(s,Xs ,PXs )dBs

+

∫ t

0
1{g(s)∈N}σ2(s,Xs ,PXs )dBs ,

g(t) = E ‖Xt − z‖p .
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Assume that Ai = [yi−1, yi ), where 0 =: y0 < y1 < ... < yn :=∞.

Theorem 2

Assume that the drift is strong, that is, 〈x − z , b(t, x , µ)〉 ≥ 0 for all
(t, x , µ) ∈ [0,∞)× Rd × Pp(Rd), and the inequality is strict whenever
x 6= z. Then there exists a unique global strong solution to the equationXt = x0 +

n∑
i=1

∫ t

0
1{g(s)∈[yi−1,yi )}σi (s,Xs ,PXs )dBs +

∫ t

0
b(s,Xs ,PXs )ds,

g(t) = E ‖Xt − z‖p ,

when p ≥ 2 and P(x0 6= z) > 0.

Question

What if 〈x − z , b(t, x , µ)〉 < 0 for some (t, x , µ)?
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Question

What if 〈x − z , b(t, x , µ)〉 < 0 for some (t, x , µ)?

Assume that z = 0 and d = 1.Xt = x0 +

∫ t

0

[
1{g(s)<y}Cσ1(s) + 1{g(s)≥y}Cσ2(s)

]
XsdBs −

∫ t

0
Cb(s)Xsds,

g(t) = E |Xt |p ,
(2)

where y > 0 and Cσi ,Cb : [0,∞)→ [0,∞) are continuous and bounded.

Theorem 3

Assume that P(x0 6= 0) > 0 and

inf
t≥0

[
p − 1

2
Cσ1(t)2 − Cb(t)

]
> 0, sup

t≥0

[
p − 1

2
Cσ2(t)2 − Cb(t)

]
< 0.

Then (2) has no global solution.
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Idea of the proof

Assumption

inf
t≥0

[
p − 1

2
Cσ1(t)2 − Cb(t)

]
> 0, sup

t≥0

[
p − 1

2
Cσ2(t)2 − Cb(t)

]
< 0

If a solution exists, then

g(t) = E |x0|p︸ ︷︷ ︸
=g(0)

exp

(
p

∫ t

0

[
p − 1

2

(
1{g(s)<y}Cσ1(s)2 + 1{g(s)≥y}Cσ2(s)2

)
− Cb(s)

]
ds

)
.

Show that there is a local solution on [0, r ] such that g(r) = y (if
g(0) = y , then r = 0!) .
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Assumption

inf
t≥0

[
p − 1

2
Cσ1(t)2 − Cb(t)

]
> 0, sup

t≥0

[
p − 1

2
Cσ2(t)2 − Cb(t)

]
< 0

Take any t1 > r .

Assume that g(t1) > y .

g continuous ⇒ there is a t0 ∈ [r , t1) such that g(t0) = y and
g(t) > y for t ∈ (t0, t1).

Then for any t ∈ (t0, t1]:

y ≤ g(t) = g(0) exp

(∫ t0

0

. . . ds

)
︸ ︷︷ ︸

=g(t0)=y

exp

(
p

∫ t

t0

[
p − 1

2
Cσ2 (s)2 − Cb(s)

]
ds

)
︸ ︷︷ ︸

<0

< y

⇒ Contradiction ⇒ cannot hold that g(t1) > y .

g(t1) < y similarly.

Remaining: g(t) = y for all t ∈ [r , t1].

Conclusion: no solution on [0, r + δ] for any δ > 0.

Jani Nykänen (JYU) Mean field SDEs with discontinuous diffusion June 26, 2022 10 / 11



Thank you for your attention!
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