European options
in a non-linear incomplete market with default

Miryana Grigorova Marie-Claire Quenez Agnès Sulem

University of Leeds *LPSM, Univ. Paris Cité (Paris 7) INRIA, Paris

BSDEs and Mean Field Systems
Market with imperfections

- Market with default.
 Ref: M. Jeanblanc, C. Blanchet-Scaillet, S. Crepey...
- The market is non-linear: the dynamics of the wealth process are non-linear.
 (Ex: funding costs...)
- The market is incomplete
Market with imperfections

- Market with default.
 Ref: M. Jeanblanc, C. Blanchet-Scaillet, S. Crepey...
- The market is non-linear: the dynamics of the wealth process are non-linear.
 (Ex: funding costs...)
- The market is incomplete
- Our goal: study of the superhedging price of a European option.
The model

- Let \((\Omega, \mathcal{G}, \mathcal{P})\) be a complete probability space.
- Let \(\mathcal{W}\) be a one-dimensional Brownian motion.
- **default time** : \(\vartheta\) (random variable)
The model

- Let $\left(\Omega, \mathcal{G}, \mathcal{P} \right)$ be a complete probability space.
- Let W be a one-dimensional Brownian motion.
- **default time**: ϑ (random variable)
- Let N be the **default jump process**:
 $$N_t := 1_{\vartheta \leq t}$$
- Let $\mathcal{G} = \left\{ \mathcal{G}_t, t \geq 0 \right\}$ be the filtration associated with W and N.
- **Hyp**: W is a \mathcal{G}-Brownian motion.
- We have a \mathcal{G}-martingale representation theorem w.r.t. W and M (cf. Jeanblanc-Song (2015)).
Hyp: the \mathcal{G}-predictable compensator of N_t is $\int_0^t \lambda_s \, ds$. (λ_s) is called the **intensity** process, and is supposed to be bounded. It vanishes after ϑ.

Let $T > 0$.

$$H_2 := \{ \text{predictable processes } Z \text{ s.t. } E\left[\int_0^T Z_t^2 \lambda_t \, dt \right] < \infty \}$$
Hyp: the \mathbb{G}-predictable compensator of N_t is: $\int_0^t \lambda_s ds$. (λ_s) is called the **intensity** process, and is supposed to be bounded. It vanishes after ϑ.

The compensated martingale of (N_t) is thus given by

$$M_t := N_t - \int_0^t \lambda_s ds$$
Hyp: the \(\mathbb{G} \)-predictable compensator of \(N_t \) is: \(\int_0^t \lambda_s ds \).

(\(\lambda_s \)) is called the **intensity** process, and is supposed to be bounded. It vanishes after \(\vartheta \).

The compensated martingale of \((N_t) \) is thus given by

\[
M_t := N_t - \int_0^t \lambda_s ds
\]

Let \(T > 0 \).

\(\mathcal{H}^2 := \{ \text{predictable processes } Z \text{ s.t. } \mathbb{E} \left[\int_0^T Z_t^2 dt \right] < \infty \} \)

\(\mathcal{H}^2_{\lambda} := \{ \text{predictable processes } K \text{ s.t. } \mathbb{E} \left[\int_0^T K_t^2 \lambda_t dt \right] < \infty \} \)
The market

One risky asset:

\[dS_t = S_t - (\mu_t dt + \sigma_t dW_t + \beta_t dM_t) \]
with \(S_0 > 0 \).

- \(\sigma, \mu, \) and \(\beta \) are \(\mathcal{G} \)-predictable and bounded.
- Hyp: \(\sigma_t > 0 \) and \(\beta_\varphi > -1 \).
- To simplify the presentation, suppose \(\sigma_t = 1 \).

- investor with \text{initial} wealth \(x \).
 \(Z_t \) = amount invested in the risky asset at \(t \) (where \(Z \in \mathbb{H}^2 \)).
- Let \(V_t^{x,Z} \) the value of the portfolio at time \(t \).
The market

One risky asset:

\[dS_t = S_t \left(\mu_t \, dt + \sigma_t \, dW_t + \beta_t \, dM_t \right) \] with \(S_0 > 0 \).

- \(\sigma, \mu, \) and \(\beta \) are \(\mathbb{G} \)-predictable and bounded.
- Hyp : \(\sigma_t > 0 \) and \(\beta_\theta > -1 \).
- To simplify the presentation, suppose \(\sigma_t = 1 \).

- Investor with initial wealth \(x \).
 - \(Z_t \) = amount invested in the risky asset at \(t \) (where \(Z \in \mathbb{H}^2 \)).
- Let \(V_t^{x,Z} \) the value of the portfolio at time \(t \).
- In the classical linear case:

\[dV_t = (r_t \, V_t + \theta_t \, Z_t) \, dt + Z_t (dW_t + \beta_t \, dM_t); \quad V_0 = x, \]

where \(r_t \) = risk-free interest rate, and \(\theta_t : = \mu_t - r_t \).
Here, for \((x, Z) \in \mathbb{R} \times \mathbb{H}^2\), the wealth \(V_t^{x,Z}\) satisfies:

\[-dV_t = f(t, V_t, Z_t)\,dt - Z_t(dW_t + \beta_t\,dM_t); \quad V_0 = x.\]

where \(f : (t, \omega, y, z) \mapsto f(t, \omega, y, z)\) is a nonlinear Lipschitz driver (non-convex).
Examples

recall the dynamics of the wealth $V^{x,Z}$:

$$-dV_t = f(t, V_t, Z_t)dt - Z_t(dW_t + \beta_t dM_t); \quad V_0 = x.$$

- Classical linear case: $f(t, V_t, Z_t) = -r_t V_t - \theta_t Z_t$, where $\theta_t = \mu_t - r_t$.
- borrowing rate $R \neq$ lending rate r:
 $$f(t, V_t, Z_t) = -r_t (V_t - Z_t)^+ + R_t (V_t - Z_t)^- - \mu_t Z_t$$
- a repo market on which the risky asset is traded:
 $$f(t, V_t, Z_t) = -l_t Z_t^- + b_t Z_t^+ - r_t V_t - \theta_t Z_t,$$
 where $b_t = borrowing repo rate$,
 $l_t = lending repo rate$.

(cf. Brigo et al. ...).

- large seller whose strategy impacts the default intensity (cf. Dum.-Grig.-Q.-Sul. (2018))
Pricing in a complete non-linear market
(Ref : El Karoui-P-Q 97) Brownian filtration : suppose $\mathcal{F} := \mathcal{F}^W$.

$$dS_t = S_t(\mu_t dt + dW_t)$$

Consider a European option with maturity T and payoff $\eta \in L^2(\mathcal{F}_T)$.

$\exists! (X, Z)$ in $\mathbb{H}^2 \times \mathbb{H}^2$ /

$$-dX_t = f(t, X_t, Z_t) dt - Z_t dW_t; \quad X_T = \eta.$$

$\rightarrow X = V^{X_0, Z}$
Pricing in a complete non-linear market

(Ref: El Karoui-P-Q 97) Brownian filtration: suppose $\mathcal{F} := \mathcal{F}^W$.

$$dS_t = S_t(\mu_t dt + dW_t)$$

Consider a European option with maturity T and payoff $\eta \in L^2(\mathcal{F}_T)$.

$\exists! (X, Z) \in \mathbb{H}^2 \times \mathbb{H}^2$ /

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t; \quad X_T = \eta.$$

$\rightarrow X = V^{X_0, Z} \rightarrow X_0 = X_0(T, \eta)$ is the hedging price (for the seller).

This leads to a f-nonlinear pricing system, introduced in El Karoui-Que. 96: $(T, \eta) \mapsto X^f(T, \eta)$ satisfying the monotonicity property, consistency property /η, the No-Arbitrage property....

later denoted by \mathcal{E}^f and called f-expectation by S. Peng 97 (actually under an additional assumption ensuring that $\mathcal{E}^f(0) = 0$):

$$\forall \eta \in L^2(\mathcal{F}_T), \quad \mathcal{E}^f_{s, T}(\eta) := X_s(T, \eta), s \in [0, T].$$
The **buyer's hedging price** in this complete non-linear market would be equal to

\[-\xi_{t,T}(-\eta) = -X_t(T, -\eta).\]

Remark: setting \(\tilde{X}_0 := X_0(T, -\eta)\) and \(\tilde{Z} = Z(T, -\eta)\), we have \(\nabla \tilde{X}_0, \tilde{Z} + \eta = 0\) a.s.
Here, our nonlinear market is **incomplete**. Indeed, let $\eta \in L^2(G_T)$. It might not be possible to find (x, Z) in $\mathbb{R} \times \mathbb{H}^2$ such that

$$V_T^{x,Z} = \eta.$$
Here, our nonlinear market is incomplete. Indeed, let $\eta \in L^2(G_T)$. It might not be possible to find (x, Z) in $\mathbb{R} \times \mathbb{H}^2$ such that

$$V_T^{x,Z} = \eta.$$

In other words, there does not necessarily exist $(V, Z) \in \mathbb{H}^2 \times \mathbb{H}^2$ such that

$$-dV_t = f(t, V_t, Z_t)dt - Z_t dW_t - Z_t \beta_t dM_t; \quad V_T = \eta,$$

However, by the G-martingale representation w.r.t. W, M, $\exists! (Y, Z, K)$ in $\mathbb{H}^2 \times \mathbb{H}^2 \times \mathbb{H}^2$ solution of the BSDE with default (cf. G-Q-S 2018 for details)

$$-dY_t = f(t, Y_t, Z_t)dt - Z_t dW_t - K_t dM_t; \quad Y_T = \eta.$$
Here, our nonlinear market is **incomplete**.
Indeed, let \(\eta \in L^2(G_T) \). It might not be possible to find \((x, Z)\) in \(\mathbb{R} \times \mathbb{H}^2 \) such that

\[
V_{T}^{x, Z} = \eta.
\]

In other words, there does not necessarily exist \((V, Z)\) in \(\mathbb{H}^2 \times \mathbb{H}^2 \)/

\[-dV_t = f(t, V_t, Z_t)dt - Z_t dW_t - Z_t \beta_t dM_t; \quad V_T = \eta,\]

However, by the \(\mathcal{G} \)-martingale representation w.r.t. \(W, M \), \(\exists! (Y, Z, K) \) in \(\mathbb{H}^2 \times \mathbb{H}^2 \times \mathbb{H}^2_\lambda \) solution of the BSDE with default (cf. G-Q-S 2018 for details)

\[-dY_t = f(t, Y_t, Z_t)dt - Z_t dW_t - K_t dM_t; \quad Y_T = \eta.\]
Here, our nonlinear market is **incomplete**.

Indeed, let $\eta \in L^2(G_T)$. It might not be possible to find (x, Z) in $\mathbb{R} \times \mathbb{H}^2$ such that

$$V_T^{x,Z} = \eta.$$

In other words, there does not necessarily exist $(V, Z) \in \mathbb{H}^2 \times \mathbb{H}^2$ such that

$$-dV_t = f(t, V_t, Z_t)dt - Z_t dW_t - Z_t \beta_t dM_t; \quad V_T = \eta,$$

However, by the \mathbb{G}-martingale representation w.r.t. W, M, $\exists! (Y, Z, K)$ in $\mathbb{H}^2 \times \mathbb{H}^2 \times \mathbb{H}^2_\lambda$ solution of the BSDE with default (cf. G-Q-S 2018 for details)

$$-dY_t = f(t, Y_t, Z_t)dt - Z_t dW_t - K_t dM_t; \quad Y_T = \eta.$$

In general, $K \neq Z\beta$.

Marie-Claire Quenez (LPSM)
Notation: if \((Y, Z, K)\) is the solution of the \(\mathbb{G}\)-BSDE

\[-dY_t = f(t, Y_t, Z_t)dt - Z_t dW_t - K_t dM_t; \quad Y_T = \eta,\]

we set \(\mathcal{E}^{f}_{s,T}(\eta) := Y_s\) for all \(s \in [0, T]\), called \(f\)-evaluation/expectation of \(\eta\) under \(P\).

It might be a possible price but it does not necessarily allow the seller to be hedged (except if \(K = Z\beta\)).

Definition

seller’s superhedging price at time 0:

\[v_0 := \inf\{x \in \mathbb{R} : \exists Z \in \mathbb{H}^2 \text{ with } V^x,Z_T \geq \eta \text{ a.s.}\}.\]

Dual representation formula for this price?
The classical linear (incomplete) case

Up to discounting, we may suppose \(r = 0 \), so

- \textit{In this case, } \(f(t, y, z) := -\mu_t z \)

Definition: Let \(R \sim P \).

\(R \) is called a martingale probability measure if

\(\forall x \in \mathbb{R}, \forall Z \in \mathbb{H}^2 \), the wealth \((V_t^x, Z) \) is an \(R \)-martingale

Dual representation of the seller’s superhedging price (ref: EL Karoui-Qu.(91-95)):

\[
\nu_0 = \sup_{R \in \mathcal{P}} E_R(\eta),
\]

where \(\mathcal{P} := \{ \text{martingale probability measures}\} \).

Recall the proof: using the martingale property of the wealths under \(R \) for all \(R \in \mathcal{P} \), we get \(V_0 \geq \ldots \).
Recall that the proof of the other inequality \(v_0 \leq \ldots \) relied on:

Optional decomposition Theorem: (ref: EL Karoui-Qu.(91-95)), generalized by Föllmer...:

If \((Y_t)\) is a càdlàg supermartingale under \(R\), for all \(R \in \mathcal{P}\), then, \(\exists Z \in \mathbb{H}^2\), and a càdlàg nondecreasing optional process \(h\), with \(h_0 = 0\) such that

\[
Y_t = V^Y_{t;Z} - h_t \quad 0 \leq t \leq T.
\]

that is,

\[
Y_t = Y_0 + \int_0^t \mu_s Z_s ds + \int_0^t Z_s (dW_s + \beta_s dM_s) - h_t.
\]

Remark:

\(\forall R \in \mathcal{P}\),

\[E_R(\eta|F_S) = v_0 - E_R(h_T)\].

Hence

\[
\inf_{R \in \mathcal{P}} E_R(h_T) = 0.
\]

(Here, this is clear since we have \(h_T = V^Y_{v_0,Z}, Z_T - \xi = \) terminal profit for the seller, which does not hold in the non-linear case).
Recall that the proof of the other inequality $v_0 \leq \ldots$ relied on:

Optional decomposition Theorem: (ref: EL Karoui-Qu.(91-95)), generalized by Föllmer...)

*If (Y_t) is a càd-làg **supermartingale** under R, for all $R \in \mathcal{P}$, then, $\exists Z \in \mathbb{H}^2$, and a càd-làg nondecreasing optional process h, with $h_0 = 0$ such that*

$$Y_t = V_t^{Y_0,Z} - h_t, \quad 0 \leq t \leq T.$$

That is,

$$Y_t = Y_0 + \int_0^t \mu_s Z_s ds + \int_0^t Z_s(dW_s + \beta_s dM_s) - h_t.$$

Proof of the dual representation: let $X_S := \text{ess sup}_{R \in \mathcal{P}} E_R(\eta|\mathcal{F}_S)$. By the above theorem, we show $X_t = V_t^{X_0,Z} - h_t, \forall t \in [0, T]$. Hence,

$$X_T = \eta = V_T^{X_0,Z} - h_T \Rightarrow V_T^{X_0,Z} \geq \eta \Rightarrow X_0 \geq v_0 \ldots X_0 = v_0. \text{ QED}$$

Remark: $\forall R \in \mathcal{P}, E_R(\eta) = v_0 - E_R(h_T)$. Hence $\inf_{R \in \mathcal{P}} E_R(h_T) = 0$. (Here, this is clear since we have $h_T = V_{v_0}, Z_T - \xi_T = \text{terminal profit for the seller}$, which does not hold in the non-linear case).
Recall that the proof of the other inequality $v_0 \leq \ldots$ relied on:

Optional decomposition Theorem: (ref: EL Karoui-Qu.(91-95)), generalized by Föllmer...:

*If (Y_t) is a càd-làg supermartingale under R, for all $R \in \mathcal{P}$, then, $\exists Z \in H^2$, and a càd-làg nondecreasing optional process h, with $h_0 = 0$ such that

$$Y_t = V_t^{Y_0,Z} - h_t \quad 0 \leq t \leq T.$$*

that is,

$$Y_t = Y_0 + \int_0^t \mu_s Z_s ds + \int_0^t Z_s (dW_s + \beta_s dM_s) - h_t.$$

proof of the dual representation: let $X_S := \text{ess sup}_{R \in \mathcal{P}} E_R(\eta | \mathcal{F}_S)$.

By the above theorem, we show $X_t = V_t^{Y_0,Z} - h_t, \forall t \in [0, T]$. Hence,

$$X_T = \eta = V_T^{X_0,Z} - h_T \Rightarrow V_T^{X_0,Z} \geq \eta \Rightarrow X_0 \geq v_0 \ldots X_0 = v_0. \text{ QED}$$

Remark: $\forall R \in \mathcal{P}$, $E_R(\eta) = v_0 - E_R(h_T)$. Hence $\inf_{R \in \mathcal{P}} E_R(h_T) = 0$.

Marie-Claire Quenez (LPSM)
Non-linear incomplete market with default
29 June 2022
Recall that the proof of the other inequality $v_0 \leq ...$ relied on:

Optional decomposition Theorem: (ref: EL Karoui-Qu.(91-95)),

generalized by Föllmer...)

If (Y_t) is a càd-làg supermartingale under R, for all $R \in \mathcal{P}$, then, $\exists Z \in \mathbb{H}^2$, and a càd-làg nondecreasing optional process h, with $h_0 = 0$ such that

$$Y_t = V^{Y_0,Z}_t - h_t \quad 0 \leq t \leq T.$$

that is,

$$Y_t = Y_0 + \int_0^t \mu_s Z_s ds + \int_0^t Z_s (dW_s + \beta_s dM_s) - h_t.$$

proof of the dual representation: let $X_S := \text{ess sup}_{R \in \mathcal{P}} E_R(\eta | \mathcal{F}_S)$.

By the above theorem, we show $X_t = V^{X_0,Z}_t - h_t$, $\forall t \in [0, T]$. Hence,

$$X_T = \eta = V^{X_0,Z}_T - h_T \Rightarrow V^{X_0,Z}_T \geq \eta \Rightarrow X_0 \geq v_0 \ldots X_0 = v_0. \text{ QED}$$

Remark: $\forall R \in \mathcal{P}$, $E_R(\eta) = v_0 - E_R(h_T)$. Hence $\inf_{R \in \mathcal{P}} E_R(h_T) = 0$.

(Here, this is clear since we have $h_T = V^{v_0,Z}_T - \xi = \text{terminal profit for the seller, which does not hold in the non-linear case}$.)

Marie-Claire Quenez (LPSM) | Non-linear incomplete market with default | 29 June 2022
• Question: what is the analogous of martingale probability measures in the case when \(f \) is non-linear?

• First, we define the non-linear \(f \)-expectation under \(Q \) for \(Q \sim P \).
Let $Q \sim P$. From the \mathcal{G}-martingale representation theorem, its density process (ζ_t) satisfies

$$d\zeta_t = \zeta_t - (\alpha_t dW_t + \nu_t dM_t); \zeta_0 = 1,$$

where (α_t) and (ν_t) are \mathcal{G}-predictable processes with $\nu_{\vartheta \wedge \tau} > -1$ a.s. By Girsanov’s theorem,

- $W^Q_t := W_t - \int_0^t \alpha_s ds$ is a Q-Brownian motion, and
- $M^Q_t := M_t - \int_0^t \nu_s \lambda_s ds$ is a Q-martingale.
Let $Q \sim P$. From the \mathcal{G}-martingale representation theorem, its density process (ζ_t) satisfies

$$d\zeta_t = \zeta_t (\alpha_t d\mathcal{W}_t + \nu_t d\mathcal{M}_t); \zeta_0 = 1,$$

where (α_t) and (ν_t) are \mathcal{G}-predictable processes with $\nu_{\Theta \wedge T} > -1$ a.s.

By Girsanov’s theorem,

- $\mathcal{W}^Q_t := \mathcal{W}_t - \int_0^t \alpha_s ds$ is a Q-Brownian motion, and
- $\mathcal{M}^Q_t := \mathcal{M}_t - \int_0^t \nu_s \lambda_s ds$ is a Q-martingale.

We have a Q-martingale representation for Q-martingales w.r.t. \mathcal{W}^Q and \mathcal{M}^Q. We can thus consider Q-BSDEs driven by $\mathcal{W}^Q, \mathcal{M}^Q$.
Let $Q \sim P$. Let $(X, Z, K) \in \mathbb{H}^2_Q \times \mathbb{H}^2_Q \times \mathbb{H}^2_Q, \lambda$ be the sol. of the Q-BSDE

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t^Q - K_t dM_t^Q; \quad X_T = \eta.$$

We call Q-pricing system or f-evaluation under Q, denoted by \mathcal{E}_Q^f or more simply \mathcal{E}_Q (or \mathcal{E}^Q), the operator defined by: for $\eta \in L^2_Q(G_T)$,

$$\mathcal{E}_{s,T}^Q(\eta) := X_s, \quad s \in [0, T]$$

It can be a possible price (see the last slide for details).
Let $Q \sim P$. Let $(X, Z, K) \in \mathbb{H}_Q^2 \times \mathbb{H}_Q^2 \times \mathbb{H}_Q^2, \lambda$ be the sol. of the Q-BSDE

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t^Q - K_t dM_t^Q; \quad X_T = \eta.$$

We call Q-pricing system or f-evaluation under Q, denoted by \mathcal{E}_Q^f or more simply \mathcal{E}_Q (or \mathcal{E}_Q^Q), the operator defined by: for $\eta \in L^2_Q(G_T)$,

$$\mathcal{E}_{s,T}^Q(\eta) := X_s, \quad s \in [0, T]$$

It can be a possible price (see the last slide for details).

Definition

(Peng) Let $Y \in S^2_Q$. The process (Y_t) is said to be a (strong) \mathcal{E}_Q-martingale (or \mathcal{E}_Q^f-martingale under Q), if $\forall s, t$ stopping times with $s \leq t$,

$$\mathcal{E}_{s,t}^Q(Y_t) = Y_s \quad \text{a.s.}$$
Let $Q \sim P$. Let $(X, Z, K) \in \mathbb{H}^2_Q \times \mathbb{H}^2_Q \times \mathbb{H}^2_{Q,\lambda}$ be the sol. of the Q-BSDE

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW^Q_t - K_t dM^Q_t; \quad X_T = \eta.$$

We call Q-pricing system or f-evaluation under Q, denoted by \mathcal{E}^f_Q or more simply \mathcal{E}_Q (or \mathcal{E}^Q), the operator defined by: for $\eta \in L^2_Q(\mathcal{G}_T),$

$$\mathcal{E}^Q_{s,T}(\eta) := X_s, \quad s \in [0, T]$$

It can be a possible price (see the last slide for details).

Definition

(Peng) Let $Y \in S^2_Q$. The process (Y_t) is said to be a (strong) \mathcal{E}_Q-martingale (or \mathcal{E}^f-martingale under Q), if $\forall s, t$ stopping times with $s \leq t$,

$$\mathcal{E}^Q_{s,t}(Y_t) = Y_s \quad \text{a.s.}..$$

Question: what is the analogous of martingale probability measures in the non-linear case?
Definition

A probability $Q \sim P$ is called an \mathcal{E}^f-martingale probability measure if:

$\forall \ x \in \mathbb{R}$ and $\forall \ Z \in \mathbb{H}^2_Q$, the wealth $V^{x,Z}$ is a \mathcal{E}^f-martingale under Q.

We denote by $\mathcal{Q} := \{ \mathcal{E}^f$-martingale probabilities $\}$
Definition

A probability $Q \sim P$ is called an \mathcal{E}^f-martingale probability measure if:

$\forall x \in \mathbb{R}$ and $\forall Z \in \mathbb{H}^2_Q$, the wealth $V^{x,Z}$ is a \mathcal{E}^f-martingale under Q.

We denote by $\mathcal{Q} := \{ \mathcal{E}^f$-martingale probabilities $\}$

Remarks:

- $P \in \mathcal{Q}$.
- $Q \in \mathcal{Q} \iff W + \int \beta_s dM_s$ is a Q-martingale.
- \mathcal{Q} is equipotent to \mathcal{P}.
Theorem

Let $\eta \in L^2_Q(\mathcal{G}_T)$, for all $Q \in \mathcal{Q}$. Under an appropriate integrability condition (see next slide), we have $v_0 < \infty$ and

$$v_0 = \sup_{Q \in \mathcal{Q}} \mathcal{E}^Q_{0,T}(\eta),$$

Proposition:
The supremum is attained if and only if the option is replicable. In this case, $\mathcal{E}^Q_{0,T}(\eta) = \mathcal{E}^P_{0,T}(\eta)$ for all $Q \in \mathcal{Q}$.

Sketch of the proof of the theorem:
First, using the \mathcal{E}^Q-martingale property of the wealths for all $Q \in \mathcal{Q}$, we get (quite easily): $v_0 \geq \sup_{Q \in \mathcal{Q}} \mathcal{E}^Q_{0,T}(\eta)$.
Dual representation of the seller’s price

Theorem

Let \(\eta \in L^2_Q(G_T) \), for all \(Q \in \mathcal{Q} \). Under an appropriate integrability condition (see next slide), we have \(v_0 < \infty \) and

\[
v_0 = \sup_{Q \in \mathcal{Q}} E_Q^0 \left(\eta \right),
\]

Proposition: The supremum is attained if and only if the option is replicable.

In this case, \(E_Q^{\mathcal{Q}}(\eta) = E_P^{\mathcal{Q}}(\eta) \) \(\forall Q \in \mathcal{Q} \).
Dual representation of the seller’s price

Theorem

Let $\eta \in L^2_Q(\mathcal{G}_T)$, for all $Q \in \mathcal{Q}$. Under an appropriate integrability condition (see next slide), we have $v_0 < \infty$ and

$$v_0 = \sup_{Q \in \mathcal{Q}} \mathcal{E}^Q_{0,T}(\eta),$$

Proposition: The supremum is attained if and only if the option is replicable.

In this case, $\mathcal{E}^Q_{0,T}(\eta) = \mathcal{E}^P_{0,T}(\eta)$ \forall $Q \in \mathcal{Q}$.

Sketch of the proof of the theorem: First, using the \mathcal{E}^Q-martingale property of the wealths for all $Q \in \mathcal{Q}$, we get (quite easily):

$$v_0 \geq \sup_{Q \in \mathcal{Q}} \mathcal{E}^Q_{0,T}(\eta)$$
In order to show the inequality \(\leq \), we first show:

Theorem (non-linear optional decomposition):
Let \((Y_t) \in S^2_Q \forall Q \in \mathcal{Q}\).

If \((Y_t)\) is a strong \(\mathcal{F}_Q\)-supermartingale \(\forall Q \in \mathcal{Q}\),

\[
(Y_t) = (Y_0) - \int_0^t Z_s (dW_s + \beta_s dM_s) - h_t, \quad 0 \leq t \leq T.
\]

Remark: in the linear case (with \(r = 0\)), \(f(t, z) = -\mu t z\). Hence,

\[
(Y_t) = (Y_0) + \int_0^t Z_s (\mu s ds + dW_s + \beta_s dM_s) - h_t,
\]

which corresponds to the classical optional decomposition theorem.
In order to show the inequality \(\leq \), we first show:

Theorem (non-linear optional decomposition):

Let \((Y_t) \in S^2_Q \ \forall \ Q \in \mathcal{Q} \).

If \((Y_t) \) is a strong \(\mathcal{E}_Q \)-supermartingale \(\forall \ Q \in \mathcal{Q} \),
then, there exists \(Z \in H^2 \), and a nondecreasing optional càdlàg process \(h \), with \(h_0 = 0 \) / \[
Y_t = Y_0 - \int_0^t f(s, Y_s, Z_s) \, ds + \int_0^t Z_s (dW_s + \beta_s dM_s) - h_t, \quad 0 \leq t \leq T.
\]

Remark: in the **linear** case (with \(r = 0 \)), \(f(t, z) = -\mu_t z \). Hence,

\[
Y_t = Y_0 + \int_0^t Z_s (\mu_s ds + dW_s + \beta_s dM_s) - h_t,
\]

which corresponds to the classical optional decomposition theorem.
End of the proof of the dual representation:
\[\exists \ (X_t) \in S^2/ \text{for all } S, \]
\[X_S = \text{ess sup}_{Q \in \mathcal{Q}} E_Q^{S,T}(\eta) \ a.s. \]

(recall that it remained to show that \(X_0 \geq v_0 \))

- \((X_t)\) is an \(\mathcal{E}_Q \)-supermartingale for each \(Q \in \mathcal{Q} \) (with \(X(T) = \eta \)).
- By the optional \(\mathcal{E}^f \)-decomposition theorem, \(\exists Z, h... / \)

\[X_t = X_0 - \int_0^t f(s, X_s, Z_s) \, dt + \int_0^t Z_s (dW_s + \beta_s dM_s) - h_t, \quad 0 \leq t \leq T. \]

- By the comparison theorem for **forward** SDEs, (\(\eta =) \) \(X_T \leq V_T^{X_0,Z} \). Hence, \(X_0 \geq v_0 \). Hence, \(X_0 = v_0 \). **QED**

Note that \((v_0, Z)\) is a **superhedging strategy** for the seller (since \(\eta \leq V_T^{v_0,Z} \)).
For each $S \in \mathcal{T}$, set

$$X(S) := \text{ess sup}_{Q \in \mathcal{Q}} \mathcal{E}_{S,T}^Q(\eta)$$

Proposition:

$$v_0 < \infty \iff E_Q[\text{ess sup}_{S \in \mathcal{T}} X(S)^2] < +\infty, \quad \forall Q \in \mathcal{Q}$$

Remark: for example, this condition is satisfied if $\eta = (S_T - K)^+$.
Let (x, φ) in $\mathbb{R} \times \mathbb{H}^2$ be a superhedging strategy in the sense that $V^x_{T,\varphi} \geq \eta$ a.s.

$\rightarrow V^x_{T,\varphi} - \eta = \text{terminal profit}$ realized by the seller.

Prop: $x = v_0 \iff \inf_{Q \in Q} \mathbb{E}_Q (V^x_{T,\varphi} - \eta) = 0$.

In particular, this minimality condition is satisfied by (v_0, Z).

Theorem

There exists a sequence $(Q_n) \in \mathcal{Q}$ s.t.

(i)

$v_0 = \lim_{n \to +\infty} \mathcal{E}^{Q_n}_{0,T} (\eta),$

(ii) $Q_n \to Q^* (\ll P)$ weakly as $n \to \infty$, and η is replicable under Q^* since

$\eta = V_{T,\varphi}^{v_0,Z} Q^* - a.e.,$

where Z is the process from the non-linear optional decomposition of X.

Here, $Q_n \to Q^$ weakly in the sense that $\frac{dQ_n}{dP} \to \frac{dQ^*}{dP}$ P-a.s.*
In the **linear** case, we can even prove the following (new) result: there exists a non-negative measure $R^* \ll P$, which is the *weak* limit of a sequence (R_n) of *martingale probability measures*, such that

$$v_0 = "E_{R^*}(\eta)" (= \int_\Omega \eta dR^*), \quad (0.1)$$

and η is replicable under R^*, more precisely

$$\eta = V_T^{v_0, Z} R^* - a.e.,$$

where Z is the process from the (linear) optional decomposition of the dual value process $X_S := \text{ess sup}_{R \in \mathcal{P}} E_R(\eta|G_S)$.

Remark: *in the non-linear case, we cannot have an analogous equality to (0.1) since E_{R^*} does not make sense* (we do not even know if R^* is a probability measure).
Characterization of v_0 via a constrained BSDE

Theorem: $v_0 = X_0$, where the process X is characterized as the (minimal) **supersolution** of the constrained BSDE with default, that is, such that $\exists (Z, K) \in H^2 \times H_\lambda^2$, and a **predictable** nondecreasing process A satisfying

$$-dX_t = f(t, X_t, Z_t)dt - Z_tdW_t - K_t dM_t + dA_t; \quad X_T = \eta;$$

$$A_t + \int_0^t (K_s - \beta_s Z_s)\lambda_s ds \quad \text{is nondecreasing}$$

$$(K_t - \beta_t Z_t)\lambda_t \leq 0, \quad dP \otimes dt - \text{a.e.};$$

Remark: Z_t and $h_t := A_t - \int_0^t (K_s - \beta_s Z_s)dM_s$ correspond to the processes from the non-linear optional decomposition of the dual value process (X_t).
Definition (buyer’s superhedging price)

\[\tilde{v}_0 := \sup \{ x \in \mathbb{R} : \exists Z \in \mathbb{H}^2 \text{ with } V_T^{-x,Z} + \eta \geq 0 \} . \]

Remark : Note that superhedging price \(\tilde{v}_0 \) for the buyer is equal to the opposite of the superhedging price for the seller of the option with payoff \(-\eta \).

\[\tilde{v}_0 = - \sup_{\mathcal{Q} \in \mathcal{Q}} \mathcal{E}^f_{\mathcal{Q},0,T}(-\eta) . \]

The interval \((\tilde{v}_0, v_0)\) (open of closed, it depends on \(\eta \)) can be interpreted as an arbitrage-free interval (set of arbitrage-free prices for the European option \(\eta \)) in the sense of Karatzas and Kou. It can be empty for particular \(f \) and \(\eta \) (see our paper for details).
Our present paper:

Remark:
For the notion of non-linear f-pricing systems in a complete non-linear market and its properties (notions of consistency, no-arbitrage property, non-negativity when $f(t,0,0) \geq 0$...), see: