A GLOBAL STOCHASTIC MAXIMUM PRINCIPLE FOR FULLY COUPLED FORWARD-BACKWARD STOCHASTIC SYSTEMS

Shaolin Ji
Joint work with Mingshang Hu, Xiaole Xue

Institute for Financial Studies, Shandong University

9th colloquium on BSDE and mean filed systems, Annecy, France
July 1st, 2022
Introduction

Problem formulation

Main results

General case

References
Introduction

Problem formulation

Main results

General case

References
Maximum principle, the necessary conditions that must be satisfied by any optimal control, is an important approach in solving optimization problems.

Boltyanski-Gamkrelidze-Pontryagin announced the Pontryagin’s maximum principle for the first time for deterministic control systems in 1956.

Idea: “the spike variation” $+$ “the first-order of Taylor’s expansion”.
The classical stochastic optimal control problem (Yong and Zhou 1999):

\[
\begin{cases}
 dX(t) = b(t, X(t), u(t))dt + \sigma(t, X(t), u(t))dB(t), \\
 X(0) = x_0,
\end{cases}
\]

(1)

\[
J(u(\cdot)) = \mathbb{E} \left[\int_0^T f(t, X(t), u(t))dt + h(X(T)) \right].
\]

(2)

References:

If the diffusion terms depend on the controls and control domain is nonconvex, one can’t follow the idea for deterministic control systems.

Peng (1990) first introduced the second-order term in the Taylor expansion of the variation and obtained the global maximum principle.

Introduction

The stochastic **recursive** optimal control problem:

\[
\begin{align*}
 dX(t) &= b(t, X(t), u(t))dt + \sigma(t, X(t), u(t))dB(t), \\
 dY(t) &= -g(t, X(t), Y(t), Z(t), u(t))dt + Z(t)dB(t), \\
 X(0) &= x_0, \quad Y(T) = \phi(X(T)), \\
 J(u(\cdot)) &= Y(0).
\end{align*}
\]

When the control domain is nonconvex, one encounters an essential difficulty when trying to derive the first-order and second-order expansions and it is proposed as an open problem in Peng (1998).

Yong (2010), Wu (2013) studied this kind of problem.

Hu (2017) constructed first-order and second-order variational equation and obtained a novel global maximum principle.

What about the fully coupled case?
Introduction

Introduction

Problem formulation

Main results

General case

References
Consider the following fully coupled stochastic control system:

\[
\begin{align*}
\text{(3)} \\
\left\{ \begin{array}{l}
dX(t) = b(t, X(t), Y(t), Z(t), u(t)) dt \\
\quad + \sigma(t, X(t), Y(t), Z(t), u(t)) dB(t), \\
dY(t) = -g(t, X(t), Y(t), Z(t), u(t)) dt + Z(t) dB(t), \\
X(0) = x_0, \quad Y(T) = \phi(X(T)).
\end{array} \right.
\end{align*}
\]
There are much literatures on the well-posedness of fully coupled FBSDE.

- Ma, Protter, and Yong (1994) first proposed the four-step scheme.

The readers may refer to Ma and Yong (1999), Cvitanić and Zhang (2013), Zhang (2017) for the FBSDE theory.
Problem Formulation

Problem Formulation

The optimal control problem is to minimize the cost functional

$$J(u(\cdot)) = Y(0)$$

over $U[0, T]$:

$$\inf_{u(\cdot) \in U[0, T]} J(u(\cdot)).$$

Difficulty: $\sigma(\cdot)$ depends on Z and u, the regularity/integrability of process $Z(\cdot)$ seems to be not enough in the case when the first and second order expansions are necessary.
Assumptions

To guarantee the existence and uniqueness of FBSDEs, we impose the following conditions from Cvitanić and Zhang (2013).

For $\psi = b, \sigma, g$ and ϕ,

(i) $\psi, \psi_x, \psi_y, \psi_z$ are continuous in (x, y, z, u); ψ_x, ψ_y, ψ_z are bounded; there exists a constant $L > 0$ such that

$$|\psi(t, x, y, z, u)| \leq L \left(1 + |x| + |y| + |z| + |u|\right),$$

$$|\sigma(t, 0, 0, z, u) - \sigma(t, 0, 0, z, u')| \leq L(1 + |u| + |u'|).$$

(ii) For any $2 \leq \beta \leq 8$,

$$\Lambda_\beta := C_\beta 2^{\beta+1} (1 + T^\beta) c_1^\beta < 1,$$

where c_1 and C_β are related to the norm of the derivatives of the coefficients with respect to x, y, z.
Some Remarks:

- Various conditions to guarantee the well-posedness of fully coupled FBSDE
- Does the derived global SMP still hold?
- It essentially depends on whether the L^p-estimates of the solution of FBSDE is valid
- Our approach still applies
Introduction

Problem formulation

Main results

General case

References
Let $\bar{u}(\cdot)$ be optimal and $(\bar{X}(\cdot), \bar{Y}(\cdot), \bar{Z}(\cdot))$ be the corresponding state processes.

Since the control domain is not necessarily convex, we resort to spike variation method.

For any $u(\cdot) \in \mathcal{U}[0, T]$ and $0 < \epsilon < T$, define

$$u^\epsilon(t) = \begin{cases}
\bar{u}(t), & t \in [0, T] \setminus E_\epsilon, \\
u(t), & t \in E_\epsilon,
\end{cases}$$

where $E_\epsilon \subset [0, T]$ is a measurable set with $|E_\epsilon| = \epsilon$.
We have $X^\epsilon(t) - \bar{X}(t) \sim O(\sqrt{\epsilon})$, $Y^\epsilon(t) - \bar{Y}(t) \sim O(\sqrt{\epsilon})$ and $Z^\epsilon(t) - \bar{Z}(t) \sim O(\sqrt{\epsilon})$.

Suppose that

$$
X^\epsilon(t) - \bar{X}(t) = X_1(t) + X_2(t) + o(\epsilon),
$$

$$
Y^\epsilon(t) - \bar{Y}(t) = Y_1(t) + Y_2(t) + o(\epsilon),
$$

$$
Z^\epsilon(t) - \bar{Z}(t) = Z_1(t) + Z_2(t) + o(\epsilon),
$$

where $X_1(t) \sim O(\sqrt{\epsilon})$, $X_2(t) \sim O(\epsilon)$, $Y_1(t) \sim O(\sqrt{\epsilon})$, $Y_2(t) \sim O(\epsilon)$, $Z_1(t) \sim O(\sqrt{\epsilon})$ and $Z_2(t) \sim O(\epsilon)$.

When deriving the variational equation of X, the **diffusion term** of the variational equation includes the term $\delta \sigma(t) l_{E_\epsilon}(t)$.

This inspires us that $Z_1(t)$ should have the following form

$$Z_1(t) = \Delta(t) l_{E_\epsilon}(t) + Z'_1(t).$$

where $\Delta(t)$ is an \mathcal{F}-adapted process to be determined and $Z'_1(t)$ has good estimates similarly as $X_1(t)$.
A heuristic derivation

- $\Delta(t)$ is determined by an algebra equation.

$$\Delta(t) = p(t)(\sigma(t, \bar{X}(t), \bar{Y}(t), \bar{Z}(t) + \Delta(t), u(t)) - \sigma(t, \bar{X}(t), \bar{Y}(t), \bar{Z}(t), \bar{u}(t))).$$

where $p(t)$ is the adjoint process.

- Do Taylor’s expansions at $\bar{Z}(t) + \Delta(t) l_{E\epsilon}(t)$.
A heuristic derivation

To illustrate this, the expansion for σ with respect to Z:

$$
\begin{align*}
\sigma(Z^e(t)) - \sigma(\bar{Z}(t)) &= \sigma(\bar{Z}(t) + \Delta(t)l_{E^e}(t) + Z'_1(t) + Z_2(t)) - \sigma(\bar{Z}(t)) + o(\epsilon) \\
&= \sigma(\bar{Z}(t) + \Delta(t)l_{E^e}(t) + Z'_1(t) + Z_2(t) - \sigma(\bar{Z}(t) + \Delta(t)l_{E^e}(t))) \\
&\quad + \sigma(\bar{Z}(t) + \Delta(t)l_{E^e}(t)) - \sigma(\bar{Z}(t)) + o(\epsilon) \\
&= \sigma_z(\bar{Z}(t) + \Delta(t)l_{E^e}(t))(Z'_1(t) + Z_2(t)) \\
&\quad + \frac{1}{2}\sigma_{zz}(\bar{Z}(t) + \Delta(t)l_{E^e}(t))Z'_1(t)^2 + \sigma(\bar{Z}(t) + \Delta(t)l_{E^e}(t)) - \sigma(\bar{Z}(t)) + o(\epsilon) \\
&= \sigma_z(\bar{Z}(t))(Z'_1(t) + Z_2(t)) + \frac{1}{2}\sigma_{zz}(\bar{Z}(t))Z'_1(t)^2 \\
&\quad + [\sigma_z(\bar{Z}(t) + \Delta(t)) - \sigma_z(\bar{Z}(t))]Z'_1(t)l_{E^e}(t) \\
&\quad + [\sigma(\bar{Z}(t) + \Delta(t)) - \sigma(\bar{Z}(t))]l_{E^e}(t) + o(\epsilon).
\end{align*}
$$
The first order variational equation

\[
\begin{align*}
\dot{X}_1(t) &= \left[b_x(t)X_1(t) + b_y(t)Y_1(t) + b_z(t)(Z_1(t) - \Delta(t)l_{E_\epsilon}(t)) \right] dt \\
&\quad + \left[\sigma_x(t)X_1(t) + \sigma_y(t)Y_1(t) + \sigma_z(t)(Z_1(t) - \Delta(t)l_{E_\epsilon}(t)) \right] dB(t), \\
\dot{Y}_1(t) &= -\left[g_x(t)X_1(t) + g_y(t)Y_1(t) + g_z(t)(Z_1(t) - \Delta(t)l_{E_\epsilon}(t)) \right] dt + Z_1(t)dB(t), \\
X_1(0) &= 0, \\
Y_1(T) &= \phi_x(\bar{X}(T))X_1(T).
\end{align*}
\]
The second order variational equation

\[
\begin{aligned}
\frac{dX_2(t)}{dt} &= \{ \begin{array}{c}
b_x(t)X_2(t) + b_y(t)Y_2(t) + b_z(t)Z_2(t) + \delta b(t, \Delta) l_{E_\epsilon(t)} \\
+ \frac{1}{2} [X_1(t), Y_1(t), Z_1(t) - \Delta(t) l_{E_\epsilon(t)}] D^2 b(t) \\
\cdot [X_1(t), Y_1(t), Z_1(t) - \Delta(t) l_{E_\epsilon(t)}]^T \} dt \\
+ \{ \sigma_x(t)X_2(t) + \sigma_y(t)Y_2(t) + \sigma_z(t)Z_2(t) + \delta \sigma_x(t, \Delta) X_1(t) l_{E_\epsilon(t)} \\
+ \delta \sigma_y(t, \Delta) Y_1(t) + \delta \sigma_z(t, \Delta) (Z_1(t) - \Delta(t) l_{E_\epsilon(t)}) \\
+ \frac{1}{2} [X_1(t), Y_1(t), Z_1(t) - \Delta(t) l_{E_\epsilon(t)}] D^2 \sigma(t) \\
\cdot [X_1(t), Y_1(t), Z_1(t) - \Delta(t) l_{E_\epsilon(t)}]^T \} dB(t),
\end{array} \}
\end{aligned}
\]

\[
\begin{aligned}
\frac{dY_2(t)}{dt} &= -\{ \begin{array}{c}
g_x(t)X_2(t) + g_y(t)Y_2(t) + g_z(t)Z_2(t) + [q(t) \delta \sigma(t, \Delta) + \delta g(t, \Delta)] l_{E_\epsilon(t)} \\
+ \frac{1}{2} [X_1(t), Y_1(t), Z_1(t) - \Delta(t) l_{E_\epsilon(t)}] D^2 g(t) \\
\cdot [X_1(t), Y_1(t), Z_1(t) - \Delta(t) l_{E_\epsilon(t)}]^T \} dt \\
+ Z_2(t) dB(t),
\end{array} \}
\end{aligned}
\]

\[
X_2(0) = 0, \quad Y_2(T) = \phi_x(\bar{X}(T)) X_2(T) + \frac{1}{2} \phi_{xx}(\bar{X}(T)) X_1^2(T).
\]
The estimates of the first order variational equation

Lemma (Hu, J., Xue, 2018)

For any $2 \leq \beta \leq 8$, we have the following estimates

$$
\mathbb{E} \left[\sup_{t \in [0,T]} \left(|X_1(t)|^\beta + |Y_1(t)|^\beta \right) \right] + \mathbb{E} \left[\left(\int_0^T |Z_1(t)|^2 dt \right)^{\beta/2} \right] = O(\epsilon^{\beta/2}),
$$

$$
\mathbb{E} \left[\sup_{t \in [0,T]} \left(|X^\epsilon(t) - \tilde{X}(t) - X_1(t)|^2 + |Y^\epsilon(t) - \tilde{Y}(t) - Y_1(t)|^2 \right) \right] + \mathbb{E} \left[\int_0^T |Z^\epsilon(t) - \tilde{Z}(t) - Z_1(t)|^2 dt \right] = O(\epsilon^2),
$$

$$
\mathbb{E} \left[\sup_{t \in [0,T]} \left(|X^\epsilon(t) - \tilde{X}(t) - X_1(t)|^4 + |Y^\epsilon(t) - \tilde{Y}(t) - Y_1(t)|^4 \right) \right] + \mathbb{E} \left[\left(\int_0^T |Z^\epsilon(t) - \tilde{Z}(t) - Z_1(t)|^2 dt \right)^2 \right] = o(\epsilon^2).
$$
The estimates of the second order variational equation

Lemma (Hu, J., Xue, 2018)

For any \(2 \leq \beta \leq 4\) we have the following estimates

\[
\begin{align*}
\mathbb{E} \left[\sup_{t \in [0, T]} (|X_2(t)|^2 + |Y_2(t)|^2) \right] + \mathbb{E} \left[\int_0^T |Z_2(t)|^2 dt \right] &= O(\epsilon^2), \\
\mathbb{E} \left[\sup_{t \in [0, T]} (|X_2(t)|^\beta + |Y_2(t)|^\beta) \right] + \mathbb{E} \left[\left(\int_0^T |Z_2(t)|^2 dt \right)^{\beta/2} \right] &= o(\epsilon^{\beta/2}), \\
Y^\epsilon(0) - \bar{Y}(0) - Y_1(0) - Y_2(0) &= o(\epsilon).
\end{align*}
\]
The first-order and second-order adjoint equations are introduced as follows.

\[
\begin{align*}
\frac{dp}{dt} &= -\left\{ g_x(t) + g_y(t)p(t) + g_z(t)K_1(t) + b_x(t)p(t) \\
&\quad + b_y(t)p^2(t) + b_z(t)K_1(t)p(t) + \sigma_x(t)q(t) \\
&\quad + \sigma_y(t)p(t)q(t) + \sigma_z(t)K_1(t)q(t) \right\} dt \\
&\quad + q(t)dB(t), \\
p(T) &= \phi_x(\bar{X}(T)),
\end{align*}
\]

(4)

where

\[
K_1(t) = (1 - p(t)\sigma_z(t))^{-1} \left[\sigma_x(t)p(t) + \sigma_y(t)p^2(t) + q(t) \right].
\]
The first-order adjoint equation

Theorem (Hu, J., Xue, 2018)

The equation (4) has a solution \((p(\cdot), q(\cdot))\).

Uniqueness

- Case I: \((p(\cdot), q(\cdot))\) is bounded;
- Case II: \(q(\cdot)\) is unbounded and \(\sigma(t, x, y, z, u)\) takes some special forms.
The second-order adjoint equation

\[
\begin{aligned}
-dP(t) &= \left\{ P(t) \left[(D\sigma(t)^T[1, p(t), K_1(t)]^T)^2 + 2Db(t)^T[1, p(t), K_1(t)]^T + H_y(t) \right] \\
&+ 2Q(t)D\sigma(t)^T[1, p(t), K_1(t)]^T + [1, p(t), K_1(t)] D^2H(t) [1, p(t), K_1(t)]^T \\
&+ H_z(t)K_2(t) \right\} dt - Q(t)dB(t), \\
P(T) &= \phi_{xx}(\hat{X}(T)),
\end{aligned}
\]

(5)

where

\[
H(t, x, y, z, u, p, q) = g(t, x, y, z, u) + pb(t, x, y, z, u) + q\sigma(t, x, y, z, u),
\]

\[
K_2(t) = (1-p(t)\sigma_z(t))^{-1} \left\{ p(t)\sigma_y(t) + 2[\sigma_x(t) + \sigma_y(t)p(t) + \sigma_z(t)K_1(t)] \right\} P(t) \\
+(1-p(t)\sigma_z(t))^{-1} \left\{ Q(t) + p(t)[1, p(t), K_1(t)] D^2\sigma(t)[1, p(t), K_1(t)]^T \right\}.
\]
Define

\[\mathcal{H}(t, x, y, z, u, p, q, P) = pb(t, x, y, z + \Delta(t), u) + q\sigma(t, x, y, z + \Delta(t), u) + \frac{1}{2} P(\sigma(t, x, y, z + \Delta(t), u) - \sigma(t, \bar{X}(t), \bar{Y}(t), \bar{Z}(t), \bar{u}(t)))^2 + g(t, x, y, z + \Delta(t), u), \]

where \(\Delta(t) \) is defined by, for \(t \in [0, T] \)

\[\Delta(t) = p(t)(\sigma(t, \bar{X}(t), \bar{Y}(t), \bar{Z}(t) + \Delta(t), u) - \sigma(t, \bar{X}(t), \bar{Y}(t), \bar{Z}(t), \bar{u}(t))). \]
Theorem (Hu, J., Xue, 2018)

Let $\bar{u}(\cdot) \in \mathcal{U}[0, T]$ be optimal and $(\bar{X}(\cdot), \bar{Y}(\cdot), \bar{Z}(\cdot))$ be the corresponding state processes of (3). Then the following stochastic maximum principle holds:

$$
\mathcal{H}(t, \bar{X}(t), \bar{Y}(t), \bar{Z}(t), u, p(t), q(t), P(t)) \\
\geq \mathcal{H}(t, \bar{X}(t), \bar{Y}(t), \bar{Z}(t), \bar{u}(t), p(t), q(t), P(t)), \quad \forall u \in \mathcal{U}, \text{ a.e., a.s}
$$

where $(p(\cdot), q(\cdot)), (P(\cdot), Q(\cdot))$ satisfy (4), (5) respectively, and $\Delta(\cdot)$ satisfies (6).
Introduction

Problem formulation

Main results

General case

References
General case: Different well-posedness conditions

There are several different conditions to guarantee the existence and uniqueness of the solution to fully coupled FBSDEs.

- Our assumptions are mainly from Cvitanić and Zhang (2013)
- Does our method still work under other assumptions?
- Does the established stochastic maximum principle still hold?
General case: The key issues to derive SMP

Our approach essentially depends on the following assumptions:

- There exists a unique solution to FBSDE

\[
\begin{align*}
 dX(t) &= b(t, X(t), Y(t), Z(t), u(t)) \, dt \\
 &\quad + \sigma(t, X(t), Y(t), Z(t), u(t)) \, dB(t), \\
 dY(t) &= -g(t, X(t), Y(t), Z(t), u(t)) \, dt + Z(t) \, dB(t), \\
 X(0) &= x_0, \quad Y(T) = \phi(X(T)).
\end{align*}
\] (7)

and its solution has L^p-estimates ($p \geq 8$).
The solution to the following linear FBSDE (variational equation) has L^p-estimates ($p \geq 8$).

$$
\begin{aligned}
 d\hat{X}(t) &= \left[\alpha_1(t)\hat{X}(t) + \beta_1(t)\hat{Y}(t) + \gamma_1(t)\hat{Z}(t) + L_1(t)\right]dt \\
 &+ \left[\alpha_2(t)\hat{X}(t) + \beta_2(t)\hat{Y}(t) + \gamma_2(t)\hat{Z}(t) + L_2(t)\right]dB(t), \\
 d\hat{Y}(t) &= -\left[\langle\alpha_3(t),\hat{X}(t)\rangle + \beta_3(t)\hat{Y}(t) + \gamma_3(t)\hat{Z}(t) + L_3(t)\right]dt + \hat{Z}(t)dB(t), \\
 \hat{X}(0) &= x_0, \quad \hat{Y}(T) = \langle\kappa,\hat{X}(T)\rangle + \zeta.
\end{aligned}
$$

(8)

where $\alpha_1(t) = \bar{b}^\epsilon_x(t) = \int_0^1 b_x(t,\Theta(t) + \theta(\Theta^\epsilon(t) - \Theta(t)), u^\epsilon(t))d\theta$ for $0 \leq \epsilon < T$, other terms are similar.
Other assumptions, roughly speaking,

- There exist unique solutions to the adjoint equations.
- The algebra equation of $\Delta(t)$ has a unique solution.

Conclusion:

- For any well-posedness conditions which can guarantee the above assumptions hold, our SMP does hold.
- Our approach to derive SMP is essentially independent of different well-posedness conditions.

In more details, our approach holds under the following two kinds of assumptions in \textit{Hu, Ji and Xue (2018)}.

The first kind of assumptions is:

- There exists a unique L^p-solution ($p \geq 8$) to FBSDE (7);
- There exists a unique bounded solution to the first-order adjoint equation;
- There exists a unique solution to the algebra equation;
- There exists a unique L^p-solution ($p \geq 8$) to FBSDE (8).
The second kind of assumptions is:

- There exists a unique L^p-solution ($p \geq 8$) to FBSDE (7);
- There exists a unique solution to the first-order adjoint equation;
- There exists a unique solution to the algebra equation;
- The solution to linear FBSDE (8) has L^p-estimates ($p \geq 8$);
- σ is linear in z, and $\|\sigma_z\|$ is small enough.
Introduction

Problem formulation

Main results

General case

References

Thank you!