

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagati of WRP under enlargement by MPPs

From WRP to SRP

for a basis: a sufficient condition Martingale Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti joint work with A. Calzolari

Università degli Studi di Roma Tor Vergata

9-th International Colloquium on BSDEs and Mean Field Systems June, 26th - July, 1st, 2022

1 Overview

2

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagati of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

3 WRP of MPPs

4 Propagation of WRP under enlargement by MPPs

Multivariate Point Processes (MPPs)

5 From WRP to SRP

6 Looking for a basis: a sufficient condition for the orthogonality

Overview

Martingale Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagatic of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

- (Ω, \mathcal{F}, P) probability space; $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ a filtration under usual conditions.
 - Goal

To represent any (P, \mathbb{F}) -local martingale through stochastic integration

- Possible representations
 - Strong Predictable Representation

Any (P, \mathbb{F}) -local martingale can be written as a vector stochastic integral with respect a (P, \mathbb{F}) -local martingale M.

M enjoys the (P, \mathbb{F}) -Strong Predictable Representation Property (SRP)

Weak Predictable Representation

any (P, \mathbb{F}) -local martingale can be written as the sum of a vector stochastic integral with respect to a continuous (P, \mathbb{F}) -local martingale X^c and an integral with respect to a compensated random measure $\mu - \nu$

When X^c and μ are the countinuous martingale part and the jump measure of a semi-martingale X then X arises the (P, F) Week Predictable Performantation Property (WPP)

X enjoys the (P, \mathbb{F}) -Weak Predictable Representation Property (WRP)

Multivariate Point Processes

Martingale Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti

Overview

Multivarian Point Processes (MPPs)

WRP of MPPs

Propagatie of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

- (*E*, \mathcal{E}), *E* Lusin space; \mathcal{E} its Borel σ -algebra;
- Δ extra point.
- $E_{\Delta} := E \cup \{\Delta\}$ $\tilde{E} := (0, +\infty) \times E$ $\tilde{E}_{\Delta} := \tilde{E} \cup \{(+\infty, \Delta)\}$ with \mathcal{E}_{Δ} , $\tilde{\mathcal{E}}$ and $\tilde{\mathcal{E}}_{\Delta}$ the Borel σ -algebra of E_{Δ} , \tilde{E} and \tilde{E}_{Δ} .
- $\bullet \ \tilde{\Omega} := \Omega \times (0, +\infty) \times E \quad \tilde{\mathcal{P}}(\mathbb{F}) := \mathcal{P}(\mathbb{F}) \otimes \mathcal{E},$

Definition

A Multivariate Point Process (from now on MPP) is a infinite sequence of $(\tilde{E}_{\Delta}, \tilde{\mathcal{E}}_{\Delta})$ -valued r.v's $\{(T_n, X_n)\}_{n \geq 1}$ s.t.

- **I** for each n, T_n is a \mathbb{F} -stopping time and $T_n \leq T_{n+1}$;
- **2** for each n, X_n is \mathcal{F}_{T_n} -measurable;
- \blacksquare if $T_n < \infty$, then $T_n < T_{n+1}$.

The Explosion Time of MPP $\{(T_n, X_n)\}_{n \ge 1}$ is the $(0, +\infty]$ -valued r.v. T_{∞} defined by

$$T_{\infty} := \lim_{n} T_{n}$$

> Barbara Torti

Overview

Multivarian Point Processes (MPPs)

WRP of MPPs

Propagatic of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

... Why does Jacod give a so abstract definition?

... Because it allows to include in the family of MPPs also:

- Explosive jump processes ($P(T_{\infty} < +\infty) > 0$);
- processes with a finite number of jumps;
- processes with with jump times not necessarily finite.

Example

Occurrence process $\mathbb{1}_{[[\tau,+\infty]]}$ of a random time τ : $(T_1, X_1) = (\tau, X)$, $(T_n, X_n) = (+\infty, \Delta)$ for any $n \ge 2$, where $X = \mathbb{1}_{[0,+\infty)}(\tau) + \Delta \mathbb{1}_{+\infty}(\tau)$.

MPPs and Discrete Random Measures

Martingale Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti

Overview

Multivarian Point Processes (MPPs)

WRP of MPPs

Propagati of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition Any MPP $\{(T_n, X_n)\}_{n \ge 1}$ is completely characterized by a discrete positive random measure from (Ω, \mathcal{F}) to $(\tilde{E}, \tilde{\mathcal{E}})$ defined by $u(w; dt, dx) := \sum \mathbb{1}_{\{T_n \in \mathcal{F}\}} u(w) \delta_{(T_n(X_n), Y_n(Y_n))} dt dx$

 $\mu(\omega; dt, dx) := \sum_{n \ge 1} \mathbb{1}_{\{T_n < \infty\}}(\omega) \delta_{(T_n(\omega), X_n(\omega))}(dt, dx),$

Proposition

There exists a positive random measure $\nu(\omega; dt, dx)$ on $(\tilde{E}, \tilde{\mathcal{E}})$ satisfying $\nu(\{t\} \times E) \leq 1$ $\nu([T_{\infty}, \infty) \times E) = 0$

such that for each $B \in \mathcal{E}$

- (i) $(\nu(\omega; (0, t] \times B))_{t>0}$ is predictable ;
- (ii) $(\mu(\omega; (0, t \land T_n] \times B) \nu(\omega; (0, t \land T_n] \times B))_{t \ge 0}$ is a uniformly integrable martingale null at time zero for each $n \ge 1$.
- \blacktriangleright ν is the $\mathbb F\text{-}predictable$ compensator or $\mathbb F\text{-}dual$ predictable projection of μ

Jacod's WRP of MPPs

Martingale Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagatic of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

- $\mathbb{X} := \{\mathcal{X}_t\}_{t \ge 0}, \ \mathcal{X}_t := \sigma\Big(\mu((0, s] \times B) : s \le t, B \in \mathcal{E}\Big)$ Natural Filtration of $\{(\mathcal{T}_n, \mathcal{X}_n)\}_{n \ge 1}$;
 - $\mathbb{F} := \{\mathcal{F}_t\}_{t \geq 0}, \ \mathcal{F}_t := \mathcal{F}_0 \lor \mathcal{X}_t \text{ with } \mathcal{F}_0 \subset \mathcal{F}.$

Theorem

 $Z = (Z_t)_{t \geq 0} \mathbb{F}$ -adapted, càdlàg process. The following statements are equivalent

- (i) there exists $\{S_n\}_{n\geq 1}$ of \mathbb{F} -stopping times, $S_n \nearrow T_{\infty}$ s.t., for any $n \geq 1$, $Z_{t \wedge S_n}$ is a U.I. martingale;
- (ii) there exists a finite $\tilde{\mathcal{P}}(\mathbb{F})$ -measurable function W s.t. on $\{t < T_{\infty}\}$

$$\int_0^t \int_E |W(s,x)|\nu(ds,dx) < \infty \quad a.s.$$
$$Z_t = Z_0 + \int_0^t \int_E W(s,x)(\mu(ds,dx) - \nu(ds,dx)) \quad a.s.$$

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagati of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

....beyond the formulas:

any MPP satisfies the WRP up to T_{∞} (just WRP if $T_{\infty} = +\infty$ *a.s.*) with respect to its initially enlarged natural filtration.

...and, when $T_{\infty} = +\infty$?

Corollary

When $P(T_{\infty} < +\infty) = 0$ the semimartingale $(X_t)_{t \geq 0}$ defined by

$$X_t := \sum_{n \ge 1} X_n \mathbb{1}_{\{T_n \le t\}}$$

satisfies the \mathbb{F} -WRP.

Put together d MPPs: The Merging Process

Martingale Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti

Overview

Multivarian Point Processes (MPPs)

WRP of MPPs

Propagatic of WRP under enlargement by MPPs

From WRP to SRP

for a basis: a sufficient condition

- $\{(T_n^i, X_n^i)\}_{n\geq 1}$ MPP in $(\tilde{E}_{\Delta}^i, \tilde{\mathcal{E}}_{\Delta}^i)$, E^i a Lusin space, $i = 1, \dots, d$;
- $\mathcal{F}_t^i = \mathcal{F}_0^i \lor \mathcal{X}_t^i, \ \mathcal{F}_0^i \subset \mathcal{F} \text{ and } \mathbb{X}^i = (\mathcal{X}_t^i)_{t \ge 0}$ the natural filtration of $\{(T_n^i, X_n^i)\}_{n \ge 1} \ i = 1, \dots, d;$
- $E := E_0^1 \times E_0^2 \dots \times E_0^d$, with $E_0^i := E^i \cup \{0\}$;
- $\mathbb{G} := \{\mathcal{G}_t\}_{t \ge 0}$ with

$$\mathcal{G}_t := \cap_{s>t} \vee_{i=1}^d \mathcal{F}_s^i.$$

- ► A natural candidate for the G-WRP: the Merging Process The d-dimensional MPP $\{(T_n, V_n)\}_{n \ge 1}$ taking values in $(\tilde{E}_{\Delta}, \tilde{\mathcal{E}}_{\Delta})$ with explosion time $T_{\infty} = \min(T_{\infty}^1, \dots, T_{\infty}^d)$, where
 - the sequence of its jump times is obtained rearranging pointwise in nondecreasing way the set { Tⁱ_n, n ≥ 1, i = 1,...,d};
 - the mark at any jump time is the vector whose i-th component coincides with X_k^i on the set $T_n = T_k^i$, i = 1, ..., d.

Martingale Represen-Enlarge-Multivari-

WRP of MPPs

$$T_{1}(\omega) := \begin{cases} \inf\{T_{1}^{i}(\omega): T_{1}^{i}(\omega) < +\infty, i = 1, ..., d\} & \text{if } \{\ldots\} \neq \emptyset \\ +\infty & \text{otherwise} \end{cases}$$

$$\vdots$$

$$T_{n}(\omega) := \begin{cases} \inf\{T_{k}^{i}(\omega): T_{n-1}(\omega) < T_{k}^{i}(\omega) < +\infty, i = 1, ..., d, k \ge 1\} & \text{if } \{\ldots\} \\ +\infty & \text{otherwise} \end{cases}$$

$$\vdots$$

$$V_{n} := \begin{cases} (V_{n}^{1}, \cdots, V_{n}^{d}) & \text{if } T_{n} < +\infty \\ \Delta & \text{otherwise} \end{cases}$$

 $V_n^i(\omega) := \begin{cases} X_k^i(\omega) & \text{if there exists } k \ge 1 \text{ such that } T_k^i(\omega) = T_n(\omega); \\ 0 & \text{otherwise.} \end{cases}$ otherwise.

otherwise

 $\{V_n\}_{n\geq 1}$ takes values in $E \cup \{\Delta\}$ and

$$V_n^i = \sum_{k \ge 1} X_k^i \mathbb{1}_{\{T_k^i = T_n\}} \mathbb{1}_{\{T_n < +\infty\}} + \Delta \, \mathbb{1}_{\{T_n = +\infty\}}.$$

<u>Martingale</u>

WRP of the Merging Process

Remark

If
$$V_n = x$$
, with $x = (x_1, \ldots, x_d) \in E_0^1 \times \ldots \times E_0^d$, then

- *x* cannot be {0,...,0};
- if x_i = 0 for some (but not all!) i = 1, ..., d then the corresponding i-th MPPs don't jump at T_n;
- if $x_i \neq 0$ for all i = 1, ..., d, then all the MPPs are jumping together.
- $\mathbb{X} = (\mathcal{X}_t)_{t \geq 0}$ the natural filtration of $\{(T_n, V_n)\}_{n \geq 1}$;
- $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$ the right-continuous filtration defined by $\mathcal{F}_t := \mathcal{F}_0 \lor \mathcal{X}_t$, where $\mathcal{F}_0 := \lor_{i=1}^d \mathcal{F}_0^i$.

Theorem

The $\{(T_n, V_n)\}_{n\geq 1}$ satisfies the \mathbb{F} -WRP up to $T_{\infty} := \min(T_{\infty}^1, \ldots, T_{\infty}^d)$.

Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagati of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

In the frame of Progressive Enlargement

Martingale Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagatic of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

- $\{(T_n^i, X_n^i)\}_{n \ge 1}, \mathbb{F}^i = \mathcal{F}_0^i \lor \mathbb{X}^i, i = 1, ..., d, \mathcal{F}_0^i \subset \mathcal{F} \text{ and } \mathbb{X}^i = (\mathcal{X}_t^i)_{t \ge 0}$ the natural filtration of the i-th MPP;
- $\mathbb{G} := \mathbb{F}^1 \vee \ldots \vee \mathbb{F}^d$

Remark

 ${\mathbb F}$ does not coincide in general with ${\mathbb G}.$

If $T_{\infty} < +\infty$ then \mathbb{F} doesn't contain the natural filtration of any MPP of the family either non explosive or with explosion time greater that T_{∞} .

Assumption A1

The explosion time T^i_{∞} is infinite a.s., for any $i \in \{1, ..., d\}$.

Lemma

Assume A1. Then $\mathbb{F} = \mathbb{G}$.

Martingale Represen-

Enlargement by Multivari-

ate Point

Propagation of WRP under enlargement by MPPs

Theorem

Assume A1. Then the MPP $\{(T_n, V_n)\}_{n\geq 1}$ satisfies the \mathbb{G} -WRP.

Overview

Multivarie Point Processes (MPPs)

WRP oj MPPs

Propagatio of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

Summarizing

If $P(T_{\infty} < +\infty) = 0$ then

- $\mathbb{G} := \mathbb{F}^1 \vee \ldots \vee \mathbb{F}^d$ is the progressive enlargement of \mathbb{F}^1 by $\mathbb{F}^2 \vee \ldots \vee \mathbb{F}^d$;
- $\mathbb{F}^2 \vee \ldots \vee \mathbb{F}^d$ coincides with the natural filtration of the merging of $\{(T_n^2, X_n^2)\}_{n \ge 1}, \ldots, \{(T_n^d, X_n^d)\}_{n \ge 1}$ initially enlarged by $\mathcal{F}_0^2 \vee \ldots \vee \mathcal{F}_0^d$;
- the stability of the WRP of $\{(T_n^1, X_n^1)\}_{n\geq 1}$ under progressive enlargement by $\{(T_n^2, X_n^2)\}_{n\geq 1}, \ldots, \{(T_n^d, X_n^d)\}_{n\geq 1}$ holds.

From WRP to SRP

Martingale Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagation of WRP under enlargement by MPPs

From WRP to SRP

for a basis: a sufficient condition

- { (T_n^i, X_n^i) } $_{n\geq 1}$ MPP in $(\tilde{E}_{\Delta}^i, \tilde{\mathcal{E}}_{\Delta}^i)$, E^i a Lusin space, i = 1, ..., d; • $T_{\infty} = \min(T_{\infty}^1, ..., T_{\infty}^d)$ where $T_{\infty}^i = \lim_{n \to +\infty} T_n^i$, i = 1, ..., d; • $E := E^1 \times E^2 \longrightarrow E^d$ with $E^i := E^i \cup \{0\}$:
- $E := E_0^1 \times E_0^2 \dots \times E_0^d$, with $E_0^i := E^i \cup \{0\}$;

Assumption A2

 E^i is discrete, $i \in \{1, ..., d\}$.

The space $E \setminus \{0, \ldots, 0\}$ is countable: $E \setminus \{0, \ldots, 0\} = \{x_1, x_2, \ldots\}$.

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

П

WRP of MPPs

Propagati of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition ■ Assume A1. Then T_∞ is infinite and {(T_n, V_n)}_{n≥1} enjoys the G-WRP: for any G-local martingale Z

$$Z_t = Z_0 + \int_0^t \int_E W(s,x) \big(\mu(ds,dx) - \nu(ds,dx) \big), \quad a.s.$$

where μ is the random measure associated to (T_n, V_n) and ν its \mathbb{G} -dual predictable projection.

Assume A1, A2. Then

$$Z_{t} = Z_{0} + \int_{0}^{t} \int_{E \setminus \{0,...,0\}} \sum_{h \ge 1} W(s,x) \mathbb{1}_{\{x=x_{h}\}} (\mu(ds, dx) - \nu(ds, dx)) =$$

$$= Z_{0} + \sum_{h \ge 1} \int_{0}^{t} W(s, x_{h}) (\mu(ds, \{x_{h}\}) - \nu(ds, \{x_{h}\})), \text{ a.s.}$$

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagatie of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition $egin{aligned} & \mathcal{M}^h_t := \mu((0,t],\{x_h\}) -
u((0,t],\{x_h\}), & h \geq 1 \ & \mathcal{W}_t(x_h) := \mathcal{W}(t,x_h). \end{aligned}$

- For any $h \ge 1$ the process $(M_t^h)_{t\ge 0}$ is a \mathbb{G} -local martingale null at 0;
- for any $h \ge 1$ the process $(W_t(x_h))_{t\ge 0}$ is a \mathbb{G} -predictable process;

•
$$Z_t = Z_0 + \sum_{h\geq 1} \int_0^t W_s(x_h) dM_s^h$$
, a.s.

Theorem

Set $M := (M^1, \ldots, M^h, \ldots)$. Then M enjoys the \mathbb{G} -SRP.

A sufficient condition for the orthogonality

Lemma

Let X be a G-adapted pure jump process of locally integrable variation and let X^p be its G-dual predictable projection. Then, for any fixed stopping time S, $\Delta X_S = 0$, a.s., implies $\Delta X_S^p = 0$, a.s.

Let X and Y be two general \mathbb{G} -adapted locally integrable pure jump processes.

Assumption A3: Mutual Avoiding Predictable Jump Times

 $P(\Delta X_{\sigma} \neq 0) > 0$ implies $\Delta Y_{\sigma} = 0$, a.s., for any finite \mathbb{G} -predictable stopping time σ .

Proposition

Let X and Y be \mathbb{G} -adapted pure jump processes of locally integrable variation which verify A3. Then for any finite \mathbb{G} -predictable stopping time σ

 $\Delta X^{p}_{\sigma} \Delta Y^{p}_{\sigma} = \Delta X_{\sigma} \Delta Y^{p}_{\sigma} = \Delta X^{p}_{\sigma} \Delta Y_{\sigma} = 0, \quad a.s.$

Martingale Representations in Progressive Enlargement by Multivariate Point Processes

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

 $WRP \ of MPPs$

Propagatic of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagati of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

$$M^h = N^h - N^{h,p}, \ h \ge 1,$$

where

- $N_t^h := \mu((0, t], \{x_h\}), \quad h \ge 1;$
- $N^{h,p}$ the \mathbb{G} -dual predictable projection of N^h , $h \ge 1$.

Theorem

Let Assumption A3 be in force for all pair N^h, N^k with $h \neq k$. Then M is a \mathbb{G} -basis.

Proof.

- \mathbb{G} is strongly represented by M;
- $[M^h, M^k] = [N^h, N^k] [N^h, N^{k,p}] [N^{h,p}, N^k] + [N^{h,p}, N^{k,p}];$
- N^h, N^{h,p}, h ≥ 1 are bounded variation processes then the quadratic covariations coincide with the sum of common jumps;
- N^h and N^k with $h \neq k$ do not jump together and A3 yields $[M^h, M^k] = 0$.

> Barbara Torti

Overview

Multivaria Point Processes (MPPs)

WRP of MPPs

Propagati of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition P. DI TELLA, M. JEANBLANC (2021) Martingale representation in the enlargement of the filtration generated by a point process. *Stochastic Processes and their Applications*, 131: 103–121.

A. CALZOLARI, B. TORTI (2022) Martingale representations in progressive enlargement by

J.JACOD (1975) Multivariate point processes: predictable projection, radon-nikodim derivatives, representations of martingales. Z. Wahrscheinlichkeit, 31(3): 235–253.

multivariate point processes. IJTAF. To appear.

> Barbara Torti

Overview

Multivario Point Processes (MPPs)

WRP of MPPs

Propagati of WRP under enlargement by MPPs

From WRP to SRP

for a basis: a sufficient condition

Thank you!