Martingale Representations in Progressive Enlargement by Multivariate Point Processes

Barbara Torti
joint work with A. Calzolari

Università degli Studi di Roma Tor Vergata

9-th International Colloquium on BSDEs and Mean Field Systems
June, 26th - July, 1st, 2022
1 Overview

2 Multivariate Point Processes (MPPs)

3 WRP of MPPs

4 Propagation of WRP under enlargement by MPPs

5 From WRP to SRP

6 Looking for a basis: a sufficient condition for the orthogonality
Overview

(\Omega, \mathcal{F}, P) probability space; \mathbb{F} = (\mathcal{F}_t)_{t \geq 0} a filtration under usual conditions.

- **Goal**
 To represent any \((P, \mathbb{F})\)-local martingale through stochastic integration

- **Possible representations**
 - **Strong Predictable Representation**
 Any \((P, \mathbb{F})\)-local martingale can be written as a vector stochastic integral with respect a \((P, \mathbb{F})\)-local martingale \(M\).

 \(M\) enjoys the \((P, \mathbb{F})\)-Strong Predictable Representation Property (SRP)

 - **Weak Predictable Representation**
 Any \((P, \mathbb{F})\)-local martingale can be written as the sum of a vector stochastic integral with respect to a continuous \((P, \mathbb{F})\)-local martingale \(X^c\) and an integral with respect to a compensated random measure \(\mu - \nu\)

 When \(X^c\) and \(\mu\) are the countinuous martingale part and the jump measure of a semi-martingale \(X\) then \(X\) enjoys the \((P, \mathbb{F})\)-Weak Predictable Representation Property (WRP)
Multivariate Point Processes

- (E, \mathcal{E}), E Lusin space; \mathcal{E} its Borel σ-algebra;
- Δ extra point.
- $E_\Delta := E \cup \{\Delta\}$ \(\tilde{E} := (0, +\infty) \times E\) \(\tilde{E}_\Delta := \tilde{E} \cup \{(+\infty, \Delta)\}\)
 with \mathcal{E}_Δ, $\tilde{\mathcal{E}}$ and $\tilde{\mathcal{E}}_\Delta$ the Borel σ-algebra of E_Δ, \tilde{E} and \tilde{E}_Δ.
- $\tilde{\Omega} := \Omega \times (0, +\infty) \times E$ \(\tilde{\mathcal{P}}(\mathbb{F}) := \mathcal{P}(\mathbb{F}) \otimes \mathcal{E}\),

Definition

A Multivariate Point Process (from now on MPP) is a infinite sequence of $(\tilde{E}_\Delta, \tilde{\mathcal{E}}_\Delta)$-valued r.v’s $\{(T_n, X_n)\}_{n \geq 1}$ s.t.

1. for each n, T_n is a \mathbb{F}-stopping time and $T_n \leq T_{n+1}$;
2. for each n, X_n is \mathcal{F}_{T_n}-measurable;
3. if $T_n < \infty$, then $T_n < T_{n+1}$.

The Explosion Time of MPP $\{(T_n, X_n)\}_{n \geq 1}$ is the $(0, +\infty]$-valued r.v. T_∞ defined by

$$T_\infty := \lim_{n} T_n$$
Why does Jacod give a so abstract definition?

Because it allows to include in the family of MPPs also:
- Explosive jump processes \(P(T_\infty < +\infty) > 0 \);
- processes with a finite number of jumps;
- processes with jump times not necessarily finite.

Example

Occurrence process \(1_{[[\tau, +\infty]]} \) of a random time \(\tau \): \((T_1, X_1) = (\tau, X) \), \((T_n, X_n) = (+\infty, \Delta) \) for any \(n \geq 2 \), where \(X = 1_{[0, +\infty)}(\tau) + \Delta 1_{+\infty}(\tau) \).
Any MPP \(\{(T_n, X_n)\}_{n \geq 1} \) is completely characterized by a discrete positive random measure from \((\Omega, \mathcal{F})\) to \((\tilde{\mathcal{E}}, \tilde{\mathcal{E}})\) defined by

\[
\mu(\omega; dt, dx) := \sum_{n \geq 1} 1\{T_n < \infty\}(\omega) \delta(T_n(\omega), X_n(\omega))(dt, dx),
\]

Proposition

There exists a positive random measure \(\nu(\omega; dt, dx)\) on \((\tilde{\mathcal{E}}, \tilde{\mathcal{E}})\) satisfying

\[
\nu(\{t\} \times E) \leq 1 \quad \nu([T_\infty, \infty) \times E) = 0
\]

such that for each \(B \in \mathcal{E}\)

\[
(i) \quad (\nu(\omega; (0, t] \times B))_{t \geq 0} \text{ is predictable ;}
(ii) \quad (\mu(\omega; (0, t \wedge T_n] \times B) - \nu(\omega; (0, t \wedge T_n] \times B))_{t \geq 0} \text{ is a uniformly integrable martingale null at time zero for each } n \geq 1.
\]

\(\nu\) is the \(\mathbb{F}\)-predictable compensator or \(\mathbb{F}\)-dual predictable projection of \(\mu\)
Jacod’s WRP of MPPs

- $\mathbb{X} := \{\mathcal{X}_t\}_{t \geq 0}$, $\mathcal{X}_t := \sigma\left(\mu((0, s] \times B) : s \leq t, B \in \mathcal{E}\right)$ Natural Filtration of $\{(T_n, X_n)\}_{n \geq 1}$;
- $\mathbb{F} := \{\mathcal{F}_t\}_{t \geq 0}$, $\mathcal{F}_t := \mathcal{F}_0 \vee \mathcal{X}_t$ with $\mathcal{F}_0 \subset \mathcal{F}$.

Theorem

$Z = (Z_t)_{t \geq 0}$ \mathbb{F}-adapted, càdlàg process. The following statements are equivalent

(i) there exists $\{S_n\}_{n \geq 1}$ of \mathbb{F}-stopping times, $S_n \nearrow T_\infty$ s.t., for any $n \geq 1$, $Z_{t \wedge S_n}$ is a U.I. martingale;

(ii) there exists a finite $\tilde{\mathbb{P}}(\mathbb{F})$-measurable function W s.t. on $\{t < T_\infty\}$

\[
\int_0^t \int_E |W(s, x)| \nu(ds, dx) < \infty \text{ a.s.}
\]

\[
Z_t = Z_0 + \int_0^t \int_E W(s, x)(\mu(ds, dx) - \nu(ds, dx)) \text{ a.s.}
\]
any MPP satisfies the WRP up to T_∞ (just WRP if $T_\infty = +\infty$ a.s.) with respect to its initially enlarged natural filtration.

...and, when $T_\infty = +\infty$?

Corollary

When $P(T_\infty < +\infty) = 0$ the semimartingale $(X_t)_{t \geq 0}$ defined by

$$X_t := \sum_{n \geq 1} X_n 1\{T_n \leq t\}$$

satisfies the \mathbb{F}-WRP.
Put together d MPPs: The Merging Process

- $\{(T_n^i, X_n^i)\}_{n \geq 1}$ MPP in $(\tilde{E}_\Delta^i, \tilde{E}_\Delta^i)$, E^i a Lusin space, $i = 1, \ldots, d$;
- $\mathcal{F}_t^i = \mathcal{F}_0^i \lor X_t^i$, $\mathcal{F}_0^i \subset \mathcal{F}$ and $X^i = (X_t^i)_{t \geq 0}$ the natural filtration of $\{(T_n^i, X_n^i)\}_{n \geq 1}$ $i = 1, \ldots, d$;
- $E := E_0^1 \times E_0^2 \ldots \times E_0^d$, with $E_0^i := E^i \cup \{0\}$;
- $\mathcal{G} := \{G_t\}_{t \geq 0}$ with $G_t := \cap_{s > t} \lor_{i=1}^d \mathcal{F}_s^i$.

▶ A natural candidate for the \mathcal{G}-WRP: the **Merging Process**

The d-dimensional MPP $\{(T_n, V_n)\}_{n \geq 1}$ taking values in $(\tilde{E}_\Delta, \tilde{E}_\Delta)$ with explosion time $T_\infty = \min(T_\infty^1, \ldots, T_\infty^d)$, where

- the sequence of its jump times is obtained rearranging pointwise in nondecreasing way the set $\{T_n^i, n \geq 1, i = 1, \ldots, d\}$;
- the mark at any jump time is the vector whose i-th component coincides with X_k^i on the set $T_n = T_k^i$, $i = 1, \ldots, d$.
Martingale Representations in Progressive Enlargement by Multivariate Point Processes

Barbara Torti

Overview

Multivariate Point Processes (MPPs)

WRP of MPPs

Propagation of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

\[T_1(\omega) := \begin{cases} \inf \{ T_i^1(\omega) : T_1^i(\omega) < +\infty, \; i = 1, \ldots, d \} & \text{if } \{ \ldots \} \neq \emptyset \\ +\infty & \text{otherwise} \end{cases} \]

\[\vdots \]

\[T_n(\omega) := \begin{cases} \inf \{ T_k^i(\omega) : T_{n-1}(\omega) < T_k^i(\omega) < +\infty, \; i = 1, \ldots, d, \; k \geq 1 \} & \text{if } \{ \ldots \} \neq \emptyset \\ +\infty & \text{otherwise} \end{cases} \]

\[\vdots \]

\[V_n := \begin{cases} (V_1^n, \ldots, V_d^n) & \text{if } T_n < +\infty \\ \Delta & \text{otherwise} \end{cases} \]

\[V_n^i(\omega) := \begin{cases} X_k^i(\omega) & \text{if there exists } k \geq 1 \text{ such that } T_k^i(\omega) = T_n(\omega); \\ 0 & \text{otherwise}. \end{cases} \]

\{V_n\}_{n \geq 1} \text{ takes values in } E \cup \{\Delta\} \text{ and}

\[V_n^i = \sum_{k \geq 1} X_k^i \mathbb{1}_{\{T_k^i=T_n\}} \mathbb{1}_{\{T_n<+\infty\}} + \Delta \mathbb{1}_{\{T_n=+\infty\}}. \]
Remark

If $V_n = x$, with $x = (x_1, \ldots, x_d) \in E_0^1 \times \ldots \times E_0^d$, then

- x cannot be $\{0, \ldots, 0\}$;
- if $x_i = 0$ for some (but not all!) $i = 1, \ldots, d$ then the corresponding i-th MPPs don't jump at T_n;
- if $x_i \neq 0$ for all $i = 1, \ldots, d$, then all the MPPs are jumping together.

- $X = (X_t)_{t \geq 0}$ the natural filtration of $\{(T_n, V_n)\}_{n \geq 1}$;
- $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ the right-continuous filtration defined by $\mathcal{F}_t := \mathcal{F}_0 \vee X_t$, where $\mathcal{F}_0 := \vee_{i=1}^d \mathcal{F}_0^i$.

Theorem

The $\{(T_n, V_n)\}_{n \geq 1}$ satisfies the \mathbb{F}-WRP up to $T_\infty := \min\left(T_1^\infty, \ldots, T_d^\infty\right)$.
In the frame of Progressive Enlargement

- \{(T_n, X_n^i)\}_{n \geq 1}, \quad F^i = \mathcal{F}_0^i \vee X^i, \quad i = 1, \ldots, d,
- \mathcal{F}_0^i \subset \mathcal{F} \quad \text{and} \quad X^i = (X^i_t)_{t \geq 0} \quad \text{the natural filtration of the i-th MPP};
- \mathcal{G} := F^1 \vee \ldots \vee F^d

Remark

\[F \text{ does not coincide in general with } \mathcal{G}. \]

If \(T_\infty < +\infty \) then \(F \) doesn’t contain the natural filtration of any MPP of the family either non explosive or with explosion time greater that \(T_\infty \).

Assumption A1

The explosion time \(T^i_\infty \) is infinite a.s., for any \(i \in \{1, \ldots, d\} \).

Lemma

Assume A1. Then \(F = \mathcal{G} \).

Propagation of WRP under enlargement by MPPs

\[\text{Theorem}\]

Assume $A1$. Then the MPP \(\{(T_n, V_n)\}_{n \geq 1}\) satisfies the G-WRP.

\[\begin{align*}
\textbf{Summarizing } \\
\text{If } P(T_\infty < +\infty) = 0 \text{ then } \\
\begin{align*}
&\textbullet \ G := F^1 \lor \ldots \lor F^d \text{ is the progressive enlargement of } F^1 \text{ by } F^2 \lor \ldots \lor F^d; \\
&\textbullet \ F^2 \lor \ldots \lor F^d \text{ coincides with the natural filtration of the merging of } \\
&\{(T^2_n, X^2_n)\}_{n \geq 1}, \ldots , \{(T^d_n, X^d_n)\}_{n \geq 1} \text{ initially enlarged by } \mathcal{F}^2_0 \lor \ldots \lor \mathcal{F}^d_0; \\
&\textbullet \text{ the stability of the WRP of } \{(T^1_n, X^1_n)\}_{n \geq 1} \text{ under progressive enlargement by } \\
&\{(T^2_n, X^2_n)\}_{n \geq 1}, \ldots , \{(T^d_n, X^d_n)\}_{n \geq 1} \text{ holds.}
\end{align*}\]
From WRP to SRP

- \(\{(T_n^i, X_n^i)\}_{n \geq 1} \) MPP in \((\tilde{E}_\Delta^i, \tilde{\mathcal{E}}_\Delta^i), E^i\) a Lusin space, \(i = 1, \ldots, d\);
- \(T_\infty = \min\left(T_1^\infty, \ldots, T_d^\infty \right) \) where \(T_i^\infty = \lim_{n \to +\infty} T_n^i, i = 1, \ldots, d \);
- \(E := E_1^0 \times E_2^0 \ldots \times E_d^0 \), with \(E_0^i := E^i \cup \{0\} \);

Assumption A2

\(E^i \) is discrete, \(i \in \{1, \ldots, d\}\).

The space \(E \setminus \{0, \ldots, 0\} \) is countable: \(E \setminus \{0, \ldots, 0\} = \{x_1, x_2, \ldots\} \).
Assume A1. Then T_∞ is infinite and $\{(T_n, V_n)\}_{n \geq 1}$ enjoys the \mathbb{G}-WRP: for any \mathbb{G}-local martingale Z

$$Z_t = Z_0 + \int_0^t \int_E W(s, x) (\mu(ds, dx) - \nu(ds, dx)), \quad a.s.$$

where μ is the random measure associated to (T_n, V_n) and ν its \mathbb{G}-dual predictable projection.

Assume A1, A2. Then

$$Z_t = Z_0 + \int_0^t \int_{E \setminus \{0, \ldots, 0\}} \sum_{h \geq 1} W(s, x) \mathbb{1}_{\{x = x_h\}} (\mu(ds, dx) - \nu(ds, dx)) =$$

$$= Z_0 + \sum_{h \geq 1} \int_0^t W(s, x_h) (\mu(ds, \{x_h\}) - \nu(ds, \{x_h\})), \quad a.s.$$
\[\begin{align*}
M_t^h & := \mu((0, t], \{x_h\}) - \nu((0, t], \{x_h\}), \quad h \geq 1 \\
W_t(x_h) & := W(t, x_h).
\end{align*} \]

- For any \(h \geq 1 \) the process \((M_t^h)_{t \geq 0} \) is a \(\mathcal{G} \)-local martingale null at 0;
- for any \(h \geq 1 \) the process \((W_t(x_h))_{t \geq 0} \) is a \(\mathcal{G} \)-predictable process;
- \[Z_t = Z_0 + \sum_{h \geq 1} \int_0^t W_s(x_h) dM_s^h, \quad a.s. \]

Theorem

Set \(M := (M^1, \ldots, M^h, \ldots) \). Then \(M \) enjoys the \(\mathcal{G} \)-SRP.
A sufficient condition for the orthogonality

Lemma

Let X be a \mathcal{G}-adapted pure jump process of locally integrable variation and let X^p be its \mathcal{G}-dual predictable projection. Then, for any fixed stopping time S, $\Delta X_S = 0$, a.s., implies $\Delta X^p_S = 0$, a.s.

Let X and Y be two general \mathcal{G}-adapted locally integrable pure jump processes.

Assumption A3: Mutual Avoiding Predictable Jump Times

$P(\Delta X_\sigma \neq 0) > 0$ implies $\Delta Y_\sigma = 0$, a.s., for any finite \mathcal{G}-predictable stopping time σ.

Proposition

Let X and Y be \mathcal{G}-adapted pure jump processes of locally integrable variation which verify A3. Then for any finite \mathcal{G}-predictable stopping time σ

$$\Delta X^p_\sigma \Delta Y^p_\sigma = \Delta X_\sigma \Delta Y^p_\sigma = \Delta X^p_\sigma \Delta Y_\sigma = 0, \text{ a.s.}$$
$M^h = N^h - N^{h,p}, \ h \geq 1$,

where

- $N^h_t := \mu((0, t], \{x_h\}), \ h \geq 1$;
- $N^{h,p}$ the \mathcal{G}-dual predictable projection of $N^h, \ h \geq 1$.

Theorem

Let Assumption A3 be in force for all pair N^h, N^k with $h \neq k$. Then M is a \mathcal{G}-basis.

Proof.

- \mathcal{G} is strongly represented by M;
- $[M^h, M^k] = [N^h, N^k] - [N^h, N^{k,p}] - [N^{h,p}, N^k] + [N^{h,p}, N^{k,p}]$;
- $N^h, N^{h,p}, \ h \geq 1$ are bounded variation processes then the quadratic covariations coincide with the sum of common jumps;
- N^h and N^k with $h \neq k$ do not jump together and A3 yields $[M^h, M^k] = 0$.

Overview

Multivariate Point Processes (MPPs)

WRP of MPPs

Propagation of WRP under enlargement by MPPs

From WRP to SRP

Looking for a basis: a sufficient condition

Thank you!