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Optimal control of mean �eld equations with monotone coe�cients and applications in neuroscience

Gradient representation and maximum principle

Formulation of the control problem

FitzHugh-Nagumo network of N neurons

State at time t of each neuron i , described by (Baladron, Fasoli, Faugeras [1]):

dV i
t =

( local dynamics︷ ︸︸ ︷
V i
t −

(V i
t )

3

3
− w i

t + αt

)
dt + σextdW

i
t

−
1

N

∑N

j=1
(V i

t − Vrev)y
j
t dt −

1

N

∑N

j=1
(V i

t − Vrev)y
j
t dB

i
t︸ ︷︷ ︸

= −ẼµN [h(X i ,X̃ j )dt+β(X i ,X̃ j )dB i ] ,µN=empirical dist.

dw i
t = (V i

t + a− bw i
t )dt ,

dy i
t = (arS(V

i
t )(1− y i

t )− ady
i
t )dt, for i = 1, . . . ,N,

V i membrane potential of neuron i

y i fraction of open channels (synaptic channels).

B i ,W i i.i.d. Brownian motions;

Vrev synaptic reversal potential;

S(V ) = concentration of transmitter released into synaptic cleft;
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= −ẼµN [h(X i ,X̃ j )dt+β(X i ,X̃ j )dB i ] ,µN=empirical dist.

dw i
t = (V i

t + a− bw i
t )dt ,

dy i
t = (arS(V

i
t )(1− y i

t )− ady
i
t )dt, for i = 1, . . . ,N,

V i membrane potential of neuron i

y i fraction of open channels (synaptic channels).

B i ,W i i.i.d. Brownian motions;

Vrev synaptic reversal potential;

S(V ) = concentration of transmitter released into synaptic cleft;

Alexander Vogler June 30 2022, Annecy 4 / 26



Optimal control of mean �eld equations with monotone coe�cients and applications in neuroscience

Gradient representation and maximum principle

Formulation of the control problem

FitzHugh-Nagumo network of N neurons

State at time t of each neuron i , described by (Baladron, Fasoli, Faugeras [1]):

dV i
t =

( local dynamics︷ ︸︸ ︷
V i
t −

(V i
t )

3

3
− w i

t + αt

)
dt + σextdW

i
t

−
1

N

∑N

j=1
(V i

t − Vrev)y
j
t dt −

1

N

∑N

j=1
(V i

t − Vrev)y
j
t dB

i
t︸ ︷︷ ︸
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Formulation of the control problem

Figure: Synaptic dynamics
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Gradient representation and maximum principle

Formulation of the control problem

Abstract formulation

Propagation of chaos (Bossy, Talay, Faugeras [2]) leads to the controlled mean-�eld
equation of the form

dX = b(t,Xt ,L(Xt), αt)dt + σ(t,Xt ,L(Xt), αt)dWt ,

with convex level set constraint π(Xt) ≤ 0, ∀t,
(1)

where

Xt = (vt ,wt , yt);

W is a Brownian Motion;

π : R3 → R, (v ,w , y) 7→ y(y − 1), in particular π(Xt) ≤ 0 is coherent with the

intuition that yt is a fraction of open channels;

αt is a deterministic control, e.g. modelling external current.

Goal: Minimize the cost functional

J(α) := E
[ ∫ T

0

f (t,Xα
t ,L(Xα

t ), αt)dt + g(Xα
T ,L(Xα

T ))
]
, (2)

where α ∈ A := {α : [0,T ] → A}, for A ⊂ Rk bounded and convex.
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Gradient representation and maximum principle

Formulation of the control problem

Example

Particular example: We consider the following control problem (SM)

min
α

J(α) := E
[∫ T

0

f (t,Xα
t ,L(Xα

t ), αt)dt

]
, (3)

where

f (t, x , µ, α) := c1|
∫
R3

vµ(dv × dw × dy)︸ ︷︷ ︸
'local �eld potential (LFP)'

−v t |2 + c2|x1 − v̂t |2,

subject to Xα
t = (vt ,wt , yt) satisfying

dvt =
( one-sided Lipschitz︷ ︸︸ ︷
vt −

(vt)3

3
− wt + αt

)
dt + σextdWt

− Ẽ (J(ṽt − Vrev )yt)︸ ︷︷ ︸
locally Lipschitz

dt

dwt = c(vt + a− bwt)dt ,

dyt = (arS(vt)(1− yt)− adyt)dt.

(4)

The convex constraint ensures existence of a unique solution to (4).
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Gradient representation and maximum principle

Formulation of the control problem

Abstract setting

Let C := π−1((−∞, 0]).

Assumptions:

1 πx (x) · b(t, x , µ, α) ≤ 0

2 Im (σ(t, x , µ, α)) ⊂ πx (x)⊥

3 πxx (x) · (σσ†(t, x , µ, α)) = 0,

for all µ ∈ P(Rd ), α ∈ A, t ∈ [0,T ] and x ∈ Rd \ C.

⇒ we can ensure that

P
[
π(Xα,µ

t ) ≤ 0∀t ∈ [0,T ]
]
= 1,

for any µ ∈ C([0,T ],PC
2 ), where Xα,µ is the solution to

dX = b(t,Xt , µt , αt)dt + σ(t,Xt , µt , αt)dWt .

⇝ this ensures existence of a unique solution to (4), if the coe�cients b, σ are
assumed to be Lipschitz continuous in µ on C.

⇝ abstract setting for dynamical systems modeling fractions/concentrations
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Gradient representation and maximum principle

Gradient representation for the cost functional

Gâteaux derivative of the cost functional

The Gâteaux derivative of the cost functional in direction β is given by

∂βJ(α) = E
[
fx (t,Xt ,L(Xt), αt) · Zα,β

t + fα(t,Xt ,L(Xt), αt) · βt

]
+ E

[
Ẽ
[
fµ(t,Xt ,L(Xt), αt)(X̃t) · Z̃α,β

t

]]
+ E

[
gx (XT ,L(XT )) · Zα,β

T + Ẽ
[
gµ(XT ,L(XT ))(X̃T ) · Z̃α,β

T

]]
,

where Zα,β is the unique solution to

dZt=
{
bx (t,Xt ,L(Xt), αt)Zt + bα(t,Xt ,L(Xt), αt)βt + Bµ(t,Xt ,L(Xt ,Zt))

}
dt

+
{
σx (t,Xt ,L(Xt), αt)Zt + σα(t,Xt ,L(Xt), αt)βt +Σµ(t,Xt ,L(Xt ,Zt))

}
dWt

Z0= 0,

for

Bµ(t, x , µ) :=

∫ ∫
Rd×Rd

bµ(t, x ,L(Xt), αt)(x̃)ỹµ(dx̃ × dỹ),

Σµ(t, x , µ) :=

∫ ∫
Rd×Rd

σµ(t, x ,L(Xt), αt)(x̃)ỹµ(dx̃ × dỹ).
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Gradient representation and maximum principle

Gradient representation for the cost functional

Adjoint equation and duality

In order to derive a gradient representation for the cost functional, we consider the
adjoint equation for Zα,β :

Let (P,Q) be the solution to:

dPt = −
(
bx (t,Xt ,L(Xt), αt)Pt + σx (t,Xt ,L(Xt), αt) · Qt

+ fx (t,X
α
t ,L(Xα

t ), αt) + Ẽ
[
bµ(t, X̃t ,L(Xt), αt)(X̃t)P̃t

]
+ Ẽ

[
fµ(t, X̃t ,L(Xt), αt)(X̃t)

])
dt − QtdWt

PT = gx (X
α
T ,L(Xα

T )) + Ẽ
[
gµ(X̃t ,L(Xt))(X̃t)

]
,

(5)

i.e. (P,Q) solves the equation (5) and is adapted to the given �ltration (Ft)t∈[0,T ],
which is generated by (Xt)t∈[0,T ].
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Gradient representation and maximum principle

Gradient representation for the cost functional

Duality

Then the following duality holds true:

E
[
PT · Zα,β

T +

∫ T

0

fx (t,Xt ,L(Xt), αt) · Zα,β
t + Ẽ

[
fµ(t,Xt ,L(Xt), αt)(X̃t) · Z̃α,β

t

]]
dt

= E
[∫ T

0

Pt · bα(t,Xt ,L(Xt), αt)βt + Qt · σα(t,Xt , (Xt), αt)βtdt

]
(6)

⇒ Gradient representation of the cost functional:

∂βJ(α) =

∫ T

0

E [Pt · bα(t,Xα
t ,L(Xα

t ), αt)]βt + E [Qt · σα(t,Xt ,L(Xt), αt)]βtdt

+ E [fα(t,Xt ,L(Xt), αt)]βtdt

=

∫ T

0

E [Hα(t,Xt ,L(Xt),Pt ,Qt , αt)]βtdt

=:

∫ T

0

∇J(α)(t)βtdt,

(7)
where H(t, x , µ, p, q, α) := b(t, x , µ, α) · p + σ(t, x , µ, α) · q + f (t, x , µ, α) denotes the
Hamiltonian.
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Gradient representation and maximum principle

Maximum principle

Maximum principle

In particular, if the Hamiltonian H is convex in α we can obtain the following
maximum principle:

Let α ∈ A be a minimizer of J as in (2) and (P,Q) the solution to the corresponding
adjoint equation (5), then it holds for Lebesgue-almost every t ∈ [0,T ]

E [H(t,Xt ,L(Xt),Pt ,Qt , αt)] ≤ E [H(t,Xt ,L(Xt),Pt ,Qt , α)] ,

for every α ∈ A.

Since we consider deterministic controls, the maximum principle is formulated in terms
of the expectation and does not hold dt ⊗ P-almost everywhere.
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Gradient representation and maximum principle

Analysis of the adjoint equation

Duality

Problem: It is di�cult to approximate the adapted solution to the adjoint equation
(5) numerically

However: The duality

E
[
PT · Zα,β

T +

∫ T

0

fx (t,Xt ,L(Xt), αt) · Zα,β
t + Ẽ

[
fµ(t,Xt ,L(Xt), αt)(X̃t) · Z̃α,β

t

]]
dt

= E
[∫ T

0

Pt · bα(t,Xt ,L(Xt), αt)βt + Qt · σα(t,Xt , (Xt), αt)βtdt

]
.

holds true for any 'non-adapted solution' to (5), as long as σ does not depend on
X ,L(X ) and α ⇝ In this case the duality can be proven pathwise.

⇝Is it necessary to compute the adapted solution of (5) to determine the gradient?

In the case of additive noise, any 'non-adapted solution' leads to the same gradient as
the adapted solution, however in the general case this is no longer true.
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Gradient representation and maximum principle

Analysis of the adjoint equation

Adapted vs. 'non-adapted solutions'

Example: Minimize J(α) = E
[∫ T

0 |Xα
t |2dt

]
subject to

dXα
t = {αt + µXα

t } dt + σXα
t dWt , X0 = 1. (8)

The BSDE reduces to

dPt = −{µPt + σQt + 2Xα
t } dt − QtdWt , PT = 0. (9)

The (non-unique) 'Non-adapted solution' (P̂, Q̂), where Q̂ = 0 and

P̂t = 2e−µt
∫ T

t
eµsXα

s ds

leads to the following approximation of the gradient for α ≡ 0:

∇̂J(α)(t) := E
[
bα(t,X

α
t ,L(Xα

t ), αt)P̂t

]
= 2E

[
e−µt

∫ T

t
eµsXα

s ds

]
α≡0
=

1

µ
e−µt(e2µT − e2µt)
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P̂t = 2e−µt
∫ T

t
eµsXα

s ds

leads to the following approximation of the gradient for α ≡ 0:

∇̂J(α)(t) := E
[
bα(t,X

α
t ,L(Xα

t ), αt)P̂t

]
= 2E

[
e−µt

∫ T

t
eµsXα

s ds

]
α≡0
=

1

µ
e−µt(e2µT − e2µt)
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Gradient representation and maximum principle

Analysis of the adjoint equation

Adapted vs. 'non-adapted solutions'

The unique adapted solution to the linear BSDE (5) is given by

Pt = 2E
[
e−(µ−σ2

2 )t−σWt

∫ T

t
e(µ−

σ2

2 )s+σWsXα
s ds|Ft

]
Qt = −σPt + e−(µ−σ2

2 )t−σWt ηt ,

where η results from the martingale representation theorem for the martingale

Mt := −2E
[∫ T

0

e(µ−σ2

2 )s+σWsXα
s ds|Ft

]
.

Thus
∇J(α)(t) = E [bα(t,X

α
t ,L(Xα

t ), αt)Pt ]

= 2E
[
e−(µ−σ2

2 )t−σWt

∫ T

t
e(µ−

σ2

2 )s+σWsXα
s ds

]
=

2

σ2 + 2µ
e−µt(e2µT eσ

2T − e2µteσ
2t)

Coincides with ∇̂J(α) only if σ = 0.
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Numerical approximation of the optimal control problem

Plan

1 Gradient representation and maximum principle
Formulation of the control problem
Gradient representation for the cost functional
Maximum principle
Analysis of the adjoint equation

2 Numerical approximation of the optimal control problem
Approximation of the gradient
Gradient decent approximation of the optimal control
Numerical examples

3 Outlook
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Numerical approximation of the optimal control problem

Approximation of the gradient

Approximation of the adjoint equation

How to approximate the adapted solution to (5)?

In general we consider the MFFBSDE of the following type:
dXt = b(t,Xt ,L(Xt))dt + σ(t,Xt ,L(Xt))dWt

dPt = [f (t,Xt ,Pt) + h(t,Xt ,L(Xt ,Pt))] dt − QtdWt

X0 = ξ

PT = g(XT ).

(10)

Backward Euler-scheme:

Pπ
tk

= E
(
Pπ
tk+1

|Ftk

)
− (tk+1 − tk )

{
f (tk ,X

π
tk
,Pπ

tk
) + h(tk+1,X

π
tk
,L(Xπ

tk+1
,Pπ

tk+1
))

}
Qπ

tk
= (tk+1 − tk )

−1E
(
Pπ
tk
(Wtk+1 −Wtk )|Ftk

)
,

Pπ
tN

= g(Xπ
tN
), Qπ

tN
= 0,

for a given grid π : 0 = t0 < t1 < ... < tN = T .
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Numerical approximation of the optimal control problem

Approximation of the gradient

Approximation of the adjoint equation

There exists u : [0,T ]× Rd × P2(Rd ) → Rd (decoupling �led)
(Carmona, Delarue [3]), such that

Pt = u(t,Xt ,L(Xt)).

Thus

Pπ
tk+1 = u(tk+1,X

π
tk+1

,L(Xπ
tk+1

)) =: û(tk+1,X
π
tk+1

)

This leads to the following representation of the conditional expectation in terms of a
function ũ by

E
(
Pπ
tk+1|Ftk

)
= ũ(tk+1,X

π
tk
).

Approximate ũ(tk+1, ·) with gaussian radial basis functions, by solving the following
minimization problem for �xed nodes x1, ..., xL:

min
α

E

(
|Pπ

tk+1 −
L∑

i=1

αi (tk+1)e
1
2δ ∥Xπ

tk
−xi∥2 |2

)
,

for α = (α1(tk+1), ..., αL(tk+1))
†, where δ > 0 and L ∈ N are �xed.
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)) =: û(tk+1,X
π
tk+1

)

This leads to the following representation of the conditional expectation in terms of a
function ũ by
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Numerical approximation of the optimal control problem

Gradient decent approximation of the optimal control

Gradient decent algorithm

To approximate the optimal control, we �x an initial control α0 and proceed according
to the following gradient decent algorithm:

1 solve the state equation to determine Xαn ;

2 approximate the gradient of the cost functional

∇J(αn)(t) ≈ 1
N

∑N
k=1 Hα(t,X

αn,k
t , 1

N

∑N
k=1 δXαn,k

t
,Pk

t ,Q
k
t , αn(t)), t ∈ [0,T ],

where (P1,Q1), ..., (PN ,QN) are N samples of the solution to the adjoint
equation;

3 update control according to αn+1 := αn − s∇J(αn);

Problem:

In many situations, the membrane potential v becomes highly sensitive to small
perturbations of the control at speci�c times.

This sensitivity can lead to high �uctuations of the sample mean for the corresponding
adjoint equation
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Numerical approximation of the optimal control problem

Gradient decent approximation of the optimal control

High sensitivity of the membrane potential

Example Consider the control problem (SM) for J = σext = c1 = 0 and
a = 0.7, b = 0.8, c = 0.08, where for the approximation of the optimal control, the
initial control α0 is chosen close to the bifurcation value for the supercritical
Hopf-bifurcation point of equation (4).

Figure: Membrane potential
of the solution to the state
equation at α0 = 0.315

Figure: Reference pro�le ṽ
generated by solving the
state equation for α ≡ 0.33

Figure: Solution P
α0
t to the

corresponding adjoint
equation
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Numerical approximation of the optimal control problem

Gradient decent approximation of the optimal control

Fluctuations of the adjoint samples

Example Consider the control problem (SM) for J = c1 = 1, c2 = 0, σext = 0.08 and
a = 0.7, b = 0.8, c = 0.08.

Figure: E [Vt ], where
Xt = (Vt ,wt , yt) is the
solution to (4) for α0 ≡ 0

Figure: Reference pro�le
vt = E [Vt ], where
Xt = (Vt ,wt , yt) is the
solution to (4) for
α(t) = 0.8, if t ≤ 7

Figure: Samples of the
solution to the adjoint
equation for α0
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Numerical approximation of the optimal control problem

Numerical examples

Parameter setting for the optimal control problem

Parameter setting of the control problem: a = 0.7, b = 0.8, c = 0.08,
σext = 0.08, J = 0.46.

Initial states are uniformly distributed on the limit cycle of (4) for σext = 0, α = 0

Slow gating variable by decreased closing rate ad of the synaptic gates

⇝ activity of a large number of neurons in the network can lead to further
activity at later times without external input

Example

Controlling the local �eld potential E [Vt ] of an uncontrolled network of coupled
FitzHugh-Nagumo neurons into a reference pro�le which is chosen to be the local
�eld potential of an excited network

Controlling the local �eld potential E [Vt ] of a uncontrolled network of uncoupled
FitzHugh-Nagumo neurons into the same reference pro�le
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⇝ activity of a large number of neurons in the network can lead to further
activity at later times without external input

Example

Controlling the local �eld potential E [Vt ] of an uncontrolled network of coupled
FitzHugh-Nagumo neurons into a reference pro�le which is chosen to be the local
�eld potential of an excited network

Controlling the local �eld potential E [Vt ] of a uncontrolled network of uncoupled
FitzHugh-Nagumo neurons into the same reference pro�le
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Example

Figure: Uncontrolled local
�eld potential J = 0.46

Figure: Uncontrolled local
�eld potential J = 0

Figure: Reference pro�le

Figure: Optimal control
J = 0.46

Figure: Optimal control
J = 0

Figure: Local �eld potential
with optimal control
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Plan

1 Gradient representation and maximum principle
Formulation of the control problem
Gradient representation for the cost functional
Maximum principle
Analysis of the adjoint equation

2 Numerical approximation of the optimal control problem
Approximation of the gradient
Gradient decent approximation of the optimal control
Numerical examples

3 Outlook
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Feedback control

Consider controls of the form

αt = ϕ(t,Xt) ≈
L∑

i=1

α̃i (t)e
− 1

2δ ∥Xt−xi (t)∥2 = h(α̃t ,Xt),

where α̃t = (α̃1(t), ..., α̃L(t)), h : RL × Rd → Rd , h(α, x) :=
∑L

i=1 α̃ie
− 1

2δ ∥x−xi (t)∥2 .

By de�ning
b̃(t,Xt ,L(Xt), α̃t) := b(t,Xt ,L(Xt), h(α̃t ,Xt))

σ̃(t,Xt ,L(Xt), α̃t) := σ(t,Xt ,L(Xt), h(α̃t ,Xt))

f̃ (t,Xt ,L(Xt), α̃t) := f (t,Xt ,L(Xt), h(α̃t ,Xt))

we can solve the new optimal control problem with coe�cients b̃, σ̃, f̃ for deterministic
controls to get an approximation of the optimal feedback function ϕ.
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