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Formulation of the SDGs

Let 𝑏, 𝜎, 𝑓 be measurable mappings defined over appropriate spaces. We are

interested in a type of two-player SDGs where

Dynamics: For 𝑡 ≥ 0, 𝑥 ∈ R𝑛,

𝑋𝑥,𝑢,𝑣
𝑡 = 𝑥 +

∫︁ 𝑡

0

𝑏(𝑋𝑥,𝑢,𝑣
𝑠 , 𝑢𝑠, 𝑣𝑠)𝑑𝑠 +

∫︁ 𝑡

0

𝜎(𝑋𝑥,𝑢,𝑣
𝑠 , 𝑢𝑠, 𝑣𝑠)𝑑𝐵𝑠. (1.1)

Time-average payoff:

𝐽(𝑇, 𝑥, 𝑢, 𝑣) =
1

𝑇
𝐸[

∫︁ 𝑇

0

𝑓(𝑋𝑥,𝑢,𝑣
𝑠 , 𝑢𝑠, 𝑣𝑠)𝑑𝑠]. (1.2)

Zero-sum game with ergodic payoff:

Player 1 minimizes lim inf
𝑇→∞

𝐽(𝑇, 𝑥, 𝑢, 𝑣) via 𝑢 = (𝑢𝑠);

Player 2 maximizes lim sup
𝑇→∞

𝐽(𝑇, 𝑥, 𝑢, 𝑣) via 𝑣 = (𝑣𝑠).
(1.3)
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Recall finite time horizon SDGs

1) For finite time horizon case, i.e., for fixed 𝑇 > 0,

Player 1 minimizes 𝑇 · 𝐽(𝑇, 𝑥, 𝑢, 𝑣) via 𝑢 = (𝑢𝑠);

Player 2 maximizes 𝑇 · 𝐽(𝑇, 𝑥, 𝑢, 𝑣) via 𝑣 = (𝑣𝑠).

Such SDGs have been intensively studied by using dynamic programming principle

(DPP):

∙ Pioneering work: Fleming, Souganidis (1989, Indiana Univ. Math. J.)

The basic idea of their work: The upper and lower value functions satisfy the

DPP, thus they are the unique viscosity solution of the associated Hamilton-

Jacobi-Bellman-Isaacs (HJBI) equations, respectively. Under the Isaacs condition,

the upper and lower value functions coincide (i.e., the value exists).
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Recall finite time horizon SDGs

∙ Extension works:

SDGs with recursive payoffs: Buckdahn, Li (2008, SICON); Li, Wei (2015,

AMO);

with jumps: Buckdahn, Hu, Li (2011, SPA); Biswas (2012, SICON);

with asymmetric information: Cardaliaguet, Rainer (2009, AMO);

without Isaacs condition: Buckdahn, Li, Quincampoix (2014, AOP);

Li, Li (2017, ESAIM: COCV; 2019, Stochastics)

......
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Recall infinite horizon SDGs

2) For infinite horizon case (i.e., 𝑇 → ∞), such SDGs (1.1)-(1.3) have been

studied when

∙ 𝜎 is non-degenerate and independent of controls: Borkar, Ghosh (1992, JOTA),

Arapostathis, Borkar, Kumar (2013, Annals of the ISDG);

∙ 𝜎 is non-degenerate and 𝑏, 𝜎, 𝑓 are periodic w.r.t. 𝑥: Alvarez, Bardi (2007,

Annals of the ISDG).

Remark: All these works require the non-degenerate condition, i.e., the least

eigenvalue of 𝜎𝜎* uniformly bounded away from zero. This condition ensures the

ergodic property of the diffusion process and plays an important role in their works.
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Objective of the talk

Problem: how to study such SDGs (1.1)-(1.3) without non-degenerate assumption

(one of the main challenges in differential game theory1)?

Under the non ergodic settings (i.e., the value may depend upon the initial

state), there have been some results:

∙ Optimal control problems: Quincampoix, Renault (2011, SICON), Buckdahn,

Goreac, Quimcampoix (2014, AMO), Li, Zhao (2019, SPA), Buckdahn, Li,

Quincampoix, Renault (2020, SICON);

∙ SDGs: Buckdahn, Li, Zhao (2021, JDE).

Remark: In the above works, certain non-expansivity conditions are given in order

to study the existence of asymptotic values.

1See the discussions in Buckdahn, Cardaliaguet, Quincampoix (2011, Dynamic

Games and Appl.)
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Objective of the talk

Our objective: We want to study the existence of the value of the game with

ergodic payoff without non-degenerate assumption but still in ergodic settings.

Our approach: The associated HJBI equation has a viscosity solution ⇒ the

estimates for upper and lower ergodic value functions in terms of this viscosity

solution ⇒ value exists under the Isaacs condition.

Remark: Compared with the traditional way introduced by Fleming and

Souganidis, this approach in some sense is a reverse process and it was first

introduced by Świech (1996, JMAA) to get sub and super optimality of DPP for

discounted SDGs (with some fixed discounted factor).
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Preliminaries

Probability Space:

+ (Ω,ℱ , 𝑃 ): complete probability space;

+ 𝐵: 𝑑-dimensional B.M. over (Ω,ℱ , 𝑃 );

+ F𝐵 : filtration generated by 𝐵, and augmented by all 𝑃 -null sets.

Admissible control spaces: for two compact metric spaces 𝑈 and 𝑉 ,

𝒰 = {(𝑢𝑡)0≤𝑡<∞ : 𝑈 -valued F𝐵-adapted process};

𝒱 = {(𝑣𝑡)0≤𝑡<∞ : 𝑉 -valued F𝐵-adapted process}.
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Preliminaries

Main assumptions: The functions

𝑏 : R𝑛 × 𝑈 × 𝑉 → R𝑛, 𝜎 : R𝑛 × 𝑈 × 𝑉 → R𝑛×𝑑, 𝑓 : R𝑛 × 𝑈 × 𝑉 → R,

satisfy the following conditions

(H1) For every fixed 𝑥 ∈ R𝑛, 𝑏, 𝜎, 𝑓 are continuous in (𝑢, 𝑣) ∈ 𝑈 × 𝑉 ;

(H2) For 𝑙 = 𝑏, 𝜎, 𝑓 , there exists a constant 𝐶𝑙 such that, for all 𝑥, 𝑦 ∈ R𝑛,

𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 ,

|𝑙(𝑥, 𝑢, 𝑣) − 𝑙(𝑦, 𝑢, 𝑣)| ≤ 𝐶𝑙|𝑥− 𝑦|.

Under the assumptions (H1) and (H2), the dynamics (1.1) has a unique solution

𝑋𝑥,𝑢,𝑣 for each (𝑢, 𝑣) ∈ 𝒰 × 𝒱.
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Preliminaries

(H3) There exists a constant 𝐾 > 𝐶2
𝜎 such that, for all (𝑢, 𝑣) ∈ 𝑈 ×𝑉 , 𝑥, 𝑦 ∈ R𝑛,

2(𝑥− 𝑦)
(︀
𝑏(𝑥, 𝑢, 𝑣) − 𝑏(𝑦, 𝑢, 𝑣)

)︀
≤ −𝐾|𝑥− 𝑦|2.

Remark Assumptions (H2) and (H3) imply the classical dissipativity condition,

i.e., for all (𝑢, 𝑣) ∈ 𝑈 × 𝑉 , 𝑥, 𝑦 ∈ R𝑛,

2(𝑥− 𝑦)
(︀
𝑏(𝑥, 𝑢, 𝑣) − 𝑏(𝑦, 𝑢, 𝑣)

)︀
+ ‖𝜎(𝑥, 𝑢, 𝑣) − 𝜎(𝑦, 𝑢, 𝑣)‖2

≤ −(𝐾 − 𝐶2
𝜎)|𝑥− 𝑦|2.

+ This condition will ensure the existence and the uniqueness of the invariant

measure of the state process 𝑋𝑥,𝑢,𝑣 when either 𝑏, 𝜎 are independent of the

controls 𝑢, 𝑣 or 𝑢, 𝑣 are feedback controls.

+ Note that in our case the state process 𝑋𝑥,𝑢,𝑣 is time-inhomogenous. Thus,

the classical theory of ergodicity may fail to be applied to our model.
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Preliminaries

Lemma 1.1

Under the assumptions (H1)-(H3), there exist constants 𝐶, 𝑐 > 0 such that for all

𝑡 > 0, 𝛿 > 0, (𝑢, 𝑣) ∈ 𝒰 × 𝒱, 𝑥, 𝑦 ∈ R𝑛, we have the following estimates,

𝐸|𝑋𝑥,𝑢,𝑣
𝑡 |2 ≤ 𝐶(1 + |𝑥|2𝑒−𝑐𝑡);

𝐸|𝑋𝑥,𝑢,𝑣
𝑡 −𝑋𝑦,𝑢,𝑣

𝑡 |2 ≤ 𝑒−𝑐𝑡|𝑥− 𝑦|2;

𝐸[ sup
𝑡≤𝑠≤𝑡+𝛿

|𝑋𝑥,𝑢,𝑣
𝑠 −𝑋𝑥,𝑢,𝑣

𝑡 |2] ≤ 𝐶(𝛿2 + 𝛿).

(1.4)

Games of the type: “strategy against control”.

∙ An admissible strategy for Player 1 is a mapping 𝛼 : 𝒱 → 𝒰 satisfying the

non-anticipative property. The set of all admissible strategies for Player 1 is

denoted by 𝒜.

∙ An admissible strategy 𝛽 ∈ ℬ for Player 2 is defined similarly.
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Preliminaries

Let us now introduce the following upper and lower ergodic value functions:

𝜌+(𝑥) = sup
𝛽∈ℬ

inf
𝑢∈𝒰

lim sup
𝑇→∞

𝐽(𝑇, 𝑥, 𝑢, 𝛽(𝑢)), 𝑥 ∈ R𝑛,

𝜌−(𝑥) = inf
𝛼∈𝒜

sup
𝑣∈𝒱

lim inf
𝑇→∞

𝐽(𝑇, 𝑥, 𝛼(𝑣), 𝑣), 𝑥 ∈ R𝑛.

Definition 1.1
If for all 𝑥,

𝜌+(𝑥) = 𝜌−(𝑥) = 𝜌 (a constant),

we say that our SDGs with ergodic payoff has a value 𝜌 (we also say that the long

time average cost game is ergodic).
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The associated HJBI equation

In order to prove the existence of the value of the game, we consider the

following related ergodic HJBI equations,

𝜌 = inf
𝑢∈𝑈

sup
𝑣∈𝑉

𝐻(𝑥,𝐷𝑤(𝑥), 𝐷2𝑤(𝑥), 𝑢, 𝑣), 𝑥 ∈ R𝑛, (2.1)

𝜌 = sup
𝑣∈𝑉

inf
𝑢∈𝑈

𝐻(𝑥,𝐷𝑤(𝑥), 𝐷2𝑤(𝑥), 𝑢, 𝑣), 𝑥 ∈ R𝑛, (2.2)

where Hamiltonian function

𝐻(𝑥, 𝑝,𝐴, 𝑢, 𝑣) =
1

2
𝑡𝑟
(︀
(𝜎𝜎*)(𝑥, 𝑢, 𝑣) ·𝐴

)︀
+ 𝑏(𝑥, 𝑢, 𝑣) · 𝑝 + 𝑓(𝑥, 𝑢, 𝑣),

(𝑥, 𝑝,𝐴, 𝑢, 𝑣) ∈ R𝑛 × R𝑛 × 𝒮(𝑛) × 𝑈 × 𝑉 and 𝒮(𝑛) denotes the set of 𝑛× 𝑛

symmetric matrices.
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Definition of viscosity solution

Definition 2.1

(i) A viscosity subsolution (resp. supersolution) of (2.1) is a pair (𝜌, 𝑤), where 𝜌

is a real number and 𝑤 is continuous on R𝑛 such that for 𝑥 ∈ R𝑛 and a test

function 𝜙 ∈ 𝐶3
𝑏 (R𝑛), we have

𝜌 ≤ (resp. ≥) inf
𝑢∈𝑈

sup
𝑣∈𝑉

𝐻(𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥), 𝑢, 𝑣),

whenever 𝑤 − 𝜙 has a local maximum (resp. minimum) at 𝑥.

(ii) A viscosity solution of (2.1) is a pair (𝜌, 𝑤) that is both a viscosity subsolution

and a viscosity supersolution of (2.1).

Here 𝐶3
𝑏 (R𝑛) denotes the set of the real-valued functions that are continuously

differentiable up to the third order and whose derivatives of order 1 to 3 are

bounded.
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Existence of the viscosity solution

Theorem 2.1

Let Assumptions (H1)-(H3) hold. Then ergodic HJBI equation (2.1) (resp. (2.2))

has a viscosity solution (𝜌, 𝑤), where 𝑤 satisfies the following property: there

exists a constant 𝐶 > 0 such that for all 𝑥, 𝑦 ∈ R𝑛, it holds

|𝑤(𝑥) − 𝑤(𝑦)| ≤ 𝐶|𝑥− 𝑦|, |𝑤(𝑥)| ≤ 𝐶|𝑥|.

The proof is based on vanishing limit in the discounted payoff case.
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The link with the finite horizon HJBI equations

We now turn our attention to the study of the long time behaviour of the

solution of the following second order HJBI equation{︃
𝜕
𝜕𝑡𝑉 (𝑡, 𝑥) = inf𝑢∈𝑈 sup𝑣∈𝑉 𝐻(𝑥,𝐷𝑉 (𝑡, 𝑥), 𝐷2𝑉 (𝑡, 𝑥), 𝑢, 𝑣),

𝑉 (0, 𝑥) = Φ(𝑥), (𝑡, 𝑥) ∈ [0, 𝑇 ) × R𝑛,
(2.3)

where Φ is a Lipschitz function on R𝑛.

Theorem 2.2

Suppose (𝜌, 𝑤) is a viscosity solution of ergodic HJBI equation (2.1) and denote

𝑊 (𝑇, 𝑥) = 𝑉 (𝑇, 𝑥) − (𝜌𝑇 + 𝑤(𝑥)), (𝑇, 𝑥) ∈ [0,∞) × R𝑛.

Then there exists a positive constant 𝐶 (independent of 𝑇 ) such that

−𝐶(1 + |𝑥|) ≤ 𝑊 (𝑇, 𝑥) ≤ 𝐶(1 + |𝑥|).

In particular, it holds lim𝑇→∞
𝑉 (𝑇,𝑥)

𝑇 = 𝜌.
17 / 33



The link with the finite horizon HJBI equations

Remark

∙ When the dynamics is non-degenerate and uncontrolled, Alvarez, Bardi (2003,

Arch. Ration. Mech. Anal.) obtained a similar convergence result for a singular

perturbation problem by using PDE techniques.

∙ When the invariant measure of the dynamics exists and there is only one player

in the system, a similar result is also obtained by Cosso, Fuhrman, Pham (2016,

SPA) based on the related stochastic control problem and BSDE theory.
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An approximation of possibly degenerate processes

For 𝑟 > 0, we construct a series of linear SDEs as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝑋𝑟,𝑥,𝑢,𝑣

𝑠 =[−𝐾

2
· (𝑋𝑟,𝑥,𝑢,𝑣

𝑠 −𝑋𝑥,𝑢,𝑣
𝑠 ) + 𝑏(𝑋𝑥,𝑢,𝑣

𝑠 , 𝑢𝑠, 𝑣𝑠)]𝑑𝑠

+ 𝜎(𝑋𝑥,𝑢,𝑣
𝑠 , 𝑢𝑠, 𝑣𝑠)𝑑𝐵𝑠 + 𝑟𝐼𝑑𝐵1

𝑠 , 𝑠 ≥ 0,

𝑋𝑟,𝑥,𝑢,𝑣
0 =𝑥,

(3.1)

where 𝑊 = (𝐵,𝐵1) is a new B.M. and 𝐼 is a (𝑛× 𝑛)-dimensional identity matrix.

Remark:

∙ The process 𝑋𝑟,𝑥,𝑢,𝑣 is non-degenerate due to

⟨𝜎𝑟(𝜎𝑟)*(𝑥, 𝑢, 𝑣)𝜉, 𝜉⟩ ≥ 𝑟2|𝜉|2, for any 𝜉 ∈ R𝑛, 𝜎𝑟(𝑥, 𝑢, 𝑣) := (𝜎(𝑥, 𝑢, 𝑣), 𝑟𝐼).

∙ There exists a constant 𝐶 such that for all 𝑡 > 0 and (𝑥, 𝑢, 𝑣) ∈ R𝑛 × 𝒰 × 𝒱,

𝐸[|𝑋𝑟,𝑥,𝑢,𝑣
𝑡 −𝑋𝑥,𝑢,𝑣

𝑡 |2] ≤ 𝐶𝑛𝑟2.
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An approximation of possibly degenerate processes

Proposition 3.1

Suppose that the assumptions (H1)-(H3) hold and let 𝑋𝑟,𝑥,𝑢,𝑣 be the solution of

SDE (3.1). Then for any Borel set 𝐷 ⊆ R𝑛, it holds, for all (𝑢, 𝑣) ∈ 𝒰 × 𝒱,

𝑃{𝑋𝑟,𝑥,𝑢,𝑣
𝑠 ∈ 𝐷} ≤ (

𝐾

2
)

𝑛
2 𝑟−𝑛[1 − 𝑒−𝐾𝑠]−

𝑛
2 𝐿𝑒𝑏(𝐷),

where 𝐿𝑒𝑏(𝐷) is the Lebesgue measure of the Borel set 𝐷 and 𝐾 is the constant

given in Assumption (H3).

Remark For any Borel set 𝐷 ⊆ R𝑛, we denote ℎ(0, 𝑥; 𝑠,𝐷) = 𝑃{𝑋𝑟,𝑥,𝑢,𝑣
𝑠 ∈ 𝐷}.

Then, Proposition 3.1 says that

ℎ(0, 𝑥; 𝑠, 𝑦) ≤ (
𝐾

2
)

𝑛
2 𝑟−𝑛[1 − 𝑒−𝐾𝑠]−

𝑛
2 ,

which is weaker than the classical Gaussian’s type bound (e.g. Aroson (1967)):

ℎ(0, 𝑥; 𝑠, 𝑦) ≤ 𝑀𝑠−
𝑛
2 exp{−𝑁 |𝑥− 𝑦|2

𝑠
}. (3.2)

20 / 33



An approximation of possibly degenerate processes

∙ The PDE approach used to obtain (3.2) can not apply to our framework due to

the presence of admissible controls (𝑢, 𝑣). Indeed, for any given (𝑢, 𝑣) ∈ 𝒰 × 𝒱,

one may define

𝑏𝑢,𝑣(𝑡, 𝑥) = 𝑏(𝑥, 𝑢𝑡, 𝑣𝑡), 𝜎𝑟,𝑢,𝑣(𝑡, 𝑥) = 𝜎𝑟(𝑥, 𝑢𝑡, 𝑣𝑡),

which are obviously not deterministic and then the solution 𝑋𝑟,𝑥,𝑢,𝑣 is not

Markovian.

∙ We consider an infinite time horizon problem whereas the upper bound (3.2) is

only obtained for some finite time horizon [0, 𝑇 ].

Our proof is based on a probabilistic method and Proposition 3.1 can be

applied to get the upper bound of the fundamental solution of the related

stochastic PDE (since 𝑏 and 𝜎 may be stochastic) with infinite time horizon.
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Estimates (I) for upper and lower ergodic values

Theorem 3.1

Let assumptions (H1)-(H3) hold and 𝜎 is uniformly bounded. Suppose that 𝑤 is

Lipschitz on R𝑛, then we have

(i) If (𝜌, 𝑤) is a viscosity subsolution of ergodic HJBI equation (2.1) then

𝜌 ≤ sup
𝛽∈ℬ

inf
𝑢∈𝒰

lim inf
𝑇→∞

𝐽(𝑇, 𝑥, 𝑢, 𝛽(𝑢)).

(ii) If (𝜌, 𝑤) is a viscosity supersolution of ergodic HJBI equation (2.1) then

𝜌 ≥ sup
𝛽∈ℬ

inf
𝑢∈𝒰

lim sup
𝑇→∞

𝐽(𝑇, 𝑥, 𝑢, 𝛽(𝑢))(= 𝜌+(𝑥)).

(iii) If (𝜌, 𝑤) is a viscosity subsolution of ergodic HJBI equation (2.2) then

𝜌 ≤ inf
𝛼∈𝒜

sup
𝑣∈𝒱

lim inf
𝑇→∞

1

𝑇
𝐽(𝑇, 𝑥, 𝛼(𝑣), 𝑣)(= 𝜌−(𝑥)).
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Estimates (I) for upper and lower ergodic value

Theorem 3.1 (continued)

(iv) If (𝜌, 𝑤) is a viscosity supersolution of ergodic HJBI equation (2.2) then

𝜌 ≥ inf
𝛼∈𝒜

sup
𝑣∈𝒱

lim sup
𝑇→∞

1

𝑇
𝐽(𝑇, 𝑥, 𝛼(𝑣), 𝑣).

Remark: The basic framework of the proof is adapted from the work by Świech

(1996, JMAA), including sup- and inf-convolution technique to yield the

approximation of viscosity solution. However, there are some essential differences:

∙ The construction of non-degenerate diffusion processes is different.

∙ The admissible controls are F𝐵-adapted rather than F(𝐵,𝐵1)-adapted.

∙ The assumptions of 𝑏, 𝜎 and 𝑓 are weaker.

∙ The well-known estimate of Krylov of the distribution of a stochastic integral,

used by Świech (1996, JMAA), can not applied to our ergodic situation (we use

Proposition 3.1).
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Uniqueness result of the viscosity solution

Corollary 3.1

(i) Let (𝜌1, 𝑤1) and (𝜌2, 𝑤2) be a viscosity subsolution and supersolution of (2.2),

respectively. Then it holds that 𝜌1 ≤ 𝜌2.

(ii) Let (𝜌1, 𝑤1) and (𝜌2, 𝑤2) be two viscosity solutions of (2.2) and 𝑤1 and 𝑤2

are Lipschitz. Then there exists a constant 𝑅 such that, if

𝑤1 ≡ 𝑤2, on �̄�𝑅(0). (3.3)

Then 𝜌1 = 𝜌2, 𝑤1 ≡ 𝑤2 on R𝑛.

Remark: The uniqueness of 𝑤 does not hold in general. In fact, for all constants

𝐶, it is obvious that (𝜌, 𝑤 + 𝐶) are the classical solutions of ergodic HJBI (2.2)

𝜌 = sup
𝑣∈𝑉

inf
𝑢∈𝑈

𝐻(𝑥,𝐷𝑤(𝑥), 𝐷2𝑤(𝑥), 𝑢, 𝑣), 𝑥 ∈ R𝑛,

if (𝜌, 𝑤) is a classical solution.
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The existence of a value of the game

Theorem 3.2

Suppose that the conditions (H1)-(H3) are satisfied and 𝜎 is uniformly bounded.

Then our SDGs with ergodic payoff has a value under the classical Isaacs condition

inf
𝑢∈𝑈

sup
𝑣∈𝑉

𝐻(𝑥, 𝑝,𝐴, 𝑢, 𝑣) = sup
𝑣∈𝑉

inf
𝑢∈𝑈

𝐻(𝑥, 𝑝,𝐴, 𝑢, 𝑣), (𝑥, 𝑝,𝐴) ∈ R𝑛 × R𝑛 × 𝒮(𝑛),

where 𝒮(𝑛) denotes the set of 𝑛× 𝑛 symmetric matrices.

Corollary 3.2 (DPP)

Suppose that (H1) and (H2) are satisfied and 𝜎 is uniformly bounded. If (𝜌, 𝑤) is

a viscosity solution of (2.1), then for any 𝑇 > 0,

𝑤(𝑥) = sup
𝛽∈ℬ

inf
𝑢∈𝒰

𝐸[

∫︁ 𝑇

0

𝑓(𝑋𝑥,𝑢,𝛽(𝑢)
𝑠 , 𝑢𝑠, 𝛽(𝑢)𝑠)𝑑𝑠 + 𝑤(𝑋

𝑥,𝑢,𝛽(𝑢)
𝑇 )] − 𝜌𝑇.
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Estimates (II) for the upper and lower ergodic values

Theorem 3.3

Let (H1)-(H3) hold and 𝜎 is uniformly bounded. Suppose that 𝑤 is Lipschitz on

R𝑛, then we have

(i) If (𝜌, 𝑤) is a viscosity subsolution (resp. supersolution) of (2.1) then

𝜌 ≤ (resp. ≥) lim
𝜆→0

sup
𝛽∈ℬ

inf
𝑢∈𝒰

𝜆𝐸[

∫︁ ∞

0

𝑒−𝜆𝑠𝑓(𝑋𝑥,𝑢,𝛽(𝑢)
𝑠 , 𝑢𝑠, 𝛽(𝑢)𝑠)𝑑𝑠].

(ii) If (𝜌, 𝑤) is a viscosity subsolution (resp. supersolution) of (2.2) then

𝜌 ≤ (resp. ≥) lim
𝜆→0

inf
𝛼∈𝒜

sup
𝑣∈𝒱

𝜆𝐸[

∫︁ ∞

0

𝑒−𝜆𝑠𝑓(𝑋𝑥,𝛼(𝑣),𝑣
𝑠 , 𝛼(𝑣)𝑠, 𝑣𝑠)𝑑𝑠].
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The generalization of Abelian-Tauberian theorem

Remark: Let (𝜌, 𝑤) be a viscosity solution of (2.1), from Theorem 3.1 and

Corollary 3.1 as well as Theorem 3.3 we get the following property

(𝜌 =) lim
𝑇→∞

sup
𝛽∈ℬ

inf
𝑢∈𝒰

1

𝑇
𝐸

∫︁ 𝑇

0

𝑓(𝑋𝑥,𝑢,𝛽(𝑢)
𝑠 , 𝑢𝑠, 𝛽(𝑢)𝑠)𝑑𝑠

= lim
𝜆→0+

sup
𝛽∈ℬ

inf
𝑢∈𝒰

𝜆𝐸

∫︁ ∞

0

𝑒−𝜆𝑠𝑓(𝑋𝑥,𝑢,𝛽(𝑢)
𝑠 , 𝑢𝑠, 𝛽(𝑢)𝑠)𝑑𝑠.

This property can be seen as the generalization of the classical Abelian-Tauberian

theorem, stating that

lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝜙(𝑡)𝑑𝑡 = lim
𝜆→0+

𝜆

∫︁ ∞

0

𝜙(𝑡)𝑒−𝜆𝑡𝑑𝑡

if either one of the two limits exists, to the stochastic differential game cases.
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The pollution accumulation and consumption model

We consider that an economy consumes some good and meanwhile generates

pollution. Suppose that the stock of pollution is gradually degraded and described

by 𝑋𝑡 = max{𝑌𝑡, 0} at time 𝑡, where 𝑌 is given by

𝑑𝑌𝑡 = [𝑢𝑡 − 𝑣𝑡𝑌𝑡]𝑑𝑡 + 𝜎(𝑌𝑡)𝑑𝐵𝑡, 𝑌0 = 𝑥 > 0. (4.1)

Herein, 𝑢: the flow of consumption, 𝑈 = [0, 𝛾]; 𝑣: the decay rate of pollution,

e.g., generated by natural cleaning of pollution via winds, rains, etc., 𝑉 = [𝑎, 𝑏];

𝜎: a bounded Lipschitz function.

The associated long-run average social welfare is given by

𝐽(𝑥, 𝑢, 𝑣) = lim inf
𝑇→∞

1

𝑇
𝐸[

∫︁ 𝑇

0

𝑔(𝑢𝑡) − 𝑓(𝑋𝑡)𝑑𝑡], (4.2)

where 𝑔 ∈ 𝐶2(0,∞): the utility of consumption; 𝑓 ∈ 𝐶(0,∞): the disutility of

pollution.
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The objective and literature review

The objective is to find an optimal consumption rate 𝑢* that maximize the

long-run average social welfare 𝐽(𝑥, 𝑢, 𝑣) under the worst-case scenario (or robust

control) 𝑣*.

Literature Review:

∙ When the decay rate 𝑣 is a constant, such problem has been extensively studied,

such as Kawaguchi, Morimoto (2007, J. Econ. Dyn. Control); Nguyen, Yin (2016,

SICON).

∙ When the decay rate 𝑣 is no longer a constant, we refer to Jasso-Fuentes,

López-Barrientos (2014, Int. J. Control) for the related study under the additional

condition, such as, non-degenerate condition and Lyapunov stability condition as

well as feedback control.
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The model in SDGs framework

Player 1 (economy): the flow of consumption rate 𝑢;

Player 2 (“nature”): the decay rate of pollution 𝑣.

The dynamics is given by (4.1) and the ergodic payoff is given by (4.2). The

related Hamiltonian function 𝐻 has the form: For (𝑦, 𝑝,𝐴, 𝑢, 𝑣) ∈ R3 × 𝑈 × 𝑉 ,

𝐻(𝑦, 𝑝,𝐴, 𝑢, 𝑣) = [𝑝𝑢 + 𝑔(𝑢)] − 𝑦𝑝𝑣 +
1

2
|𝜎(𝑦)|2𝐴− 𝑓(

𝑦 + |𝑦|
2

).

The objective is to find the lower ergodic value, which is equal to the value since

the Isaacs condition automatically holds.
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Applying our result: Theorem 2.1 and Theorem 3.2

Corollary 4.1

(i) The ergodic HJBI equation

𝜌 = sup
𝑢∈𝑈

inf
𝑣∈𝑉

𝐻(𝑦,𝐷𝑤(𝑦), 𝐷2𝑤(𝑦), 𝑢, 𝑣), 𝑦 ∈ R. (4.3)

has a viscosity solution (𝜌, 𝑤). Moreover, 𝜌 is the value for the pollution

accumulation problem with long-run average social welfare (4.1) and (4.2).

(ii) The optimal consumption rate and the robust decay rate of pollution is given

by the following feedback form, respectively,

𝑢*(𝑦) = �̄�(𝐷𝑤(𝑦)), 𝑣*(𝑦) = 𝑣(𝑦,𝐷𝑤(𝑦)),

where the mappings �̄� and 𝑣 are given by

�̄�(𝑝) = 𝑎𝑟𝑔𝑠𝑢𝑝𝑢∈𝑈 [𝑝𝑢 + 𝑔(𝑢)], 𝑣(𝑦, 𝑝) = 𝑎𝑟𝑔𝑖𝑛𝑓𝑣∈𝑉 (−𝑦𝑝𝑣).
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A simple case: 𝑔(𝑢) = 2𝑢
1
2 , 𝑓(𝑥) = 𝑑 · 𝑥

Let 𝑑 > 0 be some constant. Then

𝜌 = −𝑑

𝑎
𝑑𝑖𝑠𝑡2(

𝑎

𝑑
, [0,

√
𝛾]) +

𝑎

𝑑
, 𝑤(𝑥) = −𝑑

𝑎
𝑥,

is a classical solution of ergodic HJBI equation (4.3). Moreover, the optimal

consumption rate 𝑢* = 𝑃𝑟𝑜𝑗2[0,√𝛾](
𝑎
𝑑 ) and the robust decay rate of pollution

𝑣* = 𝑎.

Remark: If the lower bound of the decay rate 𝑎 is bigger than 𝑑
√
𝛾, then

𝜌 = 2
√
𝛾 − 𝛾

𝑑

𝑎
, 𝑢* = 𝛾,

which gives the relation between the value of the long-run average welfare and the

robust decay rate. Meanwhile, it shows that the robust lower bound of decay rate

is at least 𝑑
√
𝛾 if one always wants to pursuit the largest consumption flow 𝛾.
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Thank you for Your Attention!
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