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Motivation and overview

I Stochastic control problems are ubiquitous.
I Continuous-time models well understood in this community.
I Reinforcement learning (RL) methods increasingly popular.
I Analysis restricted to discrete-time models.

This talk:
I Analysis of policy gradient methods for continuous-time

models using control techiniques.

29 June 2022 From stochastic control to continuous-time RL 2



Stochastic control v.s. RL

Classical control theory focuses on:
I existence and uniqueness of optimal control processes.
I characterisation and regularity of value function.
I little attention has been on feedback control, i.e., a function

mapping system states to actions.

Learning algorithm naturally of feedback form:
I regularity of feedback control (a.k.a. policy).
I convergence/regret rate analysis:

I critical for understanding algorithm efficiency.
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Policy gradient method

I Approximate a policy in a parametric form, and update the
policy parametrization iteratively based on gradients of the
objective function.

I Analysing the convergence of PGMs is technically challenging,
as the objective of a control problem (even for LQ problems)
is typically nonconvex with respect to the policies.
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Related works on PGMs

Analysis restricted to discrete-time models and specific policy
parameterisation.

I Linear convergence to optimality:
I tabular MDP with softmax policy: Mei, Xiao, Szpesvari,

Schuurmans (2020).
I entropy-regularised MDP with one-layer neural network policy:

Kerimkulov, Leahy, Siska, Szpruch (2022).
I LQ with linear policy: Fazel, Ge, Kakade, Mesbahi (2018);

Hambly, Xu, Yang (2021).

I Trapped at local minimum:
I LQ with piecewise linear policy: Chen, Agazzi (2021).

Continuous-time:
I Algorithm design: Jia, Zhou (2000, 2021).

Open: convergence behaviour of PGMs for general models/policies.
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Our work
Reisinger, Stockinger, Zhang (2022)

I General stochastic control problem: nonlinear state dynamics
and nonconvex, nonsmooth costs.

I Non-parametric time-dependent policies.
I Linear convergence to stationary points.
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Model set-up
Drift-controlled diffusion

Minimise

J(α) = E
[ ∫ T

0
e−ρt (ft(Xα

t , αt) + `(αt)) dt + e−ρT g(Xα
T )
]

over all square integrable, adapted processes α, where Xα satisfies

dXt = bt(Xt , αt) dt + σt(Xt) dWt , X0 = ξ0.

I f , g , b, σ are differentiable.
I ` is possibly non-smooth and infinite.

` represents control constraints, `1-norm or entropy regularisers.
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A “naive” gradient direction
Special case with ` = ρ = 0, σt (x) := σ

Minimise

J(φ) = E
[∫ T

0
ft(Xφ

t , φt(Xφ
t )) dt + g(Xφ

T )
]

over all feedback controls φ, where Xφ satisfies

dXt = bt(Xt , φt(Xt)) dt + σ dWt , X0 = ξ0.

For each policy φ and test policy ψ,

dJ(φ+ εψ)
dε

∣∣∣∣
ε=0

= E
[ ∫ T

0
〈∂aHre

t
(
Xφ

t , φt(Xφ
t ), ∂x uφt (Xφ

t )
)
, ψt(Xφ

t )〉dt
]
,

where Hre
t (x , a, y) := 〈bt(x , a), y〉+ ft(x , a), and uφ satisfies

∂tut(x) + 1
2σ

2∂xx ut(x) + Hre
t
(
x , φt(x), ∂x ut(x)

)
= 0, uT (x) = g(x).
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A “naive” PGM
Hre

t (x, a, y) := 〈bt (x, a), y〉 + ft (x, a)

I Given φ0, perform gradient descent steps

φm+1
t (x) = φm

t (x)− τ∂aHre
t (x , φm

t (x), ∂x uφ
m

t (x)),

where for each φ, uφ satisfies

∂tut(x) + 1
2σ

2∂xx ut(x) + Hre
t
(
x , φt(x), ∂x ut(x)

)
= 0, uT (x) = g(x).

I If ∂aHre
t (x , φ?t (x), ∂x uφ

?

t (x)) = 0, then φ? is optimal.
I φm+1 has lower regularity than φm, as ∂x uφm has the same

regularity as ∂xφ
m. To see it, observe v := ∂x uφm solves

∂tvt(x) + Lφ
m

vt(x) = −[∂x Hre
t
(
x , φm

t (x), vt(x)
)

+ ∂aHre
t
(
x , φm

t (x), vt(x)
)
∂xφ

m
t (x)], vT (x) = ∂x g(x),

where Lφm is the generator of Xφm .

29 June 2022 From stochastic control to continuous-time RL 14



A “naive” PGM
Hre

t (x, a, y) := 〈bt (x, a), y〉 + ft (x, a)

I Given φ0, perform gradient descent steps

φm+1
t (x) = φm

t (x)− τ∂aHre
t (x , φm

t (x), ∂x uφ
m

t (x)),

where for each φ, uφ satisfies

∂tut(x) + 1
2σ

2∂xx ut(x) + Hre
t
(
x , φt(x), ∂x ut(x)

)
= 0, uT (x) = g(x).

I If ∂aHre
t (x , φ?t (x), ∂x uφ

?

t (x)) = 0, then φ? is optimal.

I φm+1 has lower regularity than φm, as ∂x uφm has the same
regularity as ∂xφ

m. To see it, observe v := ∂x uφm solves

∂tvt(x) + Lφ
m

vt(x) = −[∂x Hre
t
(
x , φm

t (x), vt(x)
)

+ ∂aHre
t
(
x , φm

t (x), vt(x)
)
∂xφ

m
t (x)], vT (x) = ∂x g(x),

where Lφm is the generator of Xφm .

29 June 2022 From stochastic control to continuous-time RL 15



A “naive” PGM
Hre

t (x, a, y) := 〈bt (x, a), y〉 + ft (x, a)

I Given φ0, perform gradient descent steps

φm+1
t (x) = φm

t (x)− τ∂aHre
t (x , φm

t (x), ∂x uφ
m

t (x)),

where for each φ, uφ satisfies

∂tut(x) + 1
2σ

2∂xx ut(x) + Hre
t
(
x , φt(x), ∂x ut(x)

)
= 0, uT (x) = g(x).

I If ∂aHre
t (x , φ?t (x), ∂x uφ

?

t (x)) = 0, then φ? is optimal.
I φm+1 has lower regularity than φm, as ∂x uφm has the same

regularity as ∂xφ
m.

To see it, observe v := ∂x uφm solves

∂tvt(x) + Lφ
m

vt(x) = −[∂x Hre
t
(
x , φm

t (x), vt(x)
)

+ ∂aHre
t
(
x , φm

t (x), vt(x)
)
∂xφ

m
t (x)], vT (x) = ∂x g(x),

where Lφm is the generator of Xφm .

29 June 2022 From stochastic control to continuous-time RL 16



A “naive” PGM
Hre

t (x, a, y) := 〈bt (x, a), y〉 + ft (x, a)

I Given φ0, perform gradient descent steps

φm+1
t (x) = φm

t (x)− τ∂aHre
t (x , φm

t (x), ∂x uφ
m

t (x)),

where for each φ, uφ satisfies

∂tut(x) + 1
2σ

2∂xx ut(x) + Hre
t
(
x , φt(x), ∂x ut(x)

)
= 0, uT (x) = g(x).

I If ∂aHre
t (x , φ?t (x), ∂x uφ

?

t (x)) = 0, then φ? is optimal.
I φm+1 has lower regularity than φm, as ∂x uφm has the same

regularity as ∂xφ
m. To see it, observe v := ∂x uφm solves

∂tvt(x) + Lφ
m

vt(x) = −[∂x Hre
t
(
x , φm

t (x), vt(x)
)

+ ∂aHre
t
(
x , φm

t (x), vt(x)
)
∂xφ

m
t (x)], vT (x) = ∂x g(x),

where Lφm is the generator of Xφm .

29 June 2022 From stochastic control to continuous-time RL 17



Alternative gradient direction
Gradient of open-loop control

Minimise

J(α) = E
[ ∫ T

0
e−ρt (ft(Xα

t , αt) + `(αt)) dt + e−ρT g(Xα
T )
]

over all admissible control processes α, where Xα satisfies

dXt = bt(Xt , αt) dt + σt(Xt) dWt , X0 = ξ0.

where
I f , g , b, σ are differentiable,
I ` is convex, possibly non-smooth and infinite.
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Stochastic maximum principle
Smooth case: ` = 0

I Adjoint processes (Y α,Zα) for a control α:

dYt =− ∂x Ht(Xα
t , αt ,Yt ,Zt) dt + Zt dWt ,YT = e−ρT∂x g(Xα

T ),

where H is the Hamiltonian:

Ht(x , a, y , z) = 〈bt(x , a), y〉+ 〈σt(x), z〉+ e−ρt ft(x , a).

I Gradient of J(·) at α:

∇J(α)t = ∂aHt(Xα
t , αt ,Y α

t ,Zα
t ).

I α is a stationary point of J if ∂aHre
t (Xα

t , αt ,Y α
t ) = 0, with

Hre
t (x , a, y) := 〈bt(x , a), y〉+ e−ρt ft(x , a).
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Open-loop (proximal) gradient descent

I Smooth case with ` = 0: perform gradient steps

αm+1
t = αm

t − τeρt∂aHre
t (X ξ0,αm

t , αm
t ,Y

ξ0,αm

t ).

I Nonsmooth case: define the proximal map

proxτ`(a) = arg min
z∈Rk

(1
2 |z − a|2 + τ`(z)

)
, a ∈ Rk ,

and perform proximal gradient steps:

αm+1
t = proxτ`

(
αm

t − τeρt∂aHre
t (X ξ0,αm

t , αm
t ,Y

ξ0,αm

t )).
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Proximal policy gradient method
proxτ`(a) = arg minz∈Rk

(
1
2 |z − a|2 + τ`(z)

)
Given φ0, perform proximal gradient steps

φm+1
t (x) = proxτ`

(
φm

t (x)− τeρt∂aHre
t (x , φm

t (x),Y t,x ,φm

t )
)
,

where for each φ,

dX t,x ,φ
s = bs(X t,x ,φ

s , φs(X t,x ,φ
s )) ds + σs(X t,x ,φ

s ) dWs ,

dY t,x ,φ
s = −∂x Hs(X t,x ,φ

s , φs(X t,x ,φ
s ),Y t,x ,φ

s ,Z t,x ,φ
s ) ds + Z t,x ,φ

s dWs ,

X t,x ,φ
t = x , Y t,x ,φ

T = e−ρT∂x g(X t,x ,φ
T ).

I (Y t,x ,φm

t )(t,x)∈[0,T ]×Rn is the Markovian representation of
adjoint process Y αm .

I Lipschitz regularity of x 7→ Y t,x ,φm

t depends on the Lipschitz
regularity of φm, but not ∂xφ

m.
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Technical conditions

I ` is lower semicontinuous and the action set
A := {z ∈ Rk |`(z) <∞} is nonempty,

I ∃µ, ν ≥ 0 s.t. µ+ ν > 0 and f is (µ-strongly) convex in
control, ` is (ν-strongly) convex in control,

I bt(x , a) = b̂t(x) + b̄t(x)a.

I and several regularity conditions on σ, f , g , b̂ and b̄, e.g.
〈x − x ′, b̂t(x)− b̂t(x ′)〉 ≤ κb̂|x − x ′|2.
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Policy space VA

I VA contains all Borel functions φ : [0,T ]× Rn → A that are
Lipschitz continuous and linearly growth in x .

Theorem
For all φ0 ∈ VA and τ > 0, the iterates (φm)m∈N are well-defined
and in VA.
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Convergence
Assume one of the following

I Time horizon T is small.
I Discount factor ρ is large.
I Running cost is sufficiently convex in control, i.e., µ+ ν is sufficiently large.
I Costs depend weakly on state.
I Control affects state dynamics weakly.
I State dynamics is strongly dissipative, i.e., κb̂ is sufficiently negative.

Theorem
If [....], then for all φ0 ∈ VA and small τ > 0, there exists φ? ∈ VA
and c ∈ [0, 1) such that

I αφ
? is a stationary point of J;

I |φm+1 − φ?|0 ≤ c|φm − φ?|0 and ‖αφm − αφ?‖H2 ≤ O(cm) for
all m.
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Convergence
Practical implication

I Apply PGM for subintervals: Coache, Jaimungal (2021).
I Fictitious discount factor regularisation: Guo, Hu, Zhang

(2021).
I Convexify by entropy: Siska, Szpruch (2020), Kerimkulov,

Leahy, Siska, Szpruch (2022).
I Dissipativity and controllability: Hu (2019).
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Conclusions

Theoretically, gradient iterations over feedback controls are
I linearly convergent for nonconvex, nonsmooth running cost;
I stable to numerical perturbations.

In practice,
I hybrid method using

I PDEs for adjoint variables (value function and gradient),
I and particle simulation for mean-field problems.

I Improved interpretability and robust to perturbations.

Reisinger, Stockinger, Zhang (2021),
A fast iterative PDE-based algorithm for feedback controls of nonsmooth
mean-field control problems, arXiv:2108.06740.

Reisinger, Stockinger, Zhang (2022),
Linear convergence of a policy gradient method for finite horizon continuous
time stochastic control problems, arXiv:2203.11758.
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Stability
under numerical approximation of gradient

I Given the feedback control φ̃m at the m-th iteration;
I a function Ỹ φ̃m : [0,T ]× Rn → Rn approximating the

solution map [0,T ]× Rn 3 (t, x) 7→ Y φ̃
m

t (x) := Y t,x ,φ̃m

t ∈ Rn.
I Then perform an approximate proximal gradient update

φ̃m+1
t (x) = proxτ`

(
φ̃m

t (x)− τeρt∂aHre
t (x , φ̃m

t (x), Ỹ φ̃
m

t (x))
)
.

Theorem
In the set-up from earlier, there exist c ∈ [0, 1) and C ≥ 0 s.t.

|φ̃m − φ?|0 ≤ cm|φ0 − φ?|0 + C
m−1∑
j=0

cm−1−j |Y φ̃j − Ỹ φ̃j |0.
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