Provably convergent policy gradient methods for continuous-time stochastic control

YUFEI ZHANG

Department of Statistics, London School of Economics with Christoph Reisinger and Wolfgang Stockinger BSDE2022, 29 June 2022

- Stochastic control problems are ubiquitous.
- Continuous-time models well understood in this community.
- Reinforcement learning (RL) methods increasingly popular.
- Analysis restricted to discrete-time models.

This talk:

 Analysis of policy gradient methods for continuous-time models using control techiniques.

Classical control theory focuses on:

- existence and uniqueness of optimal control processes.
- characterisation and regularity of value function.
- little attention has been on feedback control, i.e., a function mapping system states to actions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Classical control theory focuses on:

- existence and uniqueness of optimal control processes.
- characterisation and regularity of value function.
- little attention has been on feedback control, i.e., a function mapping system states to actions.

Learning algorithm naturally of feedback form:

- regularity of feedback control (a.k.a. policy).
- convergence/regret rate analysis:
 - critical for understanding algorithm efficiency.

 Approximate a policy in a parametric form, and update the policy parametrization iteratively based on gradients of the objective function.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Approximate a policy in a parametric form, and update the policy parametrization iteratively based on gradients of the objective function.
- Analysing the convergence of PGMs is technically challenging, as the objective of a control problem (even for LQ problems) is typically nonconvex with respect to the policies.

Analysis restricted to discrete-time models and specific policy parameterisation.

- Linear convergence to optimality:
 - tabular MDP with softmax policy: Mei, Xiao, Szpesvari, Schuurmans (2020).
 - entropy-regularised MDP with one-layer neural network policy: Kerimkulov, Leahy, Siska, Szpruch (2022).
 - LQ with linear policy: Fazel, Ge, Kakade, Mesbahi (2018); Hambly, Xu, Yang (2021).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Analysis restricted to discrete-time models and specific policy parameterisation.

- Linear convergence to optimality:
 - tabular MDP with softmax policy: Mei, Xiao, Szpesvari, Schuurmans (2020).
 - entropy-regularised MDP with one-layer neural network policy: Kerimkulov, Leahy, Siska, Szpruch (2022).
 - LQ with linear policy: Fazel, Ge, Kakade, Mesbahi (2018); Hambly, Xu, Yang (2021).
- Trapped at local minimum:
 - LQ with piecewise linear policy: Chen, Agazzi (2021).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Analysis restricted to discrete-time models and specific policy parameterisation.

- Linear convergence to optimality:
 - tabular MDP with softmax policy: Mei, Xiao, Szpesvari, Schuurmans (2020).
 - entropy-regularised MDP with one-layer neural network policy: Kerimkulov, Leahy, Siska, Szpruch (2022).
 - LQ with linear policy: Fazel, Ge, Kakade, Mesbahi (2018); Hambly, Xu, Yang (2021).
- Trapped at local minimum:
 - LQ with piecewise linear policy: Chen, Agazzi (2021).

Continuous-time:

enartment

Algorithm design: Jia, Zhou (2000, 2021).

Open: convergence behaviour of PGMs for general models/policies.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- General stochastic control problem: nonlinear state dynamics and nonconvex, nonsmooth costs.
- Non-parametric time-dependent policies.
- Linear convergence to stationary points.

11

Minimise

$$J(\alpha) = \mathbb{E}\left[\int_0^T e^{-\rho t} \left(f_t(X_t^{\alpha}, \alpha_t) + \ell(\alpha_t)\right) \, \mathrm{d}t + e^{-\rho T} g(X_T^{\alpha})\right]$$

over all square integrable, adapted processes α , where X^{α} satisfies

$$\mathrm{d}X_t = b_t(X_t, \alpha_t) \,\mathrm{d}t + \sigma_t(X_t) \,\mathrm{d}W_t, \quad X_0 = \xi_0.$$

- f, g, b, σ are differentiable.
- \triangleright ℓ is possibly non-smooth and infinite.
- ℓ represents control constraints, ℓ_1 -norm or entropy regularisers.

A "naive" gradient direction

Special case with $\ell = \rho = 0$, $\sigma_t(x) := \sigma$

Minimise

$$J(\phi) = \mathbb{E}\left[\int_0^T f_t(X_t^{\phi}, \phi_t(X_t^{\phi})) \, \mathrm{d}t + g(X_T^{\phi})
ight]$$

over all feedback controls ϕ , where X^{ϕ} satisfies

$$\mathrm{d}X_t = b_t(X_t, \phi_t(X_t)) \,\mathrm{d}t + \sigma \,\mathrm{d}W_t, \quad X_0 = \xi_0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A "naive" gradient direction

Special case with $\ell = \rho = 0$, $\sigma_t(x) := \sigma$

Minimise

$$J(\phi) = \mathbb{E}\left[\int_0^T f_t(X_t^{\phi}, \phi_t(X_t^{\phi})) \, \mathrm{d}t + g(X_T^{\phi})
ight]$$

over all feedback controls ϕ , where X^{ϕ} satisfies

$$\mathrm{d}X_t = b_t(X_t, \phi_t(X_t)) \,\mathrm{d}t + \sigma \,\mathrm{d}W_t, \quad X_0 = \xi_0.$$

For each policy ϕ and test policy $\psi,$

$$\frac{\mathrm{d}J(\phi+\epsilon\psi)}{\mathrm{d}\epsilon}\Big|_{\epsilon=0} = \mathbb{E}\bigg[\int_0^T \langle \partial_a H_t^{\mathrm{re}}(X_t^{\phi},\phi_t(X_t^{\phi}),\partial_x u_t^{\phi}(X_t^{\phi})),\psi_t(X_t^{\phi})\rangle\,\mathrm{d}t\bigg],$$

where $H^{\mathrm{re}}_t(x,a,y)\coloneqq \langle b_t(x,a),y
angle + f_t(x,a)$, and u^{ϕ} satisfies

 $\partial_t u_t(x) + \frac{1}{2}\sigma^2 \partial_{xx} u_t(x) + H_t^{\mathrm{re}}(x,\phi_t(x),\partial_x u_t(x)) = 0, \quad u_T(x) = g(x).$

LSE Department of Statistics

LSE

• Given ϕ^0 , perform gradient descent steps

$$\phi_t^{m+1}(x) = \phi_t^m(x) - \tau \partial_a H_t^{\mathrm{re}}(x, \phi_t^m(x), \partial_x u_t^{\phi^m}(x)),$$

where for each ϕ , u^{ϕ} satisfies

 $\partial_t u_t(x) + \frac{1}{2}\sigma^2 \partial_{xx} u_t(x) + H_t^{\mathrm{re}}(x, \phi_t(x), \partial_x u_t(x)) = 0, \ u_T(x) = g(x).$

• Given ϕ^0 , perform gradient descent steps

$$\phi_t^{m+1}(x) = \phi_t^m(x) - \tau \partial_a H_t^{\mathrm{re}}(x, \phi_t^m(x), \partial_x u_t^{\phi^m}(x)),$$

where for each ϕ , u^{ϕ} satisfies

 $\partial_t u_t(x) + \frac{1}{2}\sigma^2 \partial_{xx} u_t(x) + H_t^{\mathrm{re}}(x, \phi_t(x), \partial_x u_t(x)) = 0, \ u_T(x) = g(x).$

• If $\partial_a H_t^{\text{re}}(x, \phi_t^{\star}(x), \partial_x u_t^{\phi^{\star}}(x)) = 0$, then ϕ^{\star} is optimal.

• Given ϕ^0 , perform gradient descent steps

$$\phi_t^{m+1}(x) = \phi_t^m(x) - \tau \partial_a H_t^{\mathrm{re}}(x, \phi_t^m(x), \partial_x u_t^{\phi^m}(x)),$$

where for each ϕ , u^{ϕ} satisfies

 $\partial_t u_t(x) + \frac{1}{2}\sigma^2 \partial_{xx} u_t(x) + H_t^{\mathrm{re}}(x, \phi_t(x), \partial_x u_t(x)) = 0, \ u_T(x) = g(x).$

- ▶ If $\partial_a H_t^{\text{re}}(x, \phi_t^{\star}(x), \partial_x u_t^{\phi^{\star}}(x)) = 0$, then ϕ^{\star} is optimal.
- ▶ ϕ^{m+1} has lower regularity than ϕ^m , as $\partial_x u^{\phi^m}$ has the same regularity as $\partial_x \phi^m$.

• Given ϕ^0 , perform gradient descent steps

$$\phi_t^{m+1}(x) = \phi_t^m(x) - \tau \partial_a H_t^{\mathrm{re}}(x, \phi_t^m(x), \partial_x u_t^{\phi^m}(x)),$$

where for each ϕ , u^{ϕ} satisfies

 $\partial_t u_t(x) + \frac{1}{2}\sigma^2 \partial_{xx} u_t(x) + H_t^{\mathrm{re}}(x, \phi_t(x), \partial_x u_t(x)) = 0, \ u_T(x) = g(x).$

- ► If $\partial_a H_t^{\text{re}}(x, \phi_t^{\star}(x), \partial_x u_t^{\phi^{\star}}(x)) = 0$, then ϕ^{\star} is optimal.
- ► ϕ^{m+1} has lower regularity than ϕ^m , as $\partial_x u^{\phi^m}$ has the same regularity as $\partial_x \phi^m$. To see it, observe $v := \partial_x u^{\phi^m}$ solves

$$\begin{aligned} \partial_t \mathbf{v}_t(x) + \mathcal{L}^{\phi^m} \mathbf{v}_t(x) &= -[\partial_x H_t^{\mathrm{re}}(x, \phi_t^m(x), \mathbf{v}_t(x)) \\ &+ \partial_a H_t^{\mathrm{re}}(x, \phi_t^m(x), \mathbf{v}_t(x)) \partial_x \phi_t^m(x)], \quad \mathbf{v}_T(x) = \partial_x g(x), \end{aligned}$$

where \mathcal{L}^{ϕ^m} is the generator of X^{ϕ^m} .

Gradient of open-loop control

Minimise

$$J(\alpha) = \mathbb{E}\left[\int_0^T e^{-\rho t} \left(f_t(X_t^{\alpha}, \alpha_t) + \ell(\alpha_t)\right) \, \mathrm{d}t + e^{-\rho T} g(X_T^{\alpha})\right]$$

over all admissible control processes α , where X^{α} satisfies

$$\mathrm{d} X_t = b_t(X_t, \alpha_t) \, \mathrm{d} t + \sigma_t(X_t) \, \mathrm{d} W_t, \quad X_0 = \xi_0.$$

where

- f, g, b, σ are differentiable,
- \triangleright ℓ is convex, possibly non-smooth and infinite.

Stochastic maximum principle

Smooth case: $\ell = 0$

• Adjoint processes (Y^{α}, Z^{α}) for a control α :

 $\mathrm{d}Y_t = -\partial_x H_t(X_t^{\alpha}, \alpha_t, Y_t, Z_t) \,\mathrm{d}t + Z_t \,\mathrm{d}W_t, Y_T = e^{-\rho T} \partial_x g(X_T^{\alpha}),$

where H is the Hamiltonian:

$$H_t(x, a, y, z) = \langle b_t(x, a), y \rangle + \langle \sigma_t(x), z \rangle + e^{-\rho t} f_t(x, a).$$

• Gradient of $J(\cdot)$ at α :

$$\nabla J(\alpha)_t = \partial_a H_t(X_t^{\alpha}, \alpha_t, Y_t^{\alpha}, Z_t^{\alpha}).$$

Stochastic maximum principle

Smooth case: $\ell = 0$

• Adjoint processes (Y^{α}, Z^{α}) for a control α :

 $\mathrm{d}Y_t = -\partial_x H_t(X_t^{\alpha}, \alpha_t, Y_t, Z_t) \,\mathrm{d}t + Z_t \,\mathrm{d}W_t, Y_T = e^{-\rho T} \partial_x g(X_T^{\alpha}),$

where H is the Hamiltonian:

$$H_t(x, a, y, z) = \langle b_t(x, a), y \rangle + \langle \sigma_t(x), z \rangle + e^{-\rho t} f_t(x, a).$$

• Gradient of $J(\cdot)$ at α :

$$\nabla J(\alpha)_t = \partial_a H_t(X_t^{\alpha}, \alpha_t, Y_t^{\alpha}, Z_t^{\alpha}).$$

• α is a stationary point of J if $\partial_a H_t^{re}(X_t^{\alpha}, \alpha_t, Y_t^{\alpha}) = 0$, with

$$H^{\mathrm{re}}_t(x,a,y) \coloneqq \langle b_t(x,a),y \rangle + e^{-
ho t} f_t(x,a).$$

Smooth case with $\ell = 0$: perform gradient steps

$$\alpha_t^{m+1} = \alpha_t^m - \tau e^{\rho t} \partial_a H_t^{\mathrm{re}}(X_t^{\xi_0,\alpha^m}, \alpha_t^m, Y_t^{\xi_0,\alpha^m}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Smooth case with $\ell = 0$: perform gradient steps

$$\alpha_t^{m+1} = \alpha_t^m - \tau e^{\rho t} \partial_a H_t^{\mathrm{re}}(X_t^{\xi_0,\alpha^m}, \alpha_t^m, Y_t^{\xi_0,\alpha^m}).$$

Nonsmooth case: define the proximal map

$$\operatorname{prox}_{ au\ell}(a) = \arg\min_{z\in\mathbb{R}^k}\left(rac{1}{2}|z-a|^2+ au\ell(z)
ight), \quad a\in\mathbb{R}^k,$$

and perform proximal gradient steps:

$$\alpha_t^{m+1} = \mathsf{prox}_{\tau\ell}(\alpha_t^m - \tau e^{\rho t} \partial_{\mathfrak{a}} H_t^{\mathrm{re}}(X_t^{\xi_0, \alpha^m}, \alpha_t^m, Y_t^{\xi_0, \alpha^m})).$$

 $\begin{array}{l} \text{Proximal policy gradient method} \\ & \text{prox}_{\tau\ell}(\textbf{a}) = \arg\min_{z \in \mathbb{R}^k} \left(\frac{1}{2} |z - \textbf{a}|^2 + \tau \ell(z) \right) \end{array}$

Given ϕ^0 , perform proximal gradient steps

$$\phi_t^{m+1}(x) = \operatorname{prox}_{\tau\ell} \big(\phi_t^m(x) - \tau e^{\rho t} \partial_a H_t^{\operatorname{re}}(x, \phi_t^m(x), \mathbf{Y}_t^{t, x, \phi^m}) \big),$$

where for each $\phi{\rm ,}$

$$\begin{split} \mathrm{d} X_s^{t,x,\phi} &= b_s(X_s^{t,x,\phi},\phi_s(X_s^{t,x,\phi}))\,\mathrm{d} s + \sigma_s(X_s^{t,x,\phi})\,\mathrm{d} W_s, \\ \mathrm{d} Y_s^{t,x,\phi} &= -\partial_x H_s(X_s^{t,x,\phi},\phi_s(X_s^{t,x,\phi}),Y_s^{t,x,\phi},Z_s^{t,x,\phi})\,\mathrm{d} s + Z_s^{t,x,\phi}\,\mathrm{d} W_s, \\ X_t^{t,x,\phi} &= x, \quad Y_T^{t,x,\phi} = e^{-\rho T}\partial_x g(X_T^{t,x,\phi}). \end{split}$$

(Y^{t,x,φ^m})_{(t,x)∈[0,T]×ℝⁿ} is the Markovian representation of adjoint process Y^{α^m}.

Proximal policy gradient method $\operatorname{prox}_{\tau\ell}(a) = \operatorname{arg\,min}_{z \in \mathbb{R}^k} \left(\frac{1}{2} |z - a|^2 + \tau\ell(z) \right)$

Given ϕ^0 , perform proximal gradient steps

$$\phi_t^{m+1}(x) = \operatorname{prox}_{\tau\ell} \big(\phi_t^m(x) - \tau e^{\rho t} \partial_a H_t^{\operatorname{re}}(x, \phi_t^m(x), \mathbf{Y}_t^{t, x, \phi^m}) \big),$$

where for each $\phi{\rm ,}$

$$\begin{split} \mathrm{d} X_s^{t,x,\phi} &= b_s(X_s^{t,x,\phi},\phi_s(X_s^{t,x,\phi}))\,\mathrm{d} s + \sigma_s(X_s^{t,x,\phi})\,\mathrm{d} W_s, \\ \mathrm{d} Y_s^{t,x,\phi} &= -\partial_x H_s(X_s^{t,x,\phi},\phi_s(X_s^{t,x,\phi}),Y_s^{t,x,\phi},Z_s^{t,x,\phi})\,\mathrm{d} s + Z_s^{t,x,\phi}\,\mathrm{d} W_s, \\ X_t^{t,x,\phi} &= x, \quad Y_T^{t,x,\phi} = e^{-\rho T}\partial_x g(X_T^{t,x,\phi}). \end{split}$$

- (Y^{t,x,φ^m})_{(t,x)∈[0,T]×ℝⁿ} is the Markovian representation of adjoint process Y^{α^m}.
- ► Lipschitz regularity of $x \mapsto Y_t^{t,x,\phi^m}$ depends on the Lipschitz regularity of ϕ^m , but not $\partial_x \phi^m$.

▶ ℓ is lower semicontinuous and the action set $\mathbf{A} := \{z \in \mathbb{R}^k | \ell(z) < \infty\}$ is nonempty,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ ℓ is lower semicontinuous and the action set $\mathbf{A} := \{z \in \mathbb{R}^k | \ell(z) < \infty\}$ is nonempty,
- ∃µ, v ≥ 0 s.t. µ + v > 0 and f is (µ-strongly) convex in control, ℓ is (v-strongly) convex in control,

- ▶ ℓ is lower semicontinuous and the action set $\mathbf{A} := \{z \in \mathbb{R}^k | \ell(z) < \infty\}$ is nonempty,
- ∃µ, v ≥ 0 s.t. µ + v > 0 and f is (µ-strongly) convex in control, ℓ is (v-strongly) convex in control,

$$\flat \ b_t(x,a) = \hat{b}_t(x) + \bar{b}_t(x)a.$$

▶ and several regularity conditions on σ , f, g, \hat{b} and \bar{b} , e.g. $\langle x - x', \hat{b}_t(x) - \hat{b}_t(x') \rangle \leq \kappa_{\hat{b}} |x - x'|^2.$

V_A contains all Borel functions φ : [0, T] × ℝⁿ → A that are Lipschitz continuous and linearly growth in x.

Theorem

For all $\phi^0 \in \mathcal{V}_A$ and $\tau > 0$, the iterates $(\phi^m)_{m \in \mathbb{N}}$ are well-defined and in \mathcal{V}_A .

Theorem

If [....], then for all $\phi^0 \in \mathcal{V}_A$ and small $\tau > 0$, there exists $\phi^* \in \mathcal{V}_A$ and $c \in [0, 1)$ such that

- α^{ϕ^*} is a stationary point of J;
- $|\phi^{m+1} \phi^{\star}|_0 \leq c |\phi^m \phi^{\star}|_0$ and $||\alpha^{\phi^m} \alpha^{\phi^{\star}}||_{\mathcal{H}^2} \leq \mathcal{O}(c^m)$ for all m.

- Time horizon *T* is small.
- Discount factor ρ is large.
- Running cost is sufficiently convex in control, i.e., $\mu + \nu$ is sufficiently large.
- Costs depend weakly on state.
- Control affects state dynamics weakly.
- State dynamics is strongly dissipative, i.e., $\kappa_{\hat{h}}$ is sufficiently negative.

Theorem

If [....], then for all $\phi^0 \in \mathcal{V}_A$ and small $\tau > 0$, there exists $\phi^* \in \mathcal{V}_A$ and $c \in [0, 1)$ such that

- α^{ϕ^*} is a stationary point of J;
- $|\phi^{m+1} \phi^{\star}|_0 \leq c |\phi^m \phi^{\star}|_0$ and $\|\alpha^{\phi^m} \alpha^{\phi^{\star}}\|_{\mathcal{H}^2} \leq \mathcal{O}(c^m)$ for all m.

- Apply PGM for subintervals: Coache, Jaimungal (2021).
- Fictitious discount factor regularisation: Guo, Hu, Zhang (2021).
- Convexify by entropy: Siska, Szpruch (2020), Kerimkulov, Leahy, Siska, Szpruch (2022).
- Dissipativity and controllability: Hu (2019).

Conclusions

Theoretically, gradient iterations over feedback controls are

- Inearly convergent for nonconvex, nonsmooth running cost;
- stable to numerical perturbations.

In practice,

- hybrid method using
 - PDEs for adjoint variables (value function and gradient),
 - and particle simulation for mean-field problems.
- Improved interpretability and robust to perturbations.

Reisinger, Stockinger, Zhang (2021),

A fast iterative PDE-based algorithm for feedback controls of nonsmooth mean-field control problems, *arXiv:2108.06740*.

Reisinger, Stockinger, Zhang (2022),

Linear convergence of a policy gradient method for finite horizon continuous time stochastic control problems, *arXiv:2203.11758*.

- Given the feedback control $\tilde{\phi}^m$ at the *m*-th iteration;
- ▶ a function $\widetilde{\mathcal{Y}}^{\widetilde{\phi}^m}$: $[0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ approximating the solution map $[0, T] \times \mathbb{R}^n \ni (t, x) \mapsto \mathcal{Y}_t^{\widetilde{\phi}^m}(x) := Y_t^{t, x, \widetilde{\phi}^m} \in \mathbb{R}^n$.
- Then perform an approximate proximal gradient update

$$\widetilde{\phi}_t^{m+1}(x) = \mathsf{prox}_{\tau\ell}(\widetilde{\phi}_t^m(x) - \tau e^{\rho t} \partial_{\mathfrak{a}} H_t^{\mathrm{re}}(x, \widetilde{\phi}_t^m(x), \widetilde{\mathcal{Y}}_t^{\widetilde{\phi}^m}(x))).$$

Theorem

In the set-up from earlier, there exist $c \in [0,1)$ and $C \ge 0$ s.t.

$$|\widetilde{\phi}^m - \phi^\star|_0 \leq c^m |\phi^0 - \phi^\star|_0 + C \sum_{j=0}^{m-1} c^{m-1-j} |\mathcal{Y}^{\widetilde{\phi}^j} - \widetilde{\mathcal{Y}}^{\widetilde{\phi}^j}|_0.$$

