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Motivation and overview lSE

v

Stochastic control problems are ubiquitous.

v

Continuous-time models well understood in this community.

v

Reinforcement learning (RL) methods increasingly popular.

v

Analysis restricted to discrete-time models.
This talk:

» Analysis of policy gradient methods for continuous-time
models using control techiniques.
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Stochastic control v.s. RL lSE

Classical control theory focuses on:
» existence and uniqueness of optimal control processes.
» characterisation and regularity of value function.

» little attention has been on feedback control, i.e., a function
mapping system states to actions.
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Stochastic control v.s. RL |_SE

Classical control theory focuses on:
» existence and uniqueness of optimal control processes.
» characterisation and regularity of value function.

» little attention has been on feedback control, i.e., a function
mapping system states to actions.

Learning algorithm naturally of feedback form:
» regularity of feedback control (a.k.a. policy).
> convergence/regret rate analysis:

» critical for understanding algorithm efficiency.
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Policy gradient method I_SE

» Approximate a policy in a parametric form, and update the
policy parametrization iteratively based on gradients of the
objective function.
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Policy gradient method lSE

» Approximate a policy in a parametric form, and update the
policy parametrization iteratively based on gradients of the
objective function.

» Analysing the convergence of PGMs is technically challenging,
as the objective of a control problem (even for LQ problems)
is typically nonconvex with respect to the policies.
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Related works on PGMs lSE

Analysis restricted to discrete-time models and specific policy
parameterisation.

> Linear convergence to optimality:
» tabular MDP with softmax policy: Mei, Xiao, Szpesvari,
Schuurmans (2020).
> entropy-regularised MDP with one-layer neural network policy:
Kerimkulov, Leahy, Siska, Szpruch (2022).
» LQ with linear policy: Fazel, Ge, Kakade, Mesbahi (2018);
Hambly, Xu, Yang (2021).
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Related works on PGMs lSE

Analysis restricted to discrete-time models and specific policy
parameterisation.

> Linear convergence to optimality:

» tabular MDP with softmax policy: Mei, Xiao, Szpesvari,
Schuurmans (2020).
> entropy-regularised MDP with one-layer neural network policy:
Kerimkulov, Leahy, Siska, Szpruch (2022).
» LQ with linear policy: Fazel, Ge, Kakade, Mesbahi (2018);
Hambly, Xu, Yang (2021).
» Trapped at local minimum:

» LQ with piecewise linear policy: Chen, Agazzi (2021).
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Related works on PGMs lSE

Analysis restricted to discrete-time models and specific policy
parameterisation.

> Linear convergence to optimality:

» tabular MDP with softmax policy: Mei, Xiao, Szpesvari,
Schuurmans (2020).

> entropy-regularised MDP with one-layer neural network policy:
Kerimkulov, Leahy, Siska, Szpruch (2022).

» LQ with linear policy: Fazel, Ge, Kakade, Mesbahi (2018);
Hambly, Xu, Yang (2021).

» Trapped at local minimum:
» LQ with piecewise linear policy: Chen, Agazzi (2021).
Continuous-time:
» Algorithm design: Jia, Zhou (2000, 2021).

Open: convergence behaviour of PGMs for general models/policies.
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Our work lS E
Reisinger, Stockinger, Zhang (2022)

» General stochastic control problem: nonlinear state dynamics
and nonconvex, nonsmooth costs.

» Non-parametric time-dependent policies.

> Linear convergence to stationary points.
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Model set-up lSE
Drift-controlled diffusion

Minimise
.
Ja) = E[ /O e Pt (F(XD, ar) + £ar)) dE + e_pTg(X%)]

over all square integrable, adapted processes «, where X satisfies

dXt = bt(Xt, at) dt + Ut(Xt)th, XO = 50.

» f,g,b,o are differentiable.
> [ is possibly non-smooth and infinite.

¢ represents control constraints, £1-norm or entropy regularisers.
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A “naive” gradient direction

Special case with £ = p = 0, o¢(x) = o

Minimise -
J(¢) = E[/ ﬂ(X?,¢r(X?))dt+g(X$)]
0
over all feedback controls ¢, where X¢ satisfies

dX: = be(Xe, 9¢(Xe)) dt + o dWe,  Xo = &o.
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A “naive” gradient direction

Special case with £ = p = 0, o¢(x) = o lSE

Minimise

s =z [ ' AXE ) -+ 06|
0
over all feedback controls ¢, where X¢ satisfies
dXe = be( X, pe(Xe)) dt + o dWs,  Xo = &o.
For each policy ¢ and test policy 1,

dJ(¢ + e)
de

_E[/T(83H{e(xf’,@(X?),axu?(x;f’)),z/Jt(Xf’)>dt ,
e=0 0

where HX(x, a,y) = (bt(x, a),y) + f:(x, a), and u? satisfies

Orue(x) + %028xxut(x) + H;° (X7 ¢t(X)78xUt(X)) =0, ur(x)=g(x).
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A “naive” PGM lSE

HEC(x; a,y) = (be(x, a), ) + fe(x; a)

» Given ¢, perform gradient descent steps
PP (x) = 07 (x) — 70 HE (x, 67°(x), Dt (),
where for each ¢, u? satisfies

atut(x) + %0—2axxut(x) + ng(X, ¢t(X),8XUt(X)) = 0& UT(X) = g(X)
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A “naive” PGM lSE

HEC(x; a,y) = (be(x, a), ) + fe(x; a)

» Given ¢, perform gradient descent steps
PP (x) = 07 (x) — 70 HE (x, 67°(x), Dt (),
where for each ¢, u? satisfies
atut(x) =+ %J2axxut(x) + ng(X’ ¢t(x)7axut(x)) = 03 UT(X) = g(X)

> If O,H;(x, gbﬁ(x),@xuf*(x)) = 0, then ¢* is optimal.
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A “naive” PGM lSE

HEC(x; a,y) = (be(x, a), ) + fe(x; a)

» Given ¢, perform gradient descent steps
PP (x) = 07 (x) — 70 HE (x, 67°(x), Dt (),
where for each ¢, u? satisfies
atut(x) =+ %U2axxut(x) + ng(X’ ¢t(X),8XUt(X)) = 03 UT(X) = g(X)

> If O,H;(x, gbﬁ(x),@xuf*(x)) = 0, then ¢* is optimal.

» »™*1! has lower regularity than ¢™, as 0,u®" has the same
regularity as O0x¢™.
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A “naive” PGM lSE

HEC(x; a,y) = (be(x, a), ) + fe(x; a)

» Given ¢, perform gradient descent steps

PP (x) = 07 (x) — 70 HE (x, 67°(x), Dt (),

where for each ¢, u? satisfies

8tut'(x) + %O—Zaxxut(x) + ng(X’ ¢t(X)78XUt(X)) = 03 UT(X) = g(X)

> If O,H;(x, gb‘;(x),@xuf*(x)) = 0, then ¢* is optimal.

» »™*1! has lower regularity than ¢™, as 0,u®" has the same
regularity as 0,¢™. To see it, observe v := O,u®" solves

Beve(x) + L2 ve(x) = —[0HE (x, P (x), ve(x))
+ 02Hi (X, 67 (x), vi(x)) 00T (X)],  vr(x) = dig(x),

where £?" is the generator of X"
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Alternative gradient direction lSE

Gradient of open-loop control

Minimise
T T
(o) :E[ /0 e Pt (A(XD, ap) + far)) dE+ e g(X‘%—)]
over all admissible control processes «, where X¢ satisfies

dXt = bt(Xh at) dt + O't(Xt)th, X() = 50.

where
> f,g,b,o are differentiable,

» ( is convex, possibly non-smooth and infinite.
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Stochastic maximum principle I_SE

Smooth case: £ =0

» Adjoint processes (Y, Z%) for a control «:
dYe = — OHe(X{, e, Yo, Ze) dt + Ze AW, Y1 = e PT 0,g(X$),
where H is the Hamiltonian:
He(x,a,y,2) = (be(x, ). y) + (04(x), 2) + e " fe(x, a).
» Gradient of J(-) at

VJ(a)t = aaHt(Xg,Oét, Yta,Zta)
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Stochastic maximum principle lSE

Smooth case: £ =0

» Adjoint processes (Y, Z%) for a control «:
dYe = — OcH (X, e, Yo, Ze) dt + Ze dWe, Y7 = e T 0, g(X$),
where H is the Hamiltonian:
He(x,a,y,2) = (be(x, ). y) + (04(x), 2) + e " fe(x, a).
» Gradient of J(-) at
VJ(a)r = 0.He (X7, e, YT, Z5Y).
> « is a stationary point of J if ,H;¢(XF, at, Y) = 0, with

Hi®(x,a,y) = (be(x, a), y) + e " f(x, a).
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Open-loop (proximal) gradient descent

» Smooth case with ¢ = 0: perform gradient steps

m+l _ . m t re(y$0,2™ _m y80,a
af™t = af — 1e” O HE (XY o, YO ).
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Open-loop (proximal) gradient descent lSE

» Smooth case with ¢ = 0: perform gradient steps
aftl = o — 1P O, HE (X" o, Yoo,
» Nonsmooth case: define the proximal map

1
prox.,(a) = arg min <|z —al®+ TK(Z)) , acRk
zeRk \ 2

and perform proximal gradient steps:

Q= prox,, (af — 7O, HE(XE", o, Vi),
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Proximal policy gradient method lSE

prox,(a) = arg min, ¢k (% |z —al®+ TZ(Z))

Given ¢°, perform proximal gradient steps
P (x) = prox, (¢7'(x) — TP D, H;(x, 67 (x), YEOT)),
where for each ¢,

dXE? = by(XE? o (XE?)) ds + ao(XE¥?) AW,
AYE? = —0 Hg(XE?, s (XE?), YEX2, ZEX?) ds + ZE4? d W,
X0 =x, YR = e7PT Y, g(XE?).

> (Ytt,x,¢m)(t’x)€[o7T]XRn is the Markovian representation of
adjoint process Y.
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Proximal policy gradient method lSE

prox,(a) = arg min, ¢k (% |z —al®+ TZ(Z))

Given ¢°, perform proximal gradient steps
T (x) = prox, (97 (x) — T D, H (x, 67 (x), YE)),
where for each ¢,
dXE? = by(XE?, (X)) ds + os(XI?) AW,

AYE? = —0 Hg(XE?, s (XE?), YEX2, ZEX?) ds + ZE4? d W,
X:’X’¢ = x, y_;-“_’XAi’ — e*pTan(X;_,X,tﬁ).

> (Ytt7x,¢m)(t’x)€[o7T]XRn is the Markovian representation of
adjoint process Y.

» Lipschitz regularity of x — Y{”™**" depends on the Lipschitz
regularity of ™, but not 0x¢™.
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Technical conditions

» ¢ is lower semicontinuous and the action set
A = {z € R¥|{(z) < oo} is nonempty,
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Technical conditions

» ¢ is lower semicontinuous and the action set
A = {z € R¥|{(z) < oo} is nonempty,

» Ju,v>0st. p+v >0 and fis (u-strongly) convex in
control, ¢ is (v-strongly) convex in control,
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Technical conditions

¢ is lower semicontinuous and the action set
A = {z € R¥|{(z) < oo} is nonempty,

v

v

Ju,v >0st. p+v >0 and fis (u-strongly) convex in
control, ¢ is (v-strongly) convex in control,

be(x, a) = by(x) 4 b(x)a.

v

and several regularity conditions on o, f, g, b and b, e.g.

(x = x', be(x) — be(x)) < Ky

v

x —x'|2.
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Policy space Va |.SE

» Va contains all Borel functions ¢ : [0, T] x R” — A that are
Lipschitz continuous and linearly growth in x.

Theorem

For all $° € Va and 7 > 0, the iterates (™) men are well-defined
and in Vj.
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Convergence lSE

Assume one of the following

Theorem

If [....], then for all #° € Va and small T > 0, there exists ¢* € Va
and ¢ € [0,1) such that

» o is a stationary point of J;
> o7 — ¢*o < c|¢™ — ¢*|o and [a?” — a?"[|zz < O(c™) for
all m.
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Convergence lSE

Assume one of the following

» Time horizon T is small.

» Discount factor p is large.

» Running cost is sufficiently convex in control, i.e., u + v is sufficiently large.

» Costs depend weakly on state.

» Control affects state dynamics weakly.

> State dynamics is strongly dissipative, i.e., s} is sufficiently negative.
Theorem

If [....], then for all #° € Va and small T > 0, there exists ¢* € Va
and ¢ € [0,1) such that

» o is a stationary point of J;
> @M — ¢*lo < | — ¢*[o and [|a®” — a?[l2 < O(c™) for
all m.
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Convergence

Practical implication

v

Apply PGM for subintervals: Coache, Jaimungal (2021).

Fictitious discount factor regularisation: Guo, Hu, Zhang
(2021).

v

v

Leahy, Siska, Szpruch (2022).
Dissipativity and controllability: Hu (2019).

v

Convexify by entropy: Siska, Szpruch (2020), Kerimkulov,

Department
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Conclusions lSE

Theoretically, gradient iterations over feedback controls are

» linearly convergent for nonconvex, nonsmooth running cost;
» stable to numerical perturbations.

In practice,
» hybrid method using

» PDEs for adjoint variables (value function and gradient),
> and particle simulation for mean-field problems.

» Improved interpretability and robust to perturbations.

@ Reisinger, Stockinger, Zhang (2021),
A fast iterative PDE-based algorithm for feedback controls of nonsmooth
mean-field control problems, arXiv:2108.06740.

@ Reisinger, Stockinger, Zhang (2022),
Linear convergence of a policy gradient method for finite horizon continuous
time stochastic control problems, arXiv:2203.11758.
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Stability |.SE
under numerical approximation of gradient

» Given the feedback control 25’" at the m-th iteration:
» a function Y?¢" : [0, T] x R" — R" approximating the
solution map [0, T] x R” 3 (t,x) — V¢ (x) = Y e R™.
» Then perform an approximate proximal gradient update
BI1(x) = prox(S(x) — e D,H:  (x, 37 (x), DY (x))).
Theorem
In the set-up from earlier, there exist ¢ € [0,1) and C > 0 s.t.
m—1

8™ — 6%l < c™|¢® — o+ C 3 ™| — J,,

j=0
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